Biochemistry Exam #2

Lecture 9: Membrane Structure and Function	Notes
(continued)	
Membrane fluidity	
<i>Temperate changes</i> = produce heat = kinks in membrane	
 Temp at which you go from gel-like to fluid-like = Phase transition. Temp at which this happens = Tm = depends on length of HC chain Longer chain = higher Tm because of more bonds = more rigidity 	
Cholesterol	
Composition	
 Bending at cis double bond Decrease Tm because of unsaturation Kinks caused by double bonds = favors packing = increases fluid state 	
Permeability of Lipid Bilayers	
High permeability = small hydrophobic molecules, small uncharged polar molecules	.co.uk
 Low permeability = larger uncharged peta mellecales, ions Pores across membrane telp transport ions armo aeids, vitaming etc 	
Lipophilic = lipid-loving	
Ex: Digoxin, Oxycodone = highly lipophilic, stay in body longer	
Proteins and Membrane Processes	
Proteins mediate membrane function	
Examples:	
Lipoproteins	
Integral proteins = provide channels, pores	
Transporters	
Enzymes = kinase, protease, lipase, etc.	
*all important for signal transduction pathways	
In lipid bilayer, proteins and ion channels sit across the membrane to transport otherwise impermeable molecules into the cytosol	

Biochemistry Exam #2

 Diocnethistry Exam #2 Lecture 10: Cell Signaling (continued) PMCA activated by CaM → on cell wall, pumps Ca++ out of cell using ATP = muscle contraction and relaxation CREB forms your memory 	Notes
cAMP dependent activation pathway	
Revelant in cardiac function/skeletal muscle	
Special GPCRs in <3 = beta receptors	
AC = adenylyl cyclase = converts ATP to cAMP	
cAMP activates PKA = protein kinase A	
PKA activates ryanodine receptors to release Ca++ which activates CAM	
CAM activates TNN which causes contraction	
To turn off:	uk
PDE cleaves ester group on cAMP \rightarrow now 5'-AMP	co.u.
Without cAMP = no functions = relaxation	
To turn off: PDE cleaves ester group on cAMP → now 5'-AMP Without cAMP = no functions = relaxation *important = phosphorylase inhibitors (caffeire)* PKA Regulatory donain and catalytic domain Regulatory donain and catalytic domain Known as Ser/Thr kinase C + R bound = not activated	
PKA Regulatory do nain and catalytic domain a ge	
Known as Ser/Thr kinase	
C + R bound = not activated	
cAMP binds to R domain, then C domain gets detached, both go to activate different pathways	
After GPCRs are activated:	
 Adrenergic receptor: fight or flight - <3 rate Histamine receptor: immune rxn - gastric acid release Muscarinic receptor: rest&digest - muscle contract - salivation Serotonin antagonist: neurotransmitter release Activator: Prozac 	