
ADBMS-3

UNIT – 2
Transaction States

There are the following six states in which a transaction may exist:

 Active (2) Partially Committed (3) Failed (4)Aborted (5)Committed (6)Terminated

Active: The initial state when the transaction has just started execution.

Partially Committed: At any given point of time if the transaction is executing properly, then it is going towards it

COMMIT POINT. The values generated during the execution are all stored in volatile storage.

Failed: If the transaction fails for some reason. The temporary values are no longer required, and the transaction is

set to ROLLBACK. It means that any change made to the database by this transaction up to the point of the failure

must be undone. If the failed transaction has withdrawn Rs. 100/- from account A, then the ROLLBACK operation

should add Rs 100/- to account A.

Aborted: When the ROLLBACK operation is over, the database reaches the BFIM. The transaction is now said to

have been aborted. Two options after it has been aborted:

 restart the transaction (can be done only if no internal logical error)

 kill the transaction

Committed: If no failure occurs then the transaction reaches the COMMIT POINT. All the temporary values are

written to the stable storage and the transaction is said to have been committed.

Terminated: Either committed or aborted, the transaction finally reaches this state.

The whole process can be described using the following diagram:

Concurrent Execution
A schedule is a collection of many transactions which is implemented as a unit. Depending upon how these

transactions are arranged in within a schedule, a schedule can be of two types:

 Serial: The transactions are executed one after another, in a non-preemptive manner.

 Concurrent: The transactions are executed in a preemptive, time shared method.

, there is no question of sharing a single data item among many transactions, because not more

than a single transaction is executing at any point of time. However, a serial schedule is inefficient in the sense that

the transactions suffer for having a longer waiting time and response time, as well as low amount of resource

utilization.

Figure 1-Transaction States

Preview from Notesale.co.uk

Page 3 of 6

