
1. Expected utility and stochastic dominance

1.1 Introduction

Most decisions in finance are taken under a cloud of uncertainty. When you plan to invest
your money in a long-term portfolio, you do not know how much will its price be at the
time of disinvesting it. Therefore, you face a problem in choosing the “right” portfolio mix.
Decision theory is that branch of economic theory which works on models to help you sort
out this kind of decisions.

There are two basic sorts of models. The first class is concerned with what is known as
decisions under risk and the second class with decisions under uncertainty.

1.2 Decisions under risk

Here is a typical decision under risk. Your investment horizon is one year. There is a family
of investment funds. You must invest all of your wealth in a single fund. The return on each
fund is not known with certainty, but you know its distribution of past returns. For lack of
better information, you have decided to use this distribution as a proxy for the probability
distribution of future returns.1

Let us model this situation. There is a set C of consequences, typified by the one-
year returns you will be able to attain. There is a set A of alternatives (i.e., the funds)
out of which you must choose one. Each alternative in A is associated with a probability
distribution over the consequences. For instance, assuming there are only three funds, your
choice problem may be summarized by the following table.

Fund α Fund β Fund γ
return prob.ty return prob.ty return prob.ty
-1% 20% -3% 55% 2.5% 100%
+2% 40% +10% 45%
+5% 40%

Having described the problem, the next step is to develop a systematic way to make a
choice.
Def. 1.1 [Expected utility under risk] Define a real-valued utility function u over conse-
quences. Compute the expected value of utility for each alternative. Choose an alternative
which maximizes the expected utility.

1 The law requires an investment fund to warn you that past returns are not guaranteed. Trusting the
distribution of past returns is a choice you make at your own peril.
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How would this work in practice? Suppose that your utility function over a return of
r% in the previous example is u(r) = r. The expected utility of Fund α is

U(α) = −1 · 0.2 + 2 · 0.4 + 5 · 0.4 = 2.6.

Similarly, the expected utility of Fund β and γ are respectively U(β) = 2.85 and U(γ) = 2.5.
According to the expected utility criterion, you should go for Fund β and rank α and γ
respectively second and third.

If you had a different utility function, the ranking and your final choice might change.
For instance, if u(r) =

√
r + 3, we find U(α) ≈ 2.31, U(β) ≈ 1.62 and U(γ) ≈ 2.35. The

best choice is now γ, which however was third under the previous utility function.
All of this sounds fine in class, but let us look a bit more into it. Before you can get her

to use this, there are a few questions that your CEO would certainly like you to answer.

Is expected utility the “right” way to decide? Thank God (or free will), nobody
can pretend to answer this. Each one of us is free to develop his own way to reach a
decision. However, if you want to consider what expected utility has in it, mathematicians
have developed a partial answer. Using expected utility is equivalent to taking decisions
that satisfy three criteria: 1) consistency; 2) continuity; 3) independence.

Consistency means that your choices do not contradict each other. If you pick α over β
and β over γ, then you will pick α over γ as well. If you pick α over β, you do not pick β
over α.

Continuity means that your preferences do not change abruptly if you slightly change
the probabilities affecting your decision. If you pick α over β, it must be possible to generate
a third alternative α′ by perturbing slightly the probabilities of α and still like α′ better
than β.

Independence is the most demanding criterion. Let α and β be two alternatives. Choose
a third alternative γ. Consider two lotteries: α′ gets you α or γ with equal probability,
while β′ gets you β or γ with equal probability. If you’d pick α over β, then you should
also pick α′ over β′.

If you are willing to subscribe these three criteria simultaneously, using expected utility
guarantees that you will fulfill them. On the other hand, if you adopt expected utility
as your decision making tool, you will be (knowingly or not) obeying these criteria. The
answer I’d offer to your CEO is: “if you wish consistency, continuity and independence,
expected utility is right”.

Caveat emptor! There is plenty of examples where very reasonable people do not want to
fulfill one of the three criteria above. The most famous example originated with Allais who,
among other things, got the Nobel prize in Economics in 1988. Suppose the consequences
are given as payoffs in millions of Euro. Between the two alternatives

α β

payoff prob.ty payoff prob.ty
0 1% 1 100%
1 89%
5 10%
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Allais would have picked β. Between the two alternatives

γ δ

payoff prob.ty payoff prob.ty
0 90% 0 89%
5 10% 1 11%

he would have picked γ. You can easily check (yes, do it!) that these two choices cannot
simultaneously be made by someone who is willing to use the expected utility criterion.

Economists and financial economics, untroubled by this, assume that all agents abide
by expected utility. This is partly for the theoretical reasons sketched above, but mostly
for convenience. To describe the choices of an expected utility maximizer, an economist
needs only to know the consequences, the probability distribution over consequences for
each alternative, how to compute the expected value and the utility function over the
consequences. When theorizing, we’ll do as economists do: we assume knowledge of conse-
quences, alternatives and utility functions and we compute the expected utility maximizing
choice.

For the moment, however, let us go back to your CEO waiting for your hard-earned
wisdom to enlighten her.

What is the “right” utility function? The utility function embeds the agent’s prefer-
ences under risk. In the example above, when the utility function was u(r) = r, the optimal
choice is Fund β which looks a lot like a risky stock fund. When the utility function was
u(r) =

√
r + 3, the optimal choice was Fund γ, not much different from a standard 12-

month Treasury bill. It is the utility function which makes you prefer one over another.
Picking the right utility function is a matter of describing how comfortable we feel about
taking (or leaving) risks. This is a tricky issue, but I’ll say more about it in Lecture 4.

Sometimes, we are lucky enough that we can make our choice without even knowing what
exactly is our utility function. Suppose that consequences are monetary payoffs and assume
(as it is reasonable) that the utility function is increasing. Are there pairs of alternatives α
and β such that α is (at least, weakly) preferred by all sorts of expected utility maximizers?

In mathematical terms, let F and G be the cumulative probability distributions respec-
tively for α and β. What is the sufficient condition such that∫

u(x) dF (x) ≥
∫
u(x) dG(x)

for all increasing utility functions u?
Def. 1.2 [Stochastic dominance] Given two random variables α and β with respective
cumulative probability distributions F and G, we say that α stochastically dominates β if
F (x) ≤ G(x) for all x.

Stochastic dominance of α over β means that F (x) = P (α ≤ x) ≤ P (β ≤ x) = G(x) for
all x. That is, α is less likely than β to be smaller than x. In this sense, α is less likely to
be small.
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This intuition does not carry over to the case of a multiperiod investment. If you always
invest all the current capital in α, sooner or later this investment will yield 0 and therefore
you are guaranteed to lose all of your money. Instead of maximizing your return, repeatedly
betting the whole capital on α guarantees your ruin.

Let us consider instead the policy of reinvesting your capital each period in a fixed-
proportion portfolio (α1, α2, α3), with αi ≥ 0 for i = 1, 2, 3 and α1 + α2 + α3 ≤ 1. Each of
these portfolios leads to a series of (random) multiplicative factors that govern the growth
of capital.

For instance, suppose that you invest Euro 100 using the (1/2, 0, 0) portfolio. With
probability 50%, you obtain a favorable outcome and double your capital; with probability
50%, you obtain an unfavorable outcome and your capital is halved. Therefore, the multi-
plicative factors for one period are 2 and 1/2, each with probability 50%. Over a long series
of investments following this strategy, the initial capital will be multiplied by a multiple of
the form (

1
2

) (
1
2

)
(2)

(
1
2

)
(2) (2)

(
1
2

)
. . .

(
1
2

) (
1
2

)
(2)

with about an equal number of 2’s and (1/2)’s. The overall factor is likely to be about 1.
This means that over time the capital will tend to fluctuate up and down, but is unlikely
to grow appreciably.

Suppose now to invest using the (1/4, 0, 0) portfolio. In the case of a favorable outcome,
the capital grows by a multiplicative factor 3/2; in the case of an unfavorable outcome, the
multiplicative factor is 3/4. Since the two outcomes are equally likely, the average multi-
plicative factor over two periods is (3/2) (3/4) = 9/8. Therefore, the average multiplicative
factor over one period is

√
(9/8) ≈ 1.06066. With this strategy, your money will grow, on

average, by over 6% per period.
Ex. 3.4 Prove that this is the highest rate of growth that you can attain using a (k, 0, 0)
portfolio with k in [0, 1].

Ex. 3.5 Prove that a fixed-proportions strategy investing in a portfolio (α1, α2, α3) with
mini αi > 0 and maxi αi < 1 guarantees that ruin cannot occur in finite time.

3.3 The log-optimal growth strategy

The example is representative of a large class of investment situations where a given strategy
leads to a random growth process. For each period t = 1, 2, . . ., let Xt denote the capital
at period t. The capital evolves according to the equation

Xt = RtXt−1, (5)

where Rt is the random return on the capital. We assume that the random returns Rt are
independent and identically distributed.

In the general capital growth process, the capital at the end of n trials is

Xn = (RnRn−1 . . . R2R1)X0.
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After a bit of manipulation, this gives

log
(
Xn

X0

)1/n

=
1
n

n∑
t=1

logRt.

Let m = E(logR1). Since all Rt’s are independent and identically distributed, the law of
large numbers states that the right-hand side of this expression converges to m as n→ +∞
and therefore

log
(
Xn

X0

)1/n

→ m

as well. That is, for large values of t, Xt is asymptotic to X0e
mt. Roughly speaking, the

capital tends to grow exponentially at rate m.
It is easy to check (please, do it) that m+ logX0 = E(logX1). Thus, if we choose the

utility function U(x) = log x, the problem of maximizing the growth rate m is equivalent to
finding the strategy that maximizes the expected value of EU(X1) and applying this same
strategy in every trial. Using the logarithm as a utility function, we can treat the problem
as if it were a single-period problem and this single-step view guarantees the maximum
growth rate in the long-run.

3.4 Applications

a) The Kelly criterion. Suppose that you have the opportunity to invest in a prospect
that will either double your investment or return nothing. The probability of the favorable
outcome is p > 1/2. Suppose that you have an initial capital of X0 and that you can repeat
this investment many times. How much should you invest each time to maximize the rate
of growth of the capital?

Let α be the proportion of capital invested in each period. If the outcome is favorable, the
capital grows by a factor 1+α; if it is unfavorable, the factor is 1−α. In order to maximize
the growth rate of his capital, you just need to maximizem = p log(1+α)+(1−p) log(1−α)
to find the log-optimal value α∗ = 2p− 1.

This situation resembles the game of blackjack, where a player who mentally keeps
track of the cards played can adjust his strategy to ensure (on average) a 50.75% chance
of winning a hand. With p = .5057, α∗ = 1.5% and thus em ≈ 1.01125, which gives an
(expected) .00125% gain each round.

b) Volatility pumping. Suppose that there are only two assets available for investment.
One is a stock that in each period doubles or halves your capital with equal probability. The
other is a risk-free bond that just retains value — like putting money under the mattress.
Neither of these investments is very exciting. An investment left in the stock will have a
value that fluctuates a lot but has no overall growth rate. The bond clearly has no growth
rate. Nevertheless, by using these two investments in combination, growth can be achieved!
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4.2 Risk attitude and expected utility

All of this holds in general, even if the agent is not an expected utility maximizer. However,
in the special case of expected utility maximizers, there exists a simple criterion to recognize
whether an agent is risk averse, neutral or seeking.
Thm. 4.5 An expected utility maximizer is risk neutral (resp., averse or seeking) if his
utility function is linear (resp., concave or convex).

Thus, while the increasing monotonicity of the utility function speaks about the greed-
iness of the agent, its curvature tells us something about his attitude to risk.
Ex. 4.8 Check that expected utility can rationalize any of the three choices in the example
above using different utility functions. If an expected utility maximizer has a utility function
u1(x) = x he prefers β; if it is u2(x) =

√
x he prefers α; and if it is u3(x) = x2 he prefers γ.

This is evidence of the flexibility of the expected utility model.

Here is a simple application. There are two assets. One is a riskless bond that just
retains its value and pays 1 per euro invested. The other is a risky stock that has a random
return of R per euro invested; we assume that E(R) > 1 so that on average the stock is
more profitable than the riskless bond. Suppose that an agent is risk-averse and maximizes
the expected value of a (concave and strictly increasing) utility function u over returns. The
agent must select a portfolio and invest a fraction α of his wealth in the risky asset and a
fraction 1 − α in the riskless bond. Short-selling is not allowed and thus α is in [0, 1].

The maximization problem is maxαEu(αR + 1 − α). Risk aversion implies that the
objective function is concave in α (can you prove it?). Therefore, the optimal portfolio
satisfies the first-order Kuhn-Tucker condition:

E
[
(R− 1)u′(αR+ 1 − α)

]


= 0 if 0 < α < 1
≤ 0 if α = 0
≥ 0 if α = 1

.

Since E(R) > 1, the first-order condition is never satisfied for α = 0. Therefore, we conclude
that the optimal portfolio has α∗ > 0. That is, if a risk is actuarially favorable, then a risk
averter will always accept at least a small amount of it.

4.3 Mean-variance preferences

There exist alternative approaches to the formalization of risk. One that is very common
relies on the use of indices of location and dispersion, like mean and standard deviation.
The expected value is taken as a measure of the (average) payoff of a lottery. Risk, in-
stead, is present if the standard deviation (or some other measure of dispersion) is positive.
The preferences of the agent are represented by a functional V (µ, σ), where µ and σ are
respectively the expected value and the standard deviation of the lottery.

If offered several lotteries with the same standard deviation, a (greedy) agent prefers
the one with the highest expected value. If offered several lotteries with the same expected
value, a risk averse agent prefers the one with the lowest variance. Thus, a greedy and risk
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5. Information structures and no-trade theorems

5.1 Introduction

One traditional view about trading in financial markets is that this has two components:
liquidity and speculation. Some people trade because they need the liquidity (or have other
pressing demands from the real economy); others trade because they have asymmetric
information and hope to profit from it. According to this view, high volume trading should
be explained mostly by differences in information among traders. See for instance Ross
(1989):

“It is difficult to imagine that the volume of trade in security markets has very
much to do with the modest amount of trading required to accomplish the
continual and gradual portfolio balancing inherent in our current intertemporal
models. It seems clear that the only way to explain the volume of trade is with a
model that is at one and at the same time appealingly rational and yet permits
divergent and changing opinions in a fashion that is other than ad hoc.”

This lecture illustrates a few theoretical results showing that in fact asymmetry in
information alone is not sufficient to stimulate additional trade. In fact, there are even
cases where it might reduce the trading volume and lead to market breakdowns. This
family of results are known as “no-trade” or “no-speculation” theorems.

5.2 The Dutch book

The common wisdom about trading motivated by asymmetric information is that people
with different beliefs can concoct mutually beneficial trades. In fact, even more is true:
when two or more risk-neutral agents have different beliefs about the probability of some
events and are willing to bet among them on these events, a bookie can arrange a set of
bets that each of the agents is willing to take and still guarantee himself a strictly positive
expected profit. This phenomenon is known as a Dutch book.

Here is a simple illustration. There are two agents: Ann and Bob. Suppose that Ann
believes that in a month the Mib30 will be up with probability p while Bob believes that
this will happen with probability q < p. Neither one can be absolutely certain about the
direction of the market, so we assume q �= 0 and p �= 1.

The bookie can make a sure profit by offering to each player a specific bet customized for
his beliefs. The following table gives the bets’ payoffs for each of the two possible events:
the index goes up or down. Given any x > 0, the bookie can cash a sure (and strictly
positive) profit of x− ε, where 0 < ε < x is the “sweteener” that induces agents to take the
bets. While reading the table, recall that the bookie’s payoffs are the opposite of the sum
of agents’ payoffs.
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Carrying out substitutions, we can find the posterior density of Y |x and check that

Y |x ∼ N
( m

s2
y

+ x
s2
x

1
s2
y

+ 1
s2
x

,
1

1
s2
y

+ 1
s2
x

)
. (10)

Three properties are worth being noted. First, the posterior is a normal as well. If
we begin with a normal prior and the signal is normally distributed, the posterior remains
normal. This feature is extensively used in models with rational expectations.

Second, we can simplify (10) by defining the precision of a normally distributed signal
as the inverse of its variance. In particular, let τy = (1/s2y) and τx = (1/s2x) respectively the
precisions of Y and X. Then (10) can be written as

Y |x ∼ N
(
mτy + xτx
τy + τx

,
1

τy + τx

)
. (11)

Thus, the posterior mean of Y |x can be written more simply as the average of the prior
mean and of the signal weighted by their respective precisions. In the following, we make
frequent use of this simple method for computing the expected value of a posterior belief.
Ex. 7.20 After having observed X = x1, Y |x1 is distributed according to (11). Suppose
that Primus receives a second (iid) signal X = x2 and derive his new posterior distrib-
ution for Y |{x1, x2}. Extend your answer to the case where Primus got n (iid) signals
x1, x2, . . . , xn.

Ex. 7.21 If the signal about y has infinite precision, we have s2x = 0 and (10) is no longer
valid. What is the distribution of Y |x when the signal X has infinite precision?

Third, note that the Bayesian posterior beliefs converge to the truth as the number of
signals increase. After n (iid) draws x1, x2, . . . , xn, the variance of the posterior goes to zero
while the Strong Law of Large Numbers implies that the posterior mean converges to m.

7.3 Cara preferences in a normal world

If Primus is an expected utility maximizer with constant absolute risk aversion, his utility
function must be linear or exponential. In particular, if we also assume that he is strictly
risk averse, his utility function over the wealth w must be a negative exponential

u(w) = −e−kw (12)

where k > 0 is his coefficient of (absolute) risk aversion.
Suppose that Primus has preferences which satisfy these assumptions and that his beliefs

are normally distributed so that W ∼ N(µ, σ). You were asked in Exercise 4.3 in Lecture 4
to check that his expected utility can be written

Eu(W ) =
∫ [

−e−kw
]
· 1√

2πσ
exp

[
− 1

2σ2
(w − µ)2

]
dw = − exp

{
−

[
kµ− 1

2
k2σ2

]}
.
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8. Transmission of information and rational expectations

8.1 Introduction

The main question addressed by rational expectations models is what happens when people
with different information decide to trade. How market prices are affected by traders’ infor-
mation affects how the traders can infer information from market prices. The fundamental
insight is that prices serve two purposes: they clear markets and they aggregate informa-
tion. This dual role can make the behavior of prices and markets much more complex than
assumed in simple models of asset behavior.

Let us begin with an example. Suppose that there are two agents in the market for q
widgets. Primus receives a binary signal about the true value of widgets: if the signal is
H igh, his demand for widgets is p = 5 − q; if the signal is Low, his demand is p = 3 − q.
We say that Primus is informed because his demand depends on which signal he receives.
Secunda receives no signal and offers an unconditional supply of widgets p = 1+q. Morevoer,
assume that, if she could receive signals, Secunda would change her supply to p = 1 + 3q
with an H-signal and to p = 1 with an L-signal.

When Secunda is sufficiently naive, the following situation occurs. If Primus receives
an H-signal, the demand from the informed Primus equates the supply from an uninformed
Secunda at a price of pH = 3 (and q = 2 widgets are exchanged). If he receives an L-signal,
his demand equates the supply from Secunda at a price of pL = 2 (and q = 1 widget is
exchanged). Different prices clear markets for different signals: p = 3 when the signal is H
and p = 2 when it is L.

This outcomes, however, presumes that Secunda does not understand that prices also
convey information. The market-clearing price is p = 3 if (and only if) the signal is H.
Thus, if Secunda sees that markets clear at a price of p = 3 she can infer that Primus has
received an H-signal and this suffices to let her change the supply function to p = 1+3q. But
in this case the market must clear at a price such that 5−q = 1+3q, that is p = 4. Similarly,
if the market-clearing price would be pL = 2, Secunda would understand that Primus got
an L-signal and her supply would switch to p = 1, making this the market-clearing price.

In other words, if Secunda passively lets the prices clear the market, the prices are
pH = 3 and pL = 2. If she exploits the information embedded in different prices, the prices
will be pH = 4 and pL = 1. The first case (pH = 3 and pL = 2) can be an equilibrium
only if we assume that Secunda is not sufficiently rational to understand that prices reveal
information, or to use the information which is revealed by prices. Market-clearing equilibria
with rational agents require that the information embedded in prices is fully exploited, and
this is what the notion of rational expectations equilibrium is about.
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Substituting back into (25), we obtain the final form of the pricing rule

pt = 1 +
λ(εt − µ)

1 + r
+
λµ

r
− kλ2σ2

r(1 + r)2
. (26)

Ex. 12.28 Explicitly carry out the recursive substitution leading to Equation (25).

Interpretation. The last three terms in (26) represent the impact of noise trading on the
price of the stock. As the distribution of the misperception converges to a point mass of
zero (and thus µ→ 0 and σ → 0), the equilibrium pricing function for the stock approaches
its fundamental value of one.

The second term captures the fluctuations in price due to variations in noise traders’
misperceptions. The higher their bullish beliefs, the higher the positive difference between
the current price and the fundamental value. Moreover, the higher the fraction of noise
traders, the higher the volatility of the price of the stock.

The third term captures the permanent effect on price due to the fact that the average
misperception of traders is not zero. If noise traders are bullish on average, there is a
positive “pressure” which raises the price above its fundamental value.

The fourth term shows that there is a systematic underpricing of the stock due to
the uncertainty about noise traders’ beliefs in the next period. Both noise traders and
sophisticated investors in period t believe that the stock is mispriced, but the uncertainty
about pt+1 makes them unwilling to bet too much on this mispricing. In fact, if it were not
for traders’ misperceptions, the stock would not be risky: its dividend is fixed in advance
and the only uncertainty about its payoff comes from pt+1, which is not affected by any
fundamental risk but depends on the noise traders’ misperceptions. In a sense, noise traders
“create their own space”, driving the price of the stock down and its return up.

12.3 Relative returns

The model can also be used to show that the common belief that noise traders earn lower
returns than sophisticated investors and therefore are eventually doomed to disappear may
not be true. All agents earn the same return on the riskless bond. Hence, assuming equal
initial wealth, the difference between noise traders’ and sophisticated investors’ total returns
is the product of the difference in their holdings of the stock and the excess return paid by
a unit of the stock

∆R = (αn
t − αi

t) [pt+1 + r − pt(1 + r)] .

The difference between noise traders’ and sophisticated investors’ demands for the stock
is

(αn
t − αi

t) =
εt
ks2t

=
(1 + r)2εt
kλ2σ2

.

Note that this difference becomes very large as λ becomes small. Noise traders and sophis-
ticated investors take enourmous positions of opposite signs because the small amount of
noise trader risk makes each group think that it has an almost riskless arbitrage opportunity.
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Simulations and hard results

Substituting numeric values for the parameters, we can run simulations. Day and Huang
(1990) do so for u = y and find out that (for reasonable value of the parameters) the model
generates a time series matching a regime of irregular fluctuations around shifting levels.
That is, we obtain the appearance of randomly switching bear and bull markets.

The intuition is the following. Suppose that p0 is just above y. Secunda enters the
market, while Primus is not much willing to sell. Given the aggregate excess demand, the
market maker must sell from his inventory. This drives the prices up, initiating a bull
market until the price reaches a level at which Primus begins to sell consistent amounts
and creates an excess supply. Then the price is pulled back, yielding a temporary respite
or initiating a bearish regime.

This market admits two types of equilibria. In the (unique) full equilibrium, both
Primus’ and Secunda’s demand is zero; this occurs when p = u and Secunda is in equilibrium
when p = y. In a temporary equilibrium, the aggregate demand is D1 +D2 = 0: Primus’
and Secunda’s demands exactly offset each other.

Depending on the parameters, different kinds of behavior may emerge. For a pictorial
representation, draw the phase diagram of pt+1 versus pt on the interval [m,M ], with the
45-degree line and the price adjustment function which has a local minimum near m and
a local maximum near M (the function is initially convex and then concave). There are
four cases: a) bullish market, when the price adjustment function crosses the 45-degree line
(from above) only once near m; b) bearish market when this happens (from above) only
once near M ; c) stable market when it crosses (from above) only once in y; and d) “bear
and bull” if it crosses thrice, one (from above) at pm (near m), one from below) at y and
one (from above) at pM (near M). For u = y, only Cases c) and d) may occur.

For the case we are most interested in, a useful distinction concerns the sign of [D′
1(y)+b].

If this is negative, the demand from Primus at p = y locally overwhelms the demand from
Secunda: we say that flocking is weak; otherwise, we say that it is strong.
Thm. 13.11 Suppose D′

1(y) < 0. If flocking is weak, prices converge to y for c < c∗ =
−2/[D′

1(y) + b] and locally unstable 2-period cycles around y arise for c > c∗. If flocking is
strong, the full equilibrium is unstable.

Case d) above occurs under strong flocking where, for instance, there are prices high
enough between the equilibrium price pM and M to make excess demand from Primus fall
so precipitously that the price is pulled below y. Then Secunda interprets this as a signal
of a further fall and there is a negative feedback effect initiating a dramatic fall in prices.
A similar fluctuation arises on the other side.
Thm. 13.12 For appropriate (and robust) values of the parameters, the following may
occur

1. Chaos: perpetual, erratic speculative fluctuations.

2. Switching regimes: stock prices switch between bull and bear markets at random
intervals with irregular fluctuations around a low and a high level respectively.

3. Ergodicity: the frequency of observed prices converges.
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horizon of thirty years. Accordingly, he will behave as someone else whose investment
horizon is just one quarter.

Mehra and Prescott (1985) investigates the equity premium by asking how risk averse
should be the representative investor to explain historical evidence. Benartzi and Thaler
(1995) approaches the puzzle by asking how long should be the evaluation period of an
investor with prospect theory preferences to explain the equity premium.

An answer is obtained using simulations based on the historical (1926–1990) monthly
returns on stocks, bonds, and treasury bills. The stock index is compared both with treasury
bills returns and with five-year bond returns, and these comparisons are done both in real
and nominal terms. It is argued that the use of bonds is preferable because they are more
profitable substitutes for long-term investors. And it is argued that nominal terms are
preferable because they are used in most annual reports (and because evaluation in real
terms would yield negative prospective utility over most periods). However, the results
remain robust under any of the four possible specifications.

It is found that the evaluation period that makes a portfolio of 100% stock indifferent
to a portfolio of 100% bonds in nominal terms is about 13 months. (If the comparison is
made in real terms, the equilibrium period is between 10 and 11 months. If bills are used in
place of bonds, this period is one month shorter.) This suggests that an evaluation period
of about 12 months may lead people to consider bonds as feasible alternative to stocks.

An obvious criticism to this findings is that most people prefer to invest in portfolios
containing both stocks and bonds. A second simulation is thus run, checking (under 10%
increments) which mix of bonds and stocks would maximize prospective utility. Portfolios
carrying between 30 and 55% of stocks all yield approximately the same prospective value.
This result is consistent with observed behavior. For instance, the most frequent allocation
in TIIA-CREF (a very large defined benefit retirement plan in U.S.) is 50-50.

As the evaluation period lenghtens, stocks become more attractive. The actual equity
premium in the data used was 6.5% per year, and this is consistent with an evaluation
period of one year. What happens if the evaluation period lengthens? With a two-year
evaluation period, the premium falls to 4.65; with a five-year period, it falls to 3.0%, and
with 20 years to 1.4%. Therefore, assuming 20 years as the benchmark case, we can say
that the price of excessive vigilance is about 5.1%.

A common asset allocation for pension funds has about 60% in stocks and 40% in
bonds. Given that it is reasonable to assume that pension funds have an infinite investment
horizon, they should favor stocks much more. A possible explanation links myopic loss
aversion with an agency problem. Although the pension fund has an infinite investment
horizon, its managers must report annually on the performance of their investments and
cannot afford negative returns over long periods. Their choice of a short horizon creates a
conflict of interest between the manager and the stockholders.

Another source of a conflict of interest is the rule adopted in foundations and trusts that
only a fixed percentage of an n-year moving average of the value of the endowment (usually,
n ≤ 5) can be spent every year. The goals of maximizing the present value of spending
over an infinite horizon versus maintaining a steady operating budget compete against each
other.
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