$$t > 1535.06 \, minutes$$
 (29)

$$t > 25.58 hours$$
 (30)

This implies that the time taken for concentration to fall below safe level is *t* must greater than 25.58 hours in this example.

Hence, the time taken for concentration to fall below safe level is $t > \frac{2000}{2000k-9} \ln(\frac{2\times10^6}{M_0})$.

4.2 Result for Numerical Solution

The analytical and numerical solutions are plotted on the same graph (Figure 4.3) to compare whether there is an error.

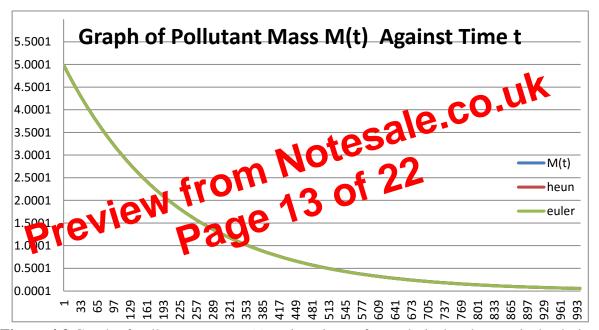


Figure 4.3 Graph of pollutant mass, M(t) against time, t for analytical and numerical solution.

From the graph, both the analytical and numerical solutions are almost the same, with a very small error. The range of error is 0 < error < 0.0045.

Now, Euler and Heun method are compared. A graph of errors against time is plotted for both methods as shown in Figure 4.4.

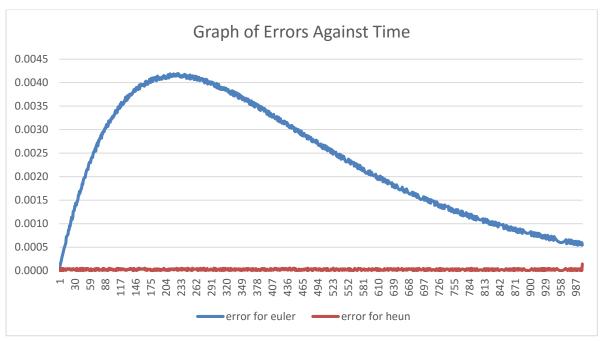


Figure 4.4 Graph of errors against time, *t* for Euler and Heun method.

From the graph, it is found that the error for Heun method is smaller than Euler method. Therefore, Heun method is a better approximation for the problem.

Preview from Notesale.co.uk
Preview from 14 of 22
Page 14 of 22

```
t=t0:dt:tf;
%setting initial y value
y(1) = y0;
%loop using euler's method
for i=1:length(t)-1
     y(i+1)=y(i)+dt*(feval(func,t(i),y(i)));
%print column vectors of t and y
t=t'
y=y'
plot(t,y)
xlabel('Time')
ylabel('y')
Code 1.3(for Matlab): Function (funct.m)
function z=funct(t,y)
z=(0.004-9/2000)*y;
Code 1.4(for Matlab): Ordinary Heun methodry (cb.ur.m)

function [t,y]=odeheun(f,k,b,Opha,h)
%input
%f(x,y) right value of OPECC
%a interal value of X
%alpha ini+:c?
%your f(t,y) function
%alpha initial condition y(a)=alpha
%h step size
%output
%t vector of grid points
%y vector of approximation value
N=length(a:h:b) %number of grid points
t=zeros(1,N); %zero vector of grid points
y=zeros(1,N); %zero vector of approximation values
t(1) = a; t(N) = b;
y(1) = alpha;
disp(' t(i) y(i)
                                    k1
                                                              ')
                                                k2
disp(' -----
for i=1:N-1
     t(i) = a + (i-1) *h;
     k1=h*f(t(i),y(i));
     k2=h*f(t(i)+h,y(i)+k1);
     disp([t(i),y(i),k1,k2]);
     y(i+1) = y(i) + (k1+k2)/2;
end;
%print column vectors of t and y
t=t'
y=y'
```