Blood

- Interstitial fluid (inside tissues)
 - Bathes the cells of the body 0
 - Nutrients and oxygen diffuse from the blood into interstitial fluid and then into the cells •
 - Wastes move in reverse direction
- Blood
 - 0 Functions
 - Transports nutrients/wastes/hormones •
 - Regulates of body temperature/pH
 - Prevents of blood loss/infection
 - **Physical characteristics** 0
 - Thicker (more viscous) than water •
 - Temp of 38°C •
 - pH 7.35-7.45 (alkaline)
 - 8% total body weight
 - 5-6L males, 4-5L females •
 - Composition- 55% plasma, 45% cells 0
 - Cellular- all originate form pluripotent stem cell
 - Plasma- no cellular components

1. 44% Red blood cells (erythrocytes)

- Produced in red bone marrow
- Specialised oxygen-carrying cells/ also CO2

- Larger surface area for diffusion
 Contains haemoglobin (Hb) [gas transport molecular 5316, CO.UK
 Heme: iron containing pigment level
 One gas met
 - - Globin: for protein subunits each cont ining 1 neme molecule
- Production (produced in kidney)

High altitude incluses production

ABO Group

- Determined by antigens A and B on surface of RBC's 0
 - A= A antigens
 - Type B= B antigens
 - Type AB= both
 - Type O= neither
- Antibodies to antigens A and B produced in childhood
 - No antibodies produced to own blood group antigens
 - Antibody attaches to several antigens causing agglutination (clumping of RBC's)
 - Mismatched blood transfusion
 - Agglutination of RBC's causes microclots to block blood vessels, leads to vessel rupture

Rh Group

- Determined by presence of Rhesus factors (D antigens) 0
 - Rh positive= factor on RBC
 - Rh negative= no factor or RBC

	Group A	Group B	Group AB	Group O
Red blood cell type			AB	
Antibodies in Plasma	人 イト Anti-B	Anti-A	None	Anti-A and Anti-B
Antigens in Red Blood Cell	♥ A antigen	↑ B antigen	P↑ A and B antigens	None

- Plasma (non-cellular components)
 - 90% Water

- 7% Plasma proteins
 - 60% Albumin (major plasma protein)
 - Produced in liver
 - Transports molecules around circulatory system
 - Buffers blood pH
 - Aids in body heat distribution
 - Maintains osmotic pressure of blood
 - Decreased albumin leads to fluid leakage causing oedema
 - The blood clotting system
 - Hemostasis -stopping of bleeding
 - Vascular spasm
 - Platelet plug formation
 - Coagulation (blood clotting)
 - Serum= plasma without clotting system proteins
 - Globulins

•

- Alpha, beta and gamma
- Other solutes

Electrolytes, nutrients, hormones, gases, waste etc.

Monocyte Copyright ©2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Monocyte

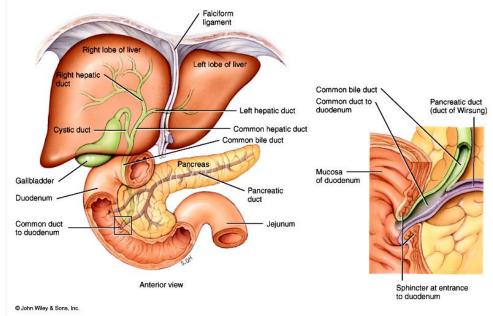
Large intestine 0

- Four main sections:
 - 1. Caecum
 - Pouched sac where small intestine contents enters •
 - Contains appendix
 - 2. Colon
 - Ascending, transverse, descending, sigmoid
 - 3. Rectum
 - 4. Anal canal
 - Internal anal sphincter- involuntary smooth muscle •
 - External anal sphincter- external skeletal muscle
- Teniae coli- the longitudinal muscle is condensed into 3 ribbons
 - Pulls large intestine into sacs called haustra
- Main site of water absorption
 - Large number of blood vessels
- No villi are present
- Large number of goblet cells (lots of mucus)
- Contains the bacteria flora
 - Synthesise B complex vitamins and vitamin K

Haemorrhoids:

- Enlarged, inflamed veins (usually varicose) within the anus 0
- Due to increased pressure on the anal veins 0
- 0 Common in pregnancy, prolonged sitting, constipation, forms of obesity.

Defecation:


CO.UK sphincter→relax external anal Mass movements→full rectum→stretch receptors→relax 0 sphincter \rightarrow defecation

stem

If external sphincter (voluntary action) o Oipation may result 0

Accessor

- Assist direction in GIT
 - 0 Provide mechanical action
 - 0 Release chemical secretions (flow through ducts into tract)

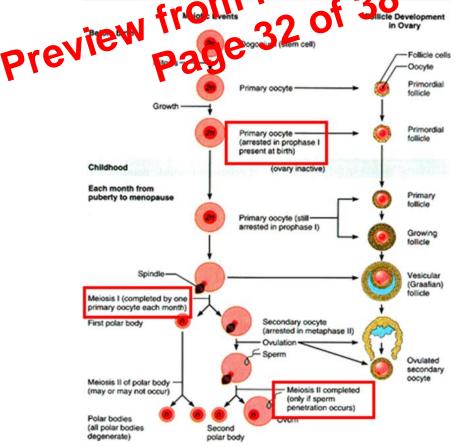
Antidiuretic hormone (ADH)

- Released by posterior pituitary gland
- . Regulates water permeability of the collecting ducts
- . Under ADH water is reabsorbed into blood→urine becomes more concentrated
- Alcohol inhibits ADH release
 - Decreased water reabsorption, increased urine output, dehydration
- Aldosterone

- A mineralocorticoid secreted by adrenal glands
- . Enhances sodium reabsorption
 - Water follows sodium back into blood (increases blood pressure) •
 - Urine becomes more concentrated
 - Sodium reabsorption coupled with potassium secretion into urine

3. Tubular secretion

- Occurs primarily within the proximal convoluted tubule
- Also within late regions of distal convoluted tubule/collecting duct •
- Important for:
 - Disposal of substances not already in filtrate(toxic metabolites, drugs etc.) •
 - Elimination of undesirable/toxic substances (urea, uric acid etc.)
 - Ridding body of excess potassium
 - Nearly all potassium in urine is derived from active tubular secretion •
 - Controlling blood pH


Ureters

- **Urinary bladder**
- Collapsible smooth muscle sac located in the lower appendix of the lower ap Middle Incosh muscle layer

 - Duter fibrous conne 🖻 e 😹
 - Trigone= smooth triangular region on bladder base outlined by three openings 0
 - Outlined by three tubes (one from ureter from each kidney and the urethra) •
- Urethra
 - Thin-walled, muscular tube drains urine from bladder during urination 0
 - Internal (involuntary, smooth muscle) sphincter 0
 - External (voluntary, skeletal muscle) sphincter 0

• Maturation of ovarian follicles

- Follicles embedded in highly vascularised stroma of ovaries
- Consists of oocytes and supporting cells
- Primordial follicle
 - Oogonia (initial, diploid, oocyte stem cells) complete mitosis prior to birth
 Total number of possible oocytes already determined before birth
 - Primary oocytes (developed from oogonia) enter meiosis before birth Halted at Prophase I of Meiosis I until puberty
 - Primary oocytes are enclosed in single layer of squamous cells
- Primary follicle
 - Follicular cells
 - Simulated by FSH become cuboidal then stratified (granulosa cells)
 - Deposit zona pellucida layer (glycoprotein) around oocyte
 - Begin to produce oestrogen
 - Oocyte completes first meiotic division and is then halted at Metaphase II of Meiosis II
 - Of the two daughter cells only one is viable
 - Polar body= non-viable daughter cells with almost no cytoplasm
- Secondary follicle
 - Surrounding follicular cells become filled with clear fluid
 - Space is known as the atrum
- Graafan follicle
 - Atrum becomes so large that follicle bulges from surface of ovary
 - Ovulation occurs when follicle ruptures releasing oocyte
- Corpus luteum (yellow body)
 - Yellow, fibrous structure which is the remnants of ruptured Graffan follicle
 - Produces hormones, mainly progesterone and some oestrogen
 - Progesterone- promotes changes in endometrian site implantation of an embryo
- Corpus albicans (white body)
 - White fibrous tissue formed from corrus useum if egg is not fertilised

Embryonic Development

- Embryo- from conception until 8 weeks gestation
- Foetus- from 8 weeks gestation until birth
- Three stages:
 - 1. Growth
 - Change in size due to mitosis
 - 2. Differentiation
 - Cells become specialised according to their function
 - 3. Morphogenesis
 - Change in overall shape/organisation of embryo

• Fertilisation

- Combining of gametes to form zygote usually occurs in fallopian tubes
 - Ovum must be fertilized within 12-24 hours after ovulation
 - Takes 72 hours for ovum to reach uterus
- Why so many sperm?
 - Ejaculation contains 300 million
 - Only 2000 reach ovum
 - Loss by leakage
 - Killed by acidic vaginal environment/destroyed by WBC's in uterus
 - Failure to penetrate mucus of cervical canal
 - Half will enter wrong fallopian tube
- Sperm can reach ovum in 10 minutes but cannot fertilize until capacitation (`10 hours)
 - Removal of adherent seminal plasma proteins
 - Reorganisation of cell membrane lipids and proteins
 - Prior to ejaculation sperm head contained expression
 - Toughens membrane precessing pre-mature repease of acrosomal digestive enzymes
 - Acidic vaginal fillio washes away showstero (inhibitory factors
 - Influx of ex aceilular calcium (due to inveased sperm head permeability)

D In Gase in cyclic AMD

- Decrease in sperm intracellular pH
- Sperm motility increases
- After capacitation sperm makes contact with zona pellucida of ovum
 - Carbohydrate groups on zona pellucida glycoproteins function as sperm receptors
 - Receptor-ligand interact (allows species specificity)
 - Sperm surface proteins bind to receptors triggering acrosomal reaction
 - Release of digestive enzymes from acrosome of sperm
 - Cellular extension (actin filaments) from head guides sperm nucleus into cytoplasm of ovum

Monozygotic twins: (identical)

- Single ovum fertilised by one sperm
- Inner cell mass separates into two identical cell masses
- Single, shared placenta (one twin may receive more placental blood flow)

Dizygotic twins:

- Two separate ova fertilized by two different sperm
- Fused placenta