
Explicit constructor invocation

public class CourseManager{

public static void main(){

Student s1=new Student();

Student s2=new Student(“Jagan”, “13CS04”);

Student s3=new
Student(“Jyoti”,“13CS05”,“CS201”, “CS251”,
“CS261”);

}

}

Caution: There is a difference between a constructor and method.

• Constructors can only be called in conjunction with a new operator

• We cannot apply a constructor on an existing object to reset its fields, i.e.

s2.Student(“Jagan”, “11ME05”) is not allowed

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 10 of 56

Testing Objects for Equality

• Using the == operator (continued):

– The == operator returns true if the two reference

variables point to the same object; i.e., the two

reference variables contain the same address. For

example, what does this code fragment print?example, what does this code fragment print?
Car car1 = new Car();

Car car2 = car1;

if (car1 == car2)

{

System.out.println("the same");

}

else

{

System.out.println("different");

}

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 18 of 56

Passing References as Arguments

• Suppose you pass a reference variable to a method, and inside the

method you update the reference variable's instance variables. What

happens? …

• Remember that a reference variable holds the address of an object,

not the object itself.

• So in passing a reference variable argument to a method, a copy of the • So in passing a reference variable argument to a method, a copy of the

object's address (not a copy of the object itself) is passed to the

method and stored in the method's parameter.

• Since the parameter and the argument hold the same address value,

they point to the same object. Thus, if one of the parameter's instance

variables is updated, then the update will simultaneously update the

argument's instance variable in the calling module.

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 21 of 56

Method-Call Chaining

public class Car3Driver
{

public static void main(String[] args)
{

Car3 car = new Car3();

car.setMake("Toyota").setYear(2008).printIt();car.setMake("Toyota").setYear(2008).printIt();
} // end main

} // end class Car3Driver

a method-call chain

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 25 of 56

Method-Call Chaining

public class Car3
{

private String make;
private int year;

//*** ******

public Car3 setMake(String make)
{

this.make = make;
return this;

The return type is the same as the class name.

return this;
} // end setMake

public Car3 setYear(int year)
{

this.year = year;
return this;

} // end setYear

//*** ******

public void printIt()
{

System.out.println(make + ", " + year);
} // end printIt

} // end class Car3

Return the calling object.

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 26 of 56

Class Methods

• If you have a method that accesses class variables
and not instance variables
– Declare the method to be a class method

• Add static to the method's heading like this:
<private-or-public> static <return-type> <method-name>(<parameters>)

• Example:
public class Mousepublic class Mouse
{

private static int mouseCount;
private static double averageLifeSpan;

public static void printMouseCount()
{

System.out.println("Total mice = " +
Mouse.mouseCount);

}
}

To access a class variable, prefix it

with <class-name> dot.

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 32 of 56

Adding Elements to an ArrayList Object

• To add an element to the end of an

ArrayList object, use this syntax:
ArrayList-reference-variable.add(item);

• The item that's added must be the same

type as the type specified in the type as the type specified in the

ArrayList 's declaration.

• Write a code fragment that creates this

ArrayList object:
computerScientists

0 "Ada Lovelace"

1 "Grace Hopper"

2 "Carol Bartz"

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 39 of 56

How to Update an ArrayList Object

• Draw a picture of the colors ArrayList
after this code fragment executes:

String mixedColor;

ArrayList<String> colors = new ArrayList<String>();

colors.add("red");colors.add("red");

colors.add("green");

colors.add("blue");

mixedColor = colors.get(0) + colors.get(1);

colors.set(2, mixedColor);

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 43 of 56

Storing Primitives in an ArrayList

• As mentioned previously, ArrayList s store references. For example,

in the Survivor program, tribe is an ArrayList of strings, and

strings are reference types.

• If you need to store primitives in an ArrayList , you can't do it

directly, but you can do it if the primitives are wrapped up in wrapper

classes.classes.

• Ever since Java 5.0, the "wrapping up" process has been done behind

the scenes. For ArrayList s, it's done automatically if a wrapper

class is used in an ArrayList declaration.

• The StockAverage program on the next slide reads int stock

values and stores them in an ArrayList . After all stock values are

entered, the program calculates the average stock value.

• Why is an ArrayList appropriate for calculating a stock average?

Courtesy: Tata Mcgraw Hill

Preview from Notesale.co.uk

Page 47 of 56

