Pigments in Chloroplasts

- Chloroplasts contain several different pigments and all absorb light of different wavelengths
- Chlorophyll a absorbs blue violet and red light and reflects green
- **Chlorophyll b** absorbs blue and orange light and reflects yellow-green
- The carotenoids absorb mainly blue-green light and reflect yellow and orange

Capture Solar Power

- Pigments in chloroplasts are responsible for absorbing photons (capturing solar power),
 causing release of electrons
 - The electrons jump to a higher energy level-the excited state-where electrons are unstable
 - The electrons drop back down to their "ground state" and as they do they release their excess energy

Photosystems

- The energy released could be lost as heat or light, but rather it is conserved as it is passed from one molecule to another molecule
 - All of the components to accomplish this are organized if the koid membranes in clusters called photosystems
 - Photosystems are light harrest no complexes surrounding a reaction center complex
- The energy is passed from the ecule to melecule within the photosystem
 - Finally the chest he reaction enter where a primary electron acceptor accepts
 This electrons and one cently becomes reduced
 - This solar-powered transfer of an electron from the electron center pigment to the primary electron acceptor is the first step of the light reactions

Type of Photosystems

- Two types of photosystems have been identified and are called photosystem I and photosystem II
 - o Each type of photosystem has a characteristic reaction center
 - Photosystem II, which functions first, is called P680 because its pigment absorbs light with a wavelength of 680 nm
 - Photosystem I, which functions next, is called P700 because it absorbs light with a wavelength of 700nm

Electron Transport Chain in Plants

- During the light reactions, light energy is transformed into the chemical energy of ATP and NADPH
 - To accomplish this, electrons removed from water pass from photosystem II to photosystem I and are accepted by NADP⁺
 - The bridge between photosystems II and I is an electron transport chain that provides energy for the synthesis of ATP