
01 570684 FM.qxd 3/31/04 2:50 PM Page xi

Table of ContentsTable of Contents xi

Assigning values to numeric variables ..80
Entering numeric values from the keyboard81
The atoi() function ..81
So how old is this Methuselah guy, anyway?....................................83
You and Mr. Wrinkles ...85

A Wee Bit o’ Math ...86
Basic mathematical symbols ..86
How much longer do you have to live to break the

Methuselah record?..88
Bonus modification on the final Methuselah program!90
The direct result ...91

Chapter 8: Charting Unknown Cs with Variables 93
Cussing, Discussing, and Declaring Variables ..93

“Why must I declare a variable?” ...94
Variable names verboten and not ..95
Presetting variable values ...96
The old random-sampler variable program......................................98
Maybe you want to chance two pints? ..99
Multiple declarations ...100

Constants and Variables..101
Dreaming up and defining constants ...101
The handy shortcut ...102
The #define directive...104
Real, live constant variables ...106

Chapter 9: How to C Numbers .107
There Are Numbers, and Then There Are Numbers................................107

Numbers in C ..108
Why use integers? Why not just make every number

floating-point? ...110
Integer types (short, long, wide, fat, and so on)110
Signed or unsigned, or “Would you like a minus sign

with that, Sir?”...111
How to Make a Number Float ...113

“Hey, Carl, let’s write a floating-point number program!”114
The E notation stuff..116

Bigger than the Float, It’s a Double! ...118
Formatting Your Zeroes and Decimal Places..119

Chapter 10: Cook That C Variable Charred, Please 121
The Other Kind of Variable Type, the char ..121

Single-character variables...122
Char in action ...123
Stuffing characters into character variables124

Preview from Notesale.co.uk

Page 14 of 411

04 570684 Ch01.qxd 3/31/04 2:52 PM Page 11

Chapter 1: Up from the Primordial C 11
� The guy who created the C programming language at Bell Labs is Dennis

Ritchie. I mention him in case you’re ever walking on the street and you
happen to bump into Mr. Ritchie. In that case, you can say “Hey, aren’t
you Dennis Ritchie, the guy who invented C?” And he’ll say “Why — why,
yes I am.” And you can say “Cool.”

The C Development Cycle
Here is how you create a C program in seven steps — in what’s known as the
development cycle:

1. Come up with an idea for a program.

2. Use an editor to write the source code.

3. Compile the source code and link the program by using the C compiler.

4. Weep bitterly over errors (optional).

5. Run the program and test it.

6. Pull out hair over bugs (optional).

7. Start over (required).

No need to memorize this list. It’s like the instructions on a shampoo bottle,
though you don’t have to be naked and wet to program a computer. Eventually,
just like shampooing, you start following these steps without thinking about it.
No need to memorize anything.

� The C development cycle is not an exercise device. In fact, program­
ming does more to make your butt fit more snugly into your chair than
anything.

� Step 1 is the hardest. The rest fall naturally into place.

� Step 3 consists of two steps: compiling and linking. For most of this book,
however, they are done together, in one step. Only later — if you’re still
interested — do I go into the specific differences of a compiler and a
linker.

From Text File to Program

When you create a program, you become a programmer. Your friends or rela­
tives may refer to you as a “computer wizard” or “guru,” but trust me when I
say that programmer is a far better title.

Preview from Notesale.co.uk

Page 32 of 411

04 570684 Ch01.qxd 3/31/04 2:52 PM Page 14

14 Part I: Introduction to C Programming

Extra help in typing the GOODBYE.C source code
The first line looks like this:

#include <stdio.h>

include
stdio, a

period, h, and a right angle bracket. Everything
must be in lowercase — no capitals! Press
Enter to end this line and start the second line.

Press the Enter key alone on the second line to
make it blank. Blank lines are common in pro­
gramming code; they add space that separates
pieces of the code and makes it more readable.
And, trust me, anything that makes program­
ming code more readable is okay by me!

int, a space, main, and then two
parentheses hugging nothing:

int main()

There is no space between main and the
parentheses and no space inside the parenthe­
ses. Press Enter to start the fourth line.

{

This character is on a line by itself, right at the
start of the line. Press Enter to start the fifth line.

printf(“Goodbye, cruel
world!\n”);

If your editor was smart enough to automati­

key to indent. Then type printf, the word print
with a little f

Goodbye, cruel world, followed by
an exclamation point. Then type a backslash, a
little n, double quotes, a right parenthesis, and,

line.

return(0);

an indent. Then type return, a paren, 0 (zero), a

On the seventh line, type the right curly brace:

}

Some editors automatically unindent this brace
for you. If not, use your editor to back up the

Enter key to end this line.

Leave the eighth line blank.

Type a pound sign (press Shift+#) and then
and a space. Type a left angle bracket

(it’s above the comma key) and then

Type the word

Type a left curly brace:

cally indent this line, great. If not, press the Tab

at the end. (It’s pronounced “print­
eff.”) Type a left parenthesis. Type a double
quote. Type

finally, a semicolon. Press Enter to start the sixth

If the editor doesn’t automatically indent the
sixth line, press the Tab key to start the line with

paren, and a semicolon. Press Enter.

brace so that it’s in the first column. Press the

The compiler and the linker

After the source code is created and saved to disk, it must be translated into
a language the computer can understand. This job is tackled by the compiler.

The compiler is a special program that reads the instructions stored in the
source code file, examines each instruction, and then translates the information
into the machine code understood only by the computer’s microprocessor.

Preview from Notesale.co.uk

Page 35 of 411

05 570684 Ch02.qxd 3/31/04 2:52 PM Page 27

Chapter 2: C of Sorrow, C of Woe 27

�

retrun

All about errors!

write computer programs as much as you
remove errors from them. Errors are every­
where, and removing them is why it can take
years to write good software.

Compiler errors:
tially discovered by the compiler as it tries to
churn the text you write into instructions the
computer can understand. These errors are the
friendly ones, generally self-explanatory with
line numbers and all the trimmings. The errors
are caught before the program is built.

Linker errors: Primarily involve misspelled com­
mands. In advanced C programming, when
you’re working with several source files, or mod­
ules, to create a larger program, linker errors
may involve missing modules. Also, if your linker

another type of error message is displayed.
Pieces of the program are built, but errors pre­

Run-time errors: Generated by the program

things that look totally acceptable to the com­

intended. (This happens often in C.) The most
common run-time error is a null pointer assign­
ment.
program is built, but usually gets shut down by

Bugs:
compiler diligently creates the program you
wrote, but whether that program does what you

work on the source code some more. Bugs
include everything from things that work slowly
to ones that work unintentionally or not at all.
These are the hardest things to figure out and
are usually your highest source of frustration.

behave the way you think it would.

The linker’s job is to pull together different pieces of a program. If it
spots something it doesn’t recognize, such as , it assumes, “Hey,
maybe it’s something from another part of the program.” So the error
slides by. But, when the linker tries to look for the unrecognized word, it
hoists its error flags high in the full breeze.

A common programming axiom is that you don’t

The most common error, ini­

requires some “library” file and it can’t be found,

vent it from them being glued together.

when it runs. They aren’t bugs; instead, they’re

piler and linker but just don’t do quite what you

You aggravate over this one later. The

the operating system when it’s run.

The final type of error you encounter. The

intended is up to the test. If it doesn’t, you must

The program is built and runs, but it doesn’t

Preview from Notesale.co.uk

Page 48 of 411

05 570684 Ch02.qxd 3/31/04 2:52 PM Page 28

28 Part I: Introduction to C Programming

Preview from Notesale.co.uk

Page 49 of 411

06 570684 Ch03.qxd 3/31/04 2:52 PM Page 33

Chapter 3: C Straight 33

Even more keyword madness!
Keywords are worth noting because their use is
restricted or reserved. For example, you cannot
think up your own function and name it short.

short is a keyword, reserved
only for its specific purpose in the core C lan­

are these two depreciated C language keywords:

fortran

entry

I would avoid using them in your programs.

Also, the C++ language has a hoard of reserved
words. If you plan to study C++, include these

words in your do-not-use, reserved C language
vocabulary:

asm false private throw

bool friend protected true

catch inline public try

class mutable

const_cast using

delete new template virtual

this

them than to use one (such as new or friend)
and run into trouble later when you eventually
find out how to use C++.

That’s because

guage. That’s one way the keywords are special.

In addition to the 32 keywords shown in Table 3-1

C once had these keywords, but no longer. Still,

(That’s what “depreciated” means.)

reinterpret_cast typeid

namespace static_cast

dynamic_cast operator

It’s better to know these words now and not use

In addition to grammar, languages require rules, exceptions, jots and tittles,
and all sorts of fun and havoc. Programming languages are similar to spoken
language in that they have various parts and lots of rules.

� The keywords can also be referred to as reserved words.

� Note that all keywords are lowercase. This sentence is always true for C:
Keywords, as well as the names of functions, are lowercase. C is case sen­
sitive, so there is a difference between return, Return, and RETURN.

� You are never required to memorize the 32 keywords.

� In fact, of the 32 keywords, you may end up using only half on a regular
basis.

� Some keywords are real words! Others are abbreviations or combinations
of two or more words. Still others are cryptograms of the programmers’
girlfriends’ names.

� Each of the keywords has its own set of problems. You don’t just use the
keyword else, for example; you must use it in context.

Preview from Notesale.co.uk

Page 54 of 411

07 570684 Ch04.qxd 3/31/04 2:50 PM Page 52

52 Part I: Introduction to C Programming

Run the program! The output looks something like this:

What is your name?dan
What is your favorite color?brown
dan’s favorite color is brown

In Windows XP, you have to run the command by using the following line:

.\color

The reason is that COLOR is a valid console command in Windows XP, used
to change the foreground and background color of the console window.

Experimentation time!

Which is more important: the order of the %s doodads or the order of the
variables — the arguments — in a printf statement? Give up? I’m not going
to tell you the answer. You have to figure it out for yourself.

Make the following modification to Line 12 in the COLOR.C program:

printf(“%s’s favorite color is %s\n”,color,name);

The order of the variables here is reversed: color comes first and then name.
Save this change to disk and recompile. The program still runs, but the output
is different because you changed the variable order. You may see something
like this:

brown’s favorite color is Dan.

See? Computers are stupid! The point here is that you must remember the
order of the variables when you have more than one listed in a printf()
function. The %s thingies? They’re just fill-in-the-blanks.

How about making this change:

printf(“%s’s favorite color is %s\n”,name,name);

This modification uses the name variable twice — perfectly allowable. All
printf() needs are two string variables to match the two %s signs in its for­
matting string. Save this change and recompile. Run the program and exam­
ine the output:

Dan’s favorite color is Dan

Preview from Notesale.co.uk

Page 73 of 411

07 570684 Ch04.qxd 3/31/04 2:50 PM Page 54

54 Part I: Introduction to C Programming

Preview from Notesale.co.uk

Page 75 of 411

08 570684 Ch05.qxd 3/31/04 2:52 PM Page 58

58 Part I: Introduction to C Programming

Why are comments necessary?

Comments aren’t necessary for the C compiler. It ignores them. Instead, com­
ments are for you, the programmer. They offer bits of advice, suggestions for
what you’re trying to do, or hints on how the program works. You can put any­
thing in the comments, though the more useful the information, the better it
helps you later on.

with information such as the following:

/* COOKIES.C
Dan Gookin, 1/20/05 @ 2:45 a.m.
Scan Internet cookie files for expired
dates and delete.
*/

Most C programs begin with a few lines of comments. All my C programs start

These lines tell me what the program is about and when I started working on it.

In the source code itself, you can use comments as notes to yourself, such as

/* Find out why this doesn’t work */

or this:

save=itemv; /* Save old value here */

or even reminders to yourself in the future:

/*
Someday you will write the code here that makes
the computer remember what it did last time this
program ran.
*/

The point is that comments are notes for yourself. If you were studying C pro­
gramming in school, you would write the comments to satiate the fixations of
your professor. If you work on a large programming project, the comments
placate your team leader. For programs you write, the comments are for you.

Comment Styles of the Nerdy
and Not-Quite-Yet-Nerdy

The MADLIB1.C program contains five comments and uses three different com­
menting styles. Though you can comment your programs in many more ways,
these are the most common:

Preview from Notesale.co.uk

Page 79 of 411

09 570684 Ch06.qxd 3/31/04 2:52 PM Page 66

66 Part I: Introduction to C Programming

Like scanf() reading in text, gets() requires a char variable to store
what’s entered. It reads everything typed at the keyboard until the Enter key
is pressed. Here’s the format:

gets(var);

gets(), like all functions, is followed by a set of parentheses. Because gets()
is a complete statement, it always ends in a semicolon. Inside the parentheses
is var, the name of the string variable text in which it is stored.

Another completely rude program example

The following is the INSULT1.C program. This program is almost identical to
the WHORU.C program, introduced in Chapter 4, except that gets() is used
rather than scanf().

#include <stdio.h>

int main()
{

char jerk[20];

printf(“Name some jerk you know:”);
gets(jerk);
printf(“Yeah, I think %s is a jerk, too.\n”,jerk);
return(0);

}

Enter this source code into your editor. Save the file to disk and name it
INSULT1.C.

Compile the program. Reedit the text if you find any errors. Remember your
semicolons and watch how the double quotes are used in the printf()
functions.

Run the resulting program. The output looks something like this:

Name some jerk you know:Bill
Yeah, I think Bill is a jerk, too.

� gets() reads a variable just like scanf() does. Yet no matter what
reads it, the printf() statement can display it.

� gets(var) is the same as scanf(“%s”,var).

� If you get a warning error when compiling, see the next section.

Preview from Notesale.co.uk

Page 87 of 411

09 570684 Ch06.qxd 3/31/04 2:52 PM Page 68

68 Part I: Introduction to C Programming

Another silly command-prompt program

To see how puts() works, create the following program, STOP.C. Yeah, this
program is really silly, but you’re just starting out, so bear with me:

#include <stdio.h>

int main()
{

puts(“Unable to stop: Bad mood error.”);
return(0);

}

Save this source code to disk as STOP.C. Compile it, link it, run it.

This program produces the following output when you type stop or ./stop at
the command prompt:

Unable to stop: Bad mood error.

Ha, ha.

� puts() is not pronounced “putz.”

� Like printf(), puts() slaps a string of text up on the screen. The text
is hugged by double quotes and is nestled between two parentheses.

� Like printf(), puts() understands escape sequences. For example,
you can use \” if you want to display a string with a double quote in it.

� You don’t have to put a \n at the end of a puts() text string. puts()
always displays the newline character at the end of its output.

� If you want puts() not to display the newline character, you must use
printf() instead.

puts() and gets() in action

The following program is a subtle modification to INSULT1.C. This time, the
first printf() is replaced with a puts() statement:

#include <stdio.h>

int main()

{

char jerk[20];

Preview from Notesale.co.uk

Page 89 of 411

11 570684 Ch07.qxd 3/31/04 2:52 PM Page 81

Chapter 7: A + B = C 81
� The equal sign is used to assign a non-string value to a variable. The

variable goes on the left side of the equal sign and gets its value from
whatever’s on the right side.

� String variables cannot be defined in this way, by using an equal sign.
You cannot say

kitty=”Koshka”;

It just doesn’t work! Strings can be read into variables from the keyboard
by using the scanf(), gets(), or other C language keyboard-reading
functions. String variables can also be preset, but you cannot use an
equal sign with them, like you can with numeric variables!

Entering numeric values
from the keyboard
Keep the METHUS1.C program warm in your editor’s oven for a few seconds.
What does it really do? Nothing. Because the value 969 is already in the pro­
gram, there’s no surprise. The real fun with numbers comes when they’re
entered from the keyboard. Who knows what wacky value the user may enter?
(That’s another reason for a variable.)

A small problem arises in reading a value from the keyboard: Only strings are
read from the keyboard; the scanf() and gets() functions you’re familiar
with have been used to read string variables. And, there’s most definitely a dif­
ference between the characters “969” and the number 969. One is a value, and
the other is a string. (I leave it up to you to figure out which is which.) The
object is to covertly transform the string “969” into a value — nay, an integer
value — of 969. The secret command to do it is atoi, the A-to-I function.

The atoi() function

The atoi() (pronounced “A-to-I”) function converts numbers at the begin­
ning of a string into an integer value. The A comes from the acronym ASCII,
which is a coding scheme that assigns secret code numbers to characters.
So atoi means “convert an ASCII (text) string into an integer value.” That’s
how you can read integers from the keyboard. Here’s the format:

var=atoi(string);

var is the name of a numeric variable, an integer variable created by the int
keyword. That’s followed by an equal sign, which is how you assign a value to
a variable.

Preview from Notesale.co.uk

Page 102 of 411

11 570684 Ch07.qxd 3/31/04 2:52 PM Page 87

Chapter 7: A + B = C 87
� Addition symbol: +

� Subtraction symbol: –

� Multiplication symbol: *

� Division symbol: /

Incidentally, the official C language term for these dingbats is operators. These
are mathematical (or arithmetic — I never know which to use) operators.

+ Addition: The addition operator is the plus sign, +. This sign is so basic
that I can’t really think of anything else you would use to add two numbers:

var=value1+value2;

Here, the result of adding value1 to value2 is calculated by the computer
and stored in the numeric variable var.

– Subtraction: The subtraction operator is the minus sign, –:

var=value1-value2;

Here, the result of subtracting value2 from value1 is calculated and gently
stuffed into the numeric variable var.

* Multiplication: Here’s where we get weird. The multiplication operator is
the asterisk — not the × character:

var=value1*value2;

In this line, the result of multiplying value1 by value2 is figured out by the
computer, and the result is stored in the variable var.

/ Division: For division, the slash, /, is used; the primary reason is that the ÷
symbol is not on your keyboard:

var=value1/value2;

Here, the result of dividing value1 by value2 is calculated by the computer
and stored in the variable var.

Note that in all cases, the mathematical operation is on the right side of the
equal sign — something like this:

value1+value2=var;

Preview from Notesale.co.uk

Page 108 of 411

11 570684 Ch07.qxd 3/31/04 2:52 PM Page 92

92 Part II: Run and Scream from Variables and Math

The %d in the first printf() function looks for an integer value to “fill in the
blank.” The printf() function expects to find that value after the comma —
and it does! The value is calculated by the C compiler as 65–19, which is 46.
The printf() statement plugs the value 46 into the %d’s placeholder. The
same holds true for the second printf() function.

You can do the same thing without the math. You can figure out 65–19 and
969–65 in your head and then plug in the values directly:

printf(“Methuselah contributed to Social Security for
%d years.\n”,46);

printf(“Methuselah collected from Social Security for
%d years.\n”,904);

Again, the result is the same. The %d looks for an integer value, finds it, and
plugs it in to the displayed string. It doesn’t matter to printf() whether the
value is a constant, a mathematical equation, or a variable. It must, however,
be an integer value.

Preview from Notesale.co.uk

Page 113 of 411

12 570684 Ch08.qxd 3/31/04 2:52 PM Page 97

Chapter 8: Charting Unknown Cs with Variables 97
In C, you can combine both steps into one. For example:

int methus=969;

This statement creates the integer variable methus and assigns it the value
969 — all at once. It’s your first peek at C language shortcut. (C is full of short­
cuts and alternatives — enough to make you kooky.)

You can do the same thing with string variables — but it’s a little weird.
Normally, string variables are created and given a size. For example:

char prompt[22];

Here, a character string variable, prompt, is created and given room for 22
characters. Then you use gets() or scanf() to stick text into that variable.
(You don’t use an equal sign!) When you create the variable and assign it a
string, however, it’s given this format:

char prompt[] = “So how fat are you, anyway?”

This command creates a string variable, prompt. That string variable already
contains the text “So how fat are you, anyway?” Notice that you see no number
in the brackets. The reason is that the compiler is smart enough to figure out
how long the string is and use that value automatically. No guesswork —
what joy!

� Numeric variables can be assigned a value when they’re declared. Just
follow the variable name with an equal sign and its value. Remember to
end the line with a semicolon.

� You can even assign the variable a value concocted by using math. For
example:

int video=800*600;

This statement creates the integer variable video and sets its value
equal to 800 times 600, or 480,000. (Remember that * is used for multi­
plication in C.)

� Even though a variable may be assigned a value, that value can still
change. If you create the integer variable methus and assign it the value
969, there’s nothing wrong with changing that value later in the program.
After all, a variable is still a variable.

� Here’s a trick that’s also possible, but not necessary, to remember:

int start = begin = first = count = 0;

Preview from Notesale.co.uk

Page 118 of 411

12 570684 Ch08.qxd 3/31/04 2:52 PM Page 98

98 Part II: Run and Scream from Variables and Math

This statement declares four integer variables: start, begin, first, and
count. Each of them is set equal to 0. start is equal to begin, which is equal
to first, which is equal to count, which is equal to 0. You probably see this
type of declaration used more often than you end up using it yourself.

The old random-sampler variable program

To demonstrate how variables can be defined with specific values, the
ICKYGU.C program was concocted. It works like those old Chinese all-you-
can-eat places, where steaming trays of yummy glop lie waiting under grease-
smeared panes of sneeze-protecting glass. Ah . . . reminds me of my college
days and that bowel infection I had. Here’s the source code:

#include <stdio.h>

int main()
{

char menuitem[] = “Slimy Orange Stuff \”Icky Woka
Gu\””;

int pints=1;
float price = 1.45;

printf(“Today special - %s\n”,menuitem);
printf(“You want %d pint.\n”,pints);
printf(“That be $%f, please.\n”,price);
return(0);

}

Type this source code into your editor. Double-check everything. Save the
program as ICKYGU.C.

Compile the program. Repair any unexpected errors — as well as those you
may have been expecting — and recompile if need be.

Run the final program. You see something like the following example displayed:

Today special - Slimy Orange Stuff “Icky Woka Gu”
You want 1 pint.
That be $1.450000, please.

Whoa! Is that lira or dollars? Of course, it’s dollars — the dollar sign in
printf()’s formatting string is a normal character, not anything special. But
the 1.45 value was printed with four extra zeroes. Why? Because you didn’t
tell the compiler not to. That’s just the way the %f, or floating-point conver­
sion character, displays numbers.

Preview from Notesale.co.uk

Page 119 of 411

13 570684 Ch09.qxd 3/31/04 2:51 PM Page 117

Chapter 9: How to C Numbers 117

5.878 E12

58.78 E11

587.8 E10

5878. E9

58780. E8

587800. E7

5878000. E6

58780000. E5

587800000. E4

5878000000. E3

58780000000. E2

Figure 9-1:
Scientific 587800000000. E1

notation
 5878000000000. E0
and the

light year. 5,878,000,000,000

When you enter E numbers in the compiler, use the proper E format. To dis­
play the numbers in E format with printf(), you can use the %e placeholder.
To see how it works, replace the %f in the JUPITER.C program with %e, save
the change to disk, recompile, and run the result. The output is in E notation,
something like the following:

Jupiter is 8.223886e-05 light years from the sun.

If the E has a negative number in front of it, as shown in this example, you hop
the decimal point to the left nn places, to indicate very small numbers. You
would translate the preceding value into the following:

.00008223886

� Scientific, or E, notation is required when numbers contain too many
digits for the C compiler to eat.

� A negative E number means that the value is very small. Remember to
move the decimal point to the left rather than to the right when you see
this type of number.

� Some compilers allow you to use the %E (big E) placeholder in printf()
to display scientific-notation numbers with a big E in them.

Preview from Notesale.co.uk

Page 138 of 411

14 570684 Ch10.qxd 3/31/04 2:51 PM Page 128

128 Part II: Run and Scream from Variables and Math

Beyond the getchar() dilemma, the program uses seven putchar() functions
to display Hello! (plus a newline character) to the screen. It’s a rather silly
use of putchar(), but it works.

� The putchar() function is used to display a single character on the
screen.

� You can also specify a character as an escape sequence or a code value
with putchar() (see the next section).

Character Variables As Values

If you want, you can live your life secure in the knowledge that the char key­
word sets aside storage space for single-character variables and strings. That’s
all well and good, and it gets you an A on the quiz. You can stop reading now,
if you want.

The horrible truth is that a single-character variable is really a type of integer.
It’s a tiny integer, but an integer nonetheless. The reason that it isn’t obvious
is that treating a char as an integer is really a secondary function of the single-
character variable. The primary purpose of single-character variables is to
store characters. But they can be used as integers. It’s twisted, so allow me to
explain in detail.

The basic unit of storage in a computer is the byte. Your computer has so
many bytes (or megabytes) of memory, the hard drive stores so many giga­
bytes, and so on. Each one of those bytes can be looked at as storing a single
character of information. A byte is a character.

Without boring you with the details, know that a byte is capable of storing a
value, from 0 to 255. That’s the range of an unsigned char integer: from 0 to
255 (refer to Table 9-1, in Chapter 9). Because a character is a byte, the char
can also be used to store those tiny integer values.

When the computer deals with characters, it doesn’t really know an A from a
B. It does, however, know the difference between 65 and 66. Internally, the
computer uses the number 65 as a code representing the letter A. The letter
B is code 66. In fact, all letters of the alphabet, number characters, symbols,
and other assorted jots and tittles each have their own character codes. The
coding scheme is referred to as ASCII, and a list of the codes and characters
is in Appendix B.

Essentially, when you store the character A in a char variable, you place the
value 65 into that variable. Internally, the computer sees only the 65 and, lo,
it’s happy. Externally, when the character is “displayed,” an A shows up. That
satisfies you and me, supposing that an A is what we want.

Preview from Notesale.co.uk

Page 149 of 411

16 570684 Ch11.qxd 3/31/04 2:51 PM Page 133

Chapter 11

C More Math and the Sacred

Order of Precedence

In This Chapter
� Reviewing the C math operators

� Incrementing variables

� Understanding the order of precedence

� Introducing My Dear Aunt Sally

� Using parentheses to control your math

Beware ye the dreadful math chapter! Bwaa-ha-ha!

Math is so terrifying to some people that I’m surprised there isn’t some

math-themed horror picture, or at least a ride at Disneyland. Pirates. Ghosts.

Screaming Dolls. Disneyland needs math in order to terrify and thrill children

of all ages. Ludwig von Drake would host. But I digress.

This chapter really isn’t the dreadful math chapter, but it’s my first lecture

that dwells on math almost long enough to give you a headache. Don’t panic!

The computer does all the work. You’re only required to assemble the math

in the proper order for the answers to come out right. And, if you do it wrong,

the C compiler tells you and you can start over. No embarrassment. No

recriminations. No snickering from the way-too-smart female exchange stu­

dent from Transylvania.

An All-Too-Brief Review of the Basic
C Mathematical Operators

Table 11-1 shows the basic C mathematical operators (or it could be arith­
metic operators — whatever). These symbols and scribbles make basic math
happen in a C program.

Preview from Notesale.co.uk

Page 154 of 411

16 570684 Ch11.qxd 3/31/04 2:51 PM Page 135

Chapter 11: C More Math and the Sacred Order of Precedence 135
� The math part of the equation is calculated first and is worked from left

to right. The result is then transferred to the variable sitting on the left
side of the equal sign.

The old “how tall are you” program

You can use “the power of the computer” to do some simple yet annoying
math. As an example, I present the HEIGHT.C program, with its source code
shown next. This program asks you to enter your height in inches and then
spits back the result in centimeters. Granted, it’s a typically dull C language
program. But, bear with me for a few pages and have some fun with it. Enter
this trivial program into your editor:

#include <stdio.h>
#include <stdlib.h>

int main()
{

float height_in_cm;
char height_in_inches[4];

printf(“Enter your height in inches:”);
gets(height_in_inches);
height_in_cm = atoi(height_in_inches)*2.54;
printf(“You are %.2f centimeters tall.\n”,height_in_cm);
return(0);

}

Be careful with what you type; some long variable names are in there. Also,
it’s height, not hieght. (I mention it because I tried to compile the program
with that spelling mistake — not once, but twice!) Save the file to disk as
HEIGHT.C.

Compile the program. Watch for any syntax or other serious errors. Fix them
if they crop up.

Run the HEIGHT program. Your output looks something like this:

Enter your height in inches:60
You are 152.40 centimeters tall.

If you’re 60 inches tall (5 feet exactly), that’s equal to 152.40 centimeters — a
bigger number, but you’re still hovering at the same altitude. The program is
good at converting almost any length in inches to its corresponding length in
centimeters.

Preview from Notesale.co.uk

Page 156 of 411

16 570684 Ch11.qxd 3/31/04 2:51 PM Page 145

Chapter 11: C More Math and the Sacred Order of Precedence 145
#include <stdio.h>

int main()
{

int total;

total=100-25*2;
printf(“Tomorrow you will have %d magic

pellets.\n”,total);
return(0);

}

Enter this program in your editor. Double-check everything. Save the file to
disk as PELLETS.C.

Compile PELLETS.C. Fix any errors.

Run the PELLETS program. Your output looks like this:

Tomorrow you will have 50 magic pellets.

Uh-huh. Try explaining that to the IRS. Your computer program, diligently
entered, tells you that there are 50 pellets, when tomorrow you will really
have 150. The extra 100? They were lost to the order of precedence. In the
PELLETS.C program, addition must come first. The way that works is by
using parentheses.

Using parentheses to mess up
the order of precedence
My Dear Aunt Sally can be quite overbearing. She’s insistent. Still, even though
she means well, she goofs up sometimes. In the PELLETS.C program, for exam­
ple, she tells the C compiler to multiply 25 by 2 first and then subtract the
result from 100. Anyone who reads the problem knows that you must subtract
25 from 100 first and then multiply what’s left by 2. The problem is convincing
the C compiler — and Aunt Sally — how to do that.

You can circumvent the order of precedence by using parentheses. When the
C compiler sees parentheses, it quickly darts between them, figures out the
math, and then continues with multiplication, division, addition, and subtrac­
tion, in that order, from left to right, outside the parentheses.

To fix the PELLETS.C program, you have to change the seventh line to read:

total=(100-25)*2;

Preview from Notesale.co.uk

Page 166 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 147

Chapter 12

C the Mighty if Command
In This Chapter
� Using the if statement

� Comparing values with if
� Formatting the if statements

� Handling exceptions with else
� Making multiple decisions

O kay, if isn’t a command. It’s another keyword in the C programming
language, one that you can use in your program to make decisions —

although it really makes comparisons, not decisions. It’s the program that
decides what to do based on the results of the comparison.

This chapter is about adding decision-making power to your programs by
using the if command.

Keep in mind that the computer doesn’t decide what to do. Instead, it follows
a careful path that you set down for it. It’s kind of like instructing small chil­
dren to do something, though with the computer, it always does exactly what
you tell it to and never pauses eternally in front of the TV set or wedges a Big
Hunk into the sofa.

If Only. . . .
The idea behind the if command is to have the computer handle some pre­
dictable yet unknown event: A choice is made from a menu; the little man in
some game opens the door with the hydra behind it; or the user types some­
thing goofy. These are all events that happen, which the computer must deal
with.

Preview from Notesale.co.uk

Page 168 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 148

148 Part III: Giving Your Programs the Ability to Run Amok

The if keyword allows you to put these types of decisions into your pro­
grams. The decisions are based on a comparison. For example:

� If the contents of variable X are greater than variable Y, scream like

they’re twisting your nose.

� If the contents of the variable calories are very high, it must taste very
good.

� If it ain’t broke, don’t fix it.

� If Doug doesn’t ask me out to the prom, I’ll have to go with Charley.

All these examples show important decisions, similar to those you can make
in your C programs by using the if keyword. However, in the C programming
language, the if keyword’s comparisons are kind of, sort of — dare I say it? —
mathematical in nature. Here are more accurate examples:

� If the value of variable A is equal to the value of variable B

� If the contents of variable ch are less than 132

� If the value of variable zed is greater than 1,000,000

These examples are really simple, scales-of-justice evaluations of variables
and values. The if keyword makes the comparison, and if the comparison is
true, your program does a particular set of tasks.

� if is a keyword in the C programming language. It allows your programs
to make decisions.

� if decides what to do based on a comparison of (usually) two items.

� The comparison that if makes is mathematical in nature: Are two items
equal to, greater than, less than — and so on — to each other? If they
are, a certain part of your program runs. If not, that part of the program
doesn’t run.

� The if keyword creates what is known as a selection statement in the C
language. I wrote this topic down in my notes, probably because it’s in
some other C reference I have read at some time or another. Selection
statement. Impress your friends with that term if you can remember it. Just
throw your nose in the air if they ask what it means. (That’s what I do.)

The computer-genie program example

The following program is GENIE1.C, one of many silly computer guess-the-
number programs you write when you find out how to program. Computer
scientists used to play these games for hours in the early days of the com­
puter. They would probably drop dead if we could beam a Sony PlayStation
back through time.

Preview from Notesale.co.uk

Page 169 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 149

Chapter 12: C the Mighty if Command 149
What GENIE1.C does is to ask for a number, from 0 through 9. You type that
number at the keyboard. Then, using the magic of the if statement, the com­
puter tells you whether the number you entered is less than 5. This program
was a major thigh-slapper when it was first written in the early 1950s.

Enter the following source code into your text editor. The only new stuff
comes with the if statement cluster, near the end of the program. Better
double-double-check your typing.

#include <stdio.h>
#include <stdlib.h>

int main()
{

char num[2];
int number;

printf(“I am your computer genie!\n”);

printf(“Enter a number from 0 to 9:”);
gets(num);
number=atoi(num);

if(number<5)
{

printf(“That number is less than 5!\n”);
}

printf(“The genie knows all, sees all!\n”);
return(0);

}

Save the file to disk as GENIE1.C.

Compile GENIE1.C. If you see any errors, run back to your editor and fix them.

Then recompile.

Run the final program. You see these displayed:

I am your computer genie!
Enter a number from 0 to 9:

Type a number, somewhere in the range of 0 through 9. For example, you can
type 3. Press Enter and you see:

That number is less than 5!
The genie knows all, sees all!

Preview from Notesale.co.uk

Page 170 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 153

Chapter 12: C the Mighty if Command 153
This time, the test is greater than or equal to: Is the number that is entered 5
or more than 5? If the number is greater than or equal to 5, it must be more
than 4, and the printf() statement goes on to display that important info on
the screen.

The following modification to the GENIE1.C program doesn’t change the if
comparison, as in the previous examples. Instead, it shows you that more
than one statement can belong to if:

if(number<5)
{

printf(“That number is less than 5!\n”);
printf(“By goodness, aren’t I smart?\n”);

}

Everything between the curly braces is executed when the comparison is true.
Advanced C programs may have lots of stuff in there; as long as it’s between
the curly braces, it’s executed only if the comparison is true. (That’s why it’s
indented — so that you know that it all belongs to the if statement.)

� The comparison that if makes is usually between a variable and a value.
It can be a numeric or single-character variable.

� if cannot compare strings. For information on comparing strings, refer
to my book C All-in-One Desk Reference For Dummies (Wiley).

� Less than and greater than and their ilk should be familiar to you from
basic math. If not, you should know that you read the symbols from left
to right: The > symbol is greater than because the big side comes first;
the < is less than because the lesser side comes first.

� The symbols for less than or equal to and greater than or equal to always
appear that way: <= and >=. Switching them the other way generates an
error.

� The symbol for “not” in C is the exclamation point. So, != means “not
equal.” What is !TRUE (not-true) is FALSE. “If you think that it’s butter,
but it’s !.” No, I do ! want to eat those soggy zucchini chips.

� When you’re making a comparison to see whether two things are equal,
you use two equal signs. I think of it this way: When you build an if
statement to see whether two things are equal, you think in your head
“is equal” rather than “equals.” For example:

if(x==5)

Read this statement as “If the value of the x variable is equal to 5,
then. . . .” If you think “equals,” you have a tendency to use only one
equal sign — which is very wrong.

Preview from Notesale.co.uk

Page 174 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 154

154 Part III: Giving Your Programs the Ability to Run Amok

� If you use one equal sign rather than two, you don’t get an error; how­
ever, the program is wrong. The nearby Technical Stuff sidebar attempts
to explain why.

� If you have programmed in other computer languages, keep in mind that
the C language has no 2ewd or fi word. The final curly brace signals to
the compiler that the if statement has ended.

� Also, no then word is used with if, as in the if-then thing they have in
the BASIC or Pascal programming language.

A question of formatting the if statement

The if statement is your first “complex” C language statement. The C lan­
guage has many more, but if is the first and possibly the most popular,
though I doubt that a popularity contest for programming language words
has ever been held (and, then again, if would be great as Miss Congeniality
but definitely come up a little thin in the swimsuit competition).

Though you probably have seen the if statement used only with curly
braces, it can also be displayed as a traditional C language statement. For
example, consider the following — one of the modifications from the GENIE1
program:

if(number==5)
{

printf(“That number is 5!\n”);
}

In C, it’s perfectly legitimate to write this as a more traditional type of state­
ment. To wit:

if(number==5) printf(“That number is 5!\n”);

This line looks more like a C language statement. It ends in a semicolon.
Everything still works the same; if the value of the number variable is equal
to 5, the printf() statement is executed. If number doesn’t equal 5, the rest
of the statement is skipped.

Although all this is legal and you aren’t shunned in the C programming com­
munity for using it, I recommend using curly braces with your if statements
until you feel comfortable reading the C language.

Preview from Notesale.co.uk

Page 175 of 411

17 570684 Ch12.qxd 3/31/04 2:51 PM Page 160

160 Part III: Giving Your Programs the Ability to Run Amok

Table 12-2 if Comparisons and Their Opposites
if Comparison else Statement Executed By This Condition

< >= (Greater than or equal to)

== != (Not equal to)

> <= (Less than or equal to)

<= > (Greater than)

>= < (Less than)

!= == (Is equal to)

� I don’t know about you, but I think that all those symbols in Table 12-2
would certainly make an interesting rug pattern.

� The else keyword is used only with if.

� Both if and else can have more than one statement enclosed in their
curly braces. if’s statements are executed when the comparison is true;
else’s statements are executed when the comparison is false.

� To execute means to run. C programs execute, or run, statements from
the top of the source code (the first line) to the bottom. Each line is
executed one after the other unless statements like if and else are
encountered. In that case, the program executes different statements,
depending on the comparison that if makes.

� When your program doesn’t require an either-or decision, you don’t
have to use else. For example, the TAXES program has an either-or deci­
sion. But, suppose that you’re writing a program that displays an error
message when something doesn’t work. In that case, you don’t need
else; if an error doesn’t occur, the program should continue as normal.

� If you’re the speaker of another programming tongue, notice that the C
language has no end-else word in it. This isn’t smelly old Pascal, for
goodness’ sake. The final curly brace signals the end of the else state­
ment, just as it does with if.

The strange case of else-if
and even more decisions
The C language is rich with decision making. The if keyword helps if you
need to test for only one condition. True or false, if handles it. And, if it’s
true, a group of statements is executed. Otherwise, it’s skipped over. (After
the if’s group of statements is executed, the program continues as before.)

Preview from Notesale.co.uk

Page 181 of 411

19 570684 Ch14.qxd 3/31/04 3:00 PM Page 180

180 Part III: Giving Your Programs the Ability to Run Amok

The if command’s logical friends

You can use the logical operators && and || to help the if command make
multiple decisions in one statement:

The && is the logical AND operator.

The || is the logical OR operator.

Table 14-1 explains both.

Table 14-1 Logical Operators Used in if Comparisons
Operator Meaning “True” Examples

|| Or true || true

true || false

false || true

&& And true || true

The logical operator is used on two standard if command comparisons. For
example:

if(temperature>65 && temperature<75)
{

printf(“My, but it’s nice weather outside\n”);
}

In this example, the if command makes two comparisons: temperature>65
and temperature<75. If both are true, the &&, logical AND condition is also
true and the entire statement passes; the printf() function then displays
the string. Table 14-2 shows the possibilities of how you can figure it out.

Table 14-2 Figuring Out a Logical AND Operation
Temperature temperature>65 (and) temperature<75 Logical AND result

45 45>65 45<75

FALSE && TRUE FALSE

72 72>65 72<75

Preview from Notesale.co.uk

Page 201 of 411

20 570684 Ch15.qxd 3/31/04 3:00 PM Page 185

Chapter 15

C You Again
In This Chapter
� Understanding the loop

� Repeating chunks of code with for
� Using a loop to count

� Displaying an ASCII table by using a loop

� Avoiding the endless loop

� Breaking a loop with break

One thing computers enjoy doing more than anything else is repeating
themselves. Humans? We think that it’s punishment to tell a kid to write

“National Geographic films are not to be giggled at” 100 times on a chalkboard.
Computers? They don’t mind a bit. They enjoy it, in fact.

Next to making decisions with if, the power in your programs derives from
their ability to repeat things. The only problem with that is getting them to
stop, which is why you need to know how if works before you progress into
the looping statements. This chapter begins your looping journey by intro­
ducing you to the most ancient of the loopy commands, for.

� To find out about the if statement, refer to Chapters 12 though 14.

� It may behoove you to look at Table 12-1, in Chapter 12, which contains
comparison functions used by both the if and for commands.

For Going Loopy

Doing things over and over is referred to as looping. When a computer program­
mer writes a program that counts to one zillion, he writes a loop. The loop is
called such because it’s a chunk of programming instructions — code — that
is executed a given number of times. Over and over.

Preview from Notesale.co.uk

Page 206 of 411

20 570684 Ch15.qxd 3/31/04 3:00 PM Page 196

196 Part III: Giving Your Programs the Ability to Run Amok

Compile the program. Even though the for statement contains a deliberate
infinite loop, no error message is displayed (unless you goofed up and typed
something else). After all, the compiler may think that you’re attempting to do
something forever as part of your master plan. How would it know otherwise?

When you run the program, forever, you see the following messages scrolling
madly up your screen:

The computer has run amok!

Indeed, it has! Press Ctrl+C to stop the madness.

� Most loops are designed with a condition on which they end. In an end­
less loop, either they don’t have a condition or the condition is set up in
some fashion as to be unobtainable. That’s bad.

� Infinite loops are insidious! Often, you don’t detect them until the program
runs, which is a great argument for testing every program you create.

� The Ctrl+C keyboard combination works in both Windows and Unix to
cancel a command that is producing standard output, which is what
FOREVER.C is doing (over and over). Other types of programs with infi­
nite loops, particularly those that don’t produce standard output, are
much harder to stop. If Ctrl+C doesn’t work, often you have to use your
operating system’s abilities to kill off the program run amok.

� In the olden days, you often had to restart the entire computer to regain
control from a run-amok endlessly looping program.

� The program loops forever because of a flaw in the for loop’s “while true”
part — the second item in the parentheses:

for(i=1;i=5;i=i+1)

The C compiler sees i=5 and figures, “Okay, I’ll put 5 into the i variable.”
It isn’t a true-false comparison, like something you find with an if state­
ment, which was expected, so the compiler supposes that it’s true and
keeps looping — no matter what. Note that the variable i is always equal
to 5 for this reason; even after it’s incremented with i=i+1, the i=5 state­
ment resets it back to 5.

� Here’s what the for statement should probably look like:

for(i=1;i<=5;i=i+1)

This line repeats the loop five times.

� Some compilers may detect the “forever” condition in the for statement
and flag it as an infinite loop. If so, you’re lucky. For example, the old Bor­
land C++ compiler flagged FOREVER.C as having a Possibly incorrect
assignment error. The compiler still produces the finished (and flawed)
program, though.

Preview from Notesale.co.uk

Page 217 of 411

21 570684 Ch16.qxd 3/31/04 3:00 PM Page 211

Chapter 16: C the Loop, C the Loop++ 211

Counting to 1,000 by fives

The following program is an update to the old 100.C program, from Chapter 15.
In this case, the program counts to 1,000 by fives — a task that would literally
take days without a computer:

#include <stdio.h>

int main()
{

int i;

for(i=5;i<=1000;i=i+5)
printf(“%d\t”,i);

return(0);
}

Start off with a new, clean slate in your editor. Type the preceding source code.
It’s nothing fancy. Indeed, it’s just a take-off from the old 100.C program. Save
the file to disk as 1000.C.

Compile 1000.C and run the result. Your screen fills with values from 5 to 1000,
all lined up in rows and columns.

� This leaping loop counts by fives because of the i=i+5 part of the for
statement. The i=i+5 operation keeps increasing the value of the i vari­
able by 5.

� The loop begins counting at 5 because of the i=5 part of the for loop. It
stops counting at 1,000 because of the i<=1000 part of the loop. That’s
“less than or equal to 1000,” which is how you get to 1,000.

Cryptic C operator symbols, Volume III:
The madness continues
C is full of shortcuts, and mathematical operations are where you find most of
them clustered like bees over a stray Zagnut bar. I feel that the two most cryp­
tic shortcuts are for changing a variable’s value by 1: ++ to increment and -- to
decrement. But there are more!

To add 5 to a variable’s value, for example, such as in the 1000.C program, you
use the following:

i=i+5

Preview from Notesale.co.uk

Page 232 of 411

21 570684 Ch16.qxd 3/31/04 3:00 PM Page 213

Chapter 16: C the Loop, C the Loop++ 213
� Technically, these doojabbies are referred to as assignment operators.

Don’t memorize that term. Even I had to look it up.

� Hey: It’s a good idea to stick a sticky note on Table 16-2 or flag it by dog­
earing the page. These cryptic shortcuts aren’t easy to remember.

� One way to remember that the operator (+, –, *, or /) comes first is to
look at the wrong way for subtraction:

var=-5

This is not a shortcut for var=var-5. Instead, it sets the value of variable
var equal to negative-five. Ipso fasto, var-=5 must be the proper way to
do it.

� Remember that these mathematical-shortcut cryptic operators aren’t nec­
essarily limited to use in for loops. Each of them can be a C language
statement unto itself, a mathematical operation to somehow pervert a
variable’s value. To wit:

term+=4;

This statement increases the value of the variable term by 4.

The answers
In CHANT.C, modify Line 7 to read:

for(i=2;i<10;i+=2)

In 1000.C, modify Line 7 to read:

for(i=2;i<10;i+=5)

In both cases, you change the longer equation i=i+x to its shorter variation,
i+=x.

Preview from Notesale.co.uk

Page 234 of 411

22 570684 Ch17.qxd 3/31/04 3:00 PM Page 218

218 Part III: Giving Your Programs the Ability to Run Amok

The while keyword
(a formal introduction)
The while keyword is used in the C language to repeat a block of statements.
Unlike the for loop, while only tells the computer when to end the loop. The
loop must be set up before the while keyword, and when it’s looping, the
ending condition — the sizzling fuse or ticking timer — must be working. Then,
the loop goes on, la-de-da, until the condition that while monitors suddenly
becomes FALSE. Then, the party’s over, and the program goes on, sadder but
content with the fact that it was repeating itself for a while (sic).

Here’s the rough format:

starting;
while(while_true)
{

statement(s);
do_this;

}

First, the loop must be set up, which is done with the starting statement. For
example, this statement (or a group of statements) may declare a variable to
be a certain value, to wait for a keystroke, or to do any number of interesting
things.

while_true is a condition that while examines. If the condition is TRUE, the
statements enclosed in curly braces are repeated. while examines that condi­
tion after each loop is repeated, and only when the statement is FALSE does
the loop stop.

Inside the curly braces are statements repeated by the while loop. One of those
statements, do_this, is required in order to control the loop. The do_this part
needs to modify the while_true condition somehow so that the loop eventually
stops or is broken out of.

While loops have an advantage over for loops in that they’re easier to read
in English. For example:

while(ch!=’~’)

This statement says “While the value of variable ch does not equal the
tilde character, repeat the following statements.” For this to make sense,
you must remember, of course, that ! means not in C. Knowing which sym­
bols to pronounce and which are just decorations is important to understand­
ing C programming.

Preview from Notesale.co.uk

Page 239 of 411

22 570684 Ch17.qxd 3/31/04 3:00 PM Page 224

224 Part III: Giving Your Programs the Ability to Run Amok

Preview from Notesale.co.uk

Page 245 of 411

23 570684 Ch18.qxd 3/31/04 3:00 PM Page 231

Chapter 18: Do C While You Sleep 231
� Most of the problems Microsoft has had with critical or fatal errors in its

software are caused by a lack of this type of bounds checking.

� Refer to Chapter 14 for more information about the logical || (OR)
comparison.

� You may want to insert the following comment into your source code,
just above the first loop:

/* This loop ensures they type in
a proper value */

Nested Loops and Other

Bird-Brained Concepts

Glorious loops within loops, wheels within wheels, spinning ’round like some
nauseating amusement park ride with a drugged-out, tattooed guy named Craig
asleep at the controls. But that’s another subject. In the C programming lan­
guage, spinning two loops is a cinchy and practical thing to do. It’s called
making a nested loop, or with one loop inside another.

Adding a tense, dramatic delay

to the COUNTDWN.C program

What’s missing from the COUNTDWN.C program is a little tension. In case you
haven’t noticed, typing any value from 1 to 100 doesn’t really affect the speed
at which the countdown is displayed; after you press Enter, the text zips on up
the screen. No suspense!

To help slow down the display, you can insert a delay loop into the program.
The purpose of the delay loop is merely to spin the computer’s CPU, burning
up clock cycles to slow down the program at a certain point. Yes, you do it on
purpose.

Modify the second do while loop in the COUNTDWN.C program to read:

do
{

printf(“T-minus %d\n”,start);
start--;
for(delay=0;delay<100000;delay++); /* delay loop */

}
while(start>0);

Preview from Notesale.co.uk

Page 252 of 411

23 570684 Ch18.qxd 3/31/04 3:00 PM Page 233

Chapter 18: Do C While You Sleep 233
� Having a for loop inside a while loop is referred to as a nested loop. Note

that both loops don’t need to be of the same type (two for loops or two
while loops).

� A nested loop is basically one loop spinning ’round inside another loop.

� The first loop, or outside loop, ticks off first. Then, the inside loop ticks
off, looping as many times as it does. After that, the outside loop ticks off
another one, and then the inside loop is repeated entirely again. That’s
how they work.

� Keep separate the variables associated with one loop or another. For
example, the following two for loops are nested improperly:

for(x=0;x<5;x++)
for(x=5;x>0;x--);

Because x is used in both loops, these nested loops don’t behave as you
expect. This loop is infinite, in fact, because both are manipulating the
same variable in different directions.

� This disaster probably isn’t apparent to you. You write some huge pro­
gram and nest two for loops miles apart without thinking about it, by
using your favorite variable x (or i) in each one. Those kind of bugs can
wreck your day.

� The way to avoid messing up nested loops is to use different variables
with each one — for example, a or b, or i1 and i2, or even something
descriptive, such as start and delay, as used in the COUNTDWN.C
example.

� That nested for loop in COUNTDWN.C ends with a semicolon, indicating
that it doesn’t “own” any statements that are repeated. Here’s another
way you could format it:

for(delay=0;delay<100000;delay++)
;

This example shows you that the for loop doesn’t have any statements
worth repeating. It just sits and spins the microprocessor, wasting time
(which is what you want).

� Although delay loops, such as the one shown in COUNTDWN.C, are
common, a better way exists. That is to use the computer’s internal
clock to time a delay of a specific duration. I show you an example in C
All-in-One Desk Reference For Dummies (Wiley).

� My first IBM PC — some 20 years ago — required a delay loop that
counted to only 10,000 for about a half-second pause between each line
displayed. Today’s computers are much, much faster — obviously!

Preview from Notesale.co.uk

Page 254 of 411

23 570684 Ch18.qxd 3/31/04 3:00 PM Page 234

234 Part III: Giving Your Programs the Ability to Run Amok

Sleepy time!
The C language does have a built-in delay func­
tion, so you really have no need to program a
delay loop — as long as you can stand the wait!

The sleep() function is used to pause a pro­

said seconds.
in sleep()

sleep(40);

wait time while a program is running.

DWN.C with

sleep(1);

This line adds a dramatic pause between each

dening pause. But, it works.

Note that in some implementations of GCC, the
sleep() function apparently uses millisec­

one second, for example, you use this command
in COUNTDWN.C:

sleep(1000);

Keep in mind that this implementation of the
sleep() function is nonstandard.

gram for a given number of seconds. Yes — I
You specify the seconds to wait

’s parentheses:

You can catch 40 winks — or 40 seconds — of

You can replace the for delay loop in COUNT-

line’s output — a slow, dramatic, and often mad­

onds, not seconds, as its argument. To delay

The nitty GRID.C of nested loops

Nested loops happen all the time. Most often, they happen when you’re filling
in a grid or an array. In that case, you work on rows and columns, filling up
the columns row-by-row, one after the other, or vice versa. An example of how
it’s done is shown in the GRID.C program, which displays a grid of numbers
and letters:

#include <stdio.h>

int main()
{

int a;
char b;

printf(“Here is thy grid...\n”);

for(a=1;a<10;a++)
{

for(b=’A’;b<’K’;b++)
{

printf(“%d-%c “,a,b);
}
putchar(‘\n’); /* end of line */

}
return(0);

}

Preview from Notesale.co.uk

Page 255 of 411

23 570684 Ch18.qxd 3/31/04 3:00 PM Page 238

238 Part III: Giving Your Programs the Ability to Run Amok

� Keep in mind that although continue forces another spin of the loop’s
wheel, it doesn’t reinitialize the loop. It tells the compiler to “go again,”
not to “start over.”

� You should keep in mind only two real warnings about the continue
command: Don’t use it outside a loop or expect it to work on nested
loops; and be careful where you put it in a while loop, lest you skip over
the loop’s counter and accidentally create an endless loop.

� As a final, consoling point, this command is rarely used. In fact, many C
programmers may be a little fuzzy on what it does or may not know pre­
cisely how to use it.

Preview from Notesale.co.uk

Page 259 of 411

24 570684 Ch19.qxd 3/31/04 3:00 PM Page 239

Chapter 19

Switch Case, or, From

‘C’ to Shining ‘c’

In This Chapter
� Solving the endless else-if puzzle

� Using switch-case
� Creating a switch-case structure

Honestly, I don’t believe that switch-case is really a loop. But the word
loop works so much better than my alternative, structure thing. That’s

because the statements held inside the switch-case structure thing aren’t
really repeated, yet in a way they are. Well, anyway.

This chapter uncovers the final kind-of-loop thing in the C language, which is
called switch-case. It’s not so much a loop as it’s a wonderful method of
cleaning up a potential problem with multiple if statements. As is true with
most things in a programming language, it’s just better for me to show you an
example than to try to explain it. That’s what this chapter does.

The Sneaky switch-case Loops

Let’s all go to the lobby,

Let’s all go to the lobby,

Let’s all go to the lobby,

And get ourselves a treat!

— Author unknown

And, when you get to the lobby, you probably order yourself some goodies
from the menu. In fact, management at your local theater has just devised an

Preview from Notesale.co.uk

Page 260 of 411

24 570684 Ch19.qxd 3/31/04 3:00 PM Page 250

250 Part III: Giving Your Programs the Ability to Run Amok

Run the program again, enter 123412341234xx92431=, and then press Enter:

Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Beverage $8.00
Candy $5.50
Hot dog $10.00
Popcorn $7.50
Improper selection.
Improper selection.
Improper selection.
Candy $5.50
Popcorn $7.50
Hot dog $10.00
Beverage $8.00
Total of $124.00
Please pay the cashier.

This is the last time I’m taking all you guys to the lobby!

� Most programs employ this exact type of loop. The while(!done) spins
’round and ’round while a switch-case thing handles all the program’s
input.

� One of the switch-case items handles the condition when the loop must
stop. In LOBBY3.C, the key is the equal sign. It sets the value of the done
variable to 1. The while loop then stops repeating.

� C views the value 0 as FALSE. So, by setting done equal to 0, by using
the ! (not), the while loop is executed. The reason for all this is so that
the loop while(!done) reads “while not done” in English.

� The various case structures then examine the keys that were pressed.
For each match 1 through 4, three things happen: The item that is ordered
is displayed on the screen; the total is increased by the cost of that item
(total+=3, for example); and a break statement busts out of the switch-
case thing. At that point, the while loop continues to repeat as additional
selections are made.

� You may remember the += thing, from Chapter 16. It’s a contraction of
total = total + value.

Preview from Notesale.co.uk

Page 271 of 411

26 570684 Ch20.qxd 3/31/04 2:59 PM Page 253

Chapter 20

Writing That First Function
In This Chapter
� Understanding functions

� Creating the jerk() function

� Prototyping functions

� Using the upside-down prototype

� Formatting and naming functions

Functions are where you “roll your own” in the C language. They’re nifty
little procedures, or series of commands, that tell the computer to do

something. All that’s bundled into one package, which your program can then
use repeatedly and conveniently. In a way, writing a function is like adding
your own commands to the C language.

If you’re familiar with computer programming languages, you should recognize
functions as similar to subroutines or procedures. If you’re not familiar with
computer programming (and bless you), think of a function as a shortcut. It’s
a black box that does something wonderful or mysterious. After you construct
the function, the rest of your program can use it — just like any other C lan­
guage function or keyword. This chapter definitely puts the fun into function.

(This chapter is the first one in this book to lack a clever use of the letter C
in the title. Yeah, I was getting sick of it too — C sick, in fact.)

Meet Mr. Function

Are functions necessary? Absolutely! Every program must have at least one
function, the main() function. That’s required. Beyond that, you don’t need
to create your own functions. But, without them, often your code would con­
tain a great deal of duplicate instructions.

Preview from Notesale.co.uk

Page 274 of 411

26 570684 Ch20.qxd 3/31/04 3:00 PM Page 260

260 Part IV: C Level

printf(“Not once, or twice, but three times a day!\n”);
jerk();
printf(“He insulted my wife, my cat, my mother\n”);
printf(“He irritates and grates, like no other!\n”);
jerk();
printf(“He chuckles it off, his big belly a-heavin’\n”);
printf(“But he won’t be laughing when I get even!\n”);
jerk();
return(0);

}

/* This is the jerk() function */

void jerk()
{

printf(“Bill is a jerk\n”);
}

When you’re done, resave BIGJERK2.C to disk. Recompile, and you shan’t be
bothered by the various warning errors again.

� The prototype is basically a rehash of a function that appears later in
the program.

� The prototype must shout out what type of function the program is and
describe what kind of stuff should be between the parentheses.

� The prototype must also end with a semicolon. This is muy importanto.

� I usually copy the first line of the function to the top of the program,
paste it in there, and then add a semicolon. For example, in BIGJERK2.C,
I copied Line 21 (the start of the jerk function) to the top of the source
code and pasted it in, adding the necessary voids and semicolon.

� No, the main() function doesn’t have to be prototyped. The compiler is
expecting it and knows all about it. (Well, almost. . . .)

� Required prototyping is something they added to the C language after it
was first introduced. You may encounter older C source code files that
seem to lack any prototyping. Back in the days when such programs
were written (before about 1990), this was a common way of doing things.

A sneaky way to avoid

prototyping problems

Only the coolest of the C language gurus do this trick — so don’t tell anyone
that you found out about it in a For Dummies book! Shhhh!

Preview from Notesale.co.uk

Page 281 of 411

26 570684 Ch20.qxd 3/31/04 3:00 PM Page 262

262 Part IV: C Level

� If your source code has more than one function, the order in which
they’re listed is important; you cannot use a function inside your source
code unless it has first been declared or prototyped. If you have multiple
functions in your source code, order them so that if one function calls
another, that second function is listed first. Otherwise, you’re again
saddled with prototyping errors.

The Tao of Functions

The C language allows you to put as many functions as you want in your source
code. There really is no limit, though most programmers like to keep their
source-code text files to a manageable size.

� What is “manageable size”? It depends.

� The larger the source code file, the longer it takes to compile.

� Often times, it pays to break off functions into their own, separate source
code files. It not only aids in debugging, but also makes recompiling
larger files easier.

� This book’s companion volume, C All-in-One Desk Reference For Dummies
(Wiley), contains information on creating and managing multimodule
source code files.

The function format

Here’s the format of a typical function:

type name(stuff)

The type tells the compiler whether the function returns a value. If the type
is void, the function doesn’t return any value. (It merely functs.) Otherwise,
the type describes which type of value the function returns: char, int, float,
or any of the standard C language variable declarations.

The name is the function’s name. It must be a unique name, not any keywords
or names of other C language library functions, such as printf() or atio().
(For more on names, see the next section.)

Parentheses after the function’s name are required, as they are on all C language
functions. The stuff inside the parentheses, if needed, defines whatever value
(or values) are sent off to the function for evaluation, manipulation, or mutila­
tion. I cover this subject in Chapter 22. If there’s no stuff, the parentheses can
be left empty or the word void can be used.

Preview from Notesale.co.uk

Page 283 of 411

27 570684 Ch21.qxd 3/31/04 2:59 PM Page 265

Chapter 21

Contending with Variables

in Functions

In This Chapter
� Naming variables within functions

� Understanding local variables

� Sharing one variable throughout a program

� Using global variables

Each function you create can use its own, private set of variables. It’s a must.
Just like the main() function, other functions require integer or character

variables that help the function do its job. A few quirks are involved with this
arrangement, of course — a few head-scratchers that must be properly mulled
over so that you can understand the enter function/variable gestalt.

This chapter introduces you to the strange concept of variables inside func­
tions. They’re different. They’re unique. Please avoid the desire to kill them.

Bombs Away with the
BOMBER Program!

The dropBomb() function in the BOMBER.C program uses its own, private vari­
able x in a for loop to simulate a bomb dropping. It could be an exciting ele­
ment of a computer game you may yearn to write, though you probably want
to use sophisticated graphics rather than the sloppy console screen used here:

#include <stdio.h>

void dropBomb(void); /* prototype */

int main()

Preview from Notesale.co.uk

Page 286 of 411

27 570684 Ch21.qxd 3/31/04 2:59 PM Page 271

Chapter 21: Contending with Variables in Functions 271
� Global variables are declared outside of any function. It’s typically done

right before the main() function.

� Everything you know about creating a variable, other than being
declared outside a function, applies to creating global variables: You
must specify the type of variable (int, char, and float, for example),
the variable’s name, and the semicolon.

� You can also declare a group of global variables at one time:

int score,tanks,ammo;

� And, you can preassign values to global variables, if you want:

char prompt[]=”What?”;

An example of a global variable
in a real, live program
For your pleasure, please refer again to the BOMBER.C source code. This final
modification adds code that keeps a running total of the number of people you
kill with the bombs. That total is kept in the global variable deaths, defined
right up front. Here’s the final source code, with specific changes noted just
afterward:

#include <stdio.h>

#define COUNT 20000000 /* 20,000,000 */

void dropBomb(void); /* prototype */
void delay(void);

int deaths; /* global variable */

int main()

{

char x;

deaths=0;
for(;;)
{

printf(“Press ~ then Enter to quit\n”);
printf(“Press Enter to drop the bomb:”);
x=getchar();
fflush(stdin); /* clear input buffer */
if(x==’~’)
{

break;

}

Preview from Notesale.co.uk

Page 292 of 411

28 570684 Ch22.qxd 3/31/04 2:59 PM Page 275

Chapter 22

Functions That Actually Funct
In This Chapter
� Sending a value to a function

� Sending multiple values to a function

� Using the return keyword

� Understanding the main() function

� Writing tighter code

A function is like a machine. Although the do-nothing void functions that
you probably have read about in earlier chapters are still valid functions,

the real value in a function is having it do something. I mean, functions must
chew on something and spit it out. Real meat-grinder stuff. Functions that funct.

This chapter explains how functions can be used to manipulate or produce
information. It’s done by sending a value to a function or by having a function
return a value. This chapter explains how all that kooky stuff works.

Marching a Value Off to a Function

Generally speaking, you can write four types of functions:

� Functions that work all by themselves, not requiring any extra input:
These functions are described in previous chapters. Each one is a ho-hum
function, but often necessary and every bit a function as a function can be.

� Functions that take input and use it somehow: These functions are
passed values, as either constants or variables, which they chew on and
then do something useful based on the value received.

� Functions that take input and produce output: These functions receive
something and give you something back in kind (known as generating a
value). For example, a function that computed your weight based on
your shoe size would swallow your shoe size and cough up your weight.
So to speak. Input and output.

Preview from Notesale.co.uk

Page 296 of 411

28 570684 Ch22.qxd 3/31/04 2:59 PM Page 282

282 Part IV: C Level

Another way to argue with a function
This book shows you the modern, convenient
way of declaring variables (or arguments) shuf­

void jerk(int repeat, char c);
{
and so on. . . .

void jerk(repeat, c)
int repeat;
char c;
{
and so on...

little more confusing because the variable name
is introduced first and then the “what it is dec­
laration” comes on the following line (or lines).
Otherwise, the two are the same.

My advice is to stick with the format used in this
book and try not to be alarmed if you see the
other format used. Older C references may use
the second format, and certain fogey C pro­
grammers may adhere to it. Beware!

fled off to a function. To wit:

You can also use the original format:

This declaration does the same thing, but it’s a

Functions That Return Stuff

For some functions to properly funct, they must return a value. You pass
along your birthday, and the function magically tells you how old you are
(and then the computer giggles at you). This process is known as returning a
value, and a heck of a lot of functions do that.

Something for your troubles
To return a value, a function must obey these two rules:

Warning! Rules approaching.

� The function has to be defined as a certain type (int, char, or float, for
example — just like a variable). Use something other than void.

� The function has to return a value.

The function type tells you what type of value it returns. For example:

int birthday(int date);

The function birthday() is defined on this line. It’s an integer function and
returns an integer value. (It also requires an integer parameter, date, which it
uses as input.)

Preview from Notesale.co.uk

Page 303 of 411

28 570684 Ch22.qxd 3/31/04 2:59 PM Page 284

284 Part IV: C Level

Finally, the computer tells you
how smart it thinks you are
The following program calculates your IQ. Supposedly. What’s more important
is that it uses a function that has real meaning. If you have read the past few
chapters, you have used the following set of C language statements to get
input from the keyboard:

input=gets();
x=atoi(input);

The gets() function reads in text that’s typed at the keyboard, and atoi()
translates it into an integer value. Well, ho-ho, the getval() function in the
IQ.C program does that for you, returning the value happily to the main()
function:

#include <stdio.h>
#include <stdlib.h>

int getval(void);

int main()
{

int age,weight,area;
float iq;

printf(“Program to calculate your IQ.\n”);
printf(“Enter your age:”);
age=getval();
printf(“Enter your weight:”);
weight=getval();
printf(“Enter the your area code:”);
area=getval();

iq=(age*weight)/area;
printf(“This computer estimates your IQ to be %f.\n”,iq);
return(0);

}

int getval(void)
{

char input[20];
int x;

gets(input);
x=atoi(input);
return(x);

}

Preview from Notesale.co.uk

Page 305 of 411

28 570684 Ch22.qxd 3/31/04 2:59 PM Page 288

288 Part IV: C Level

� Before the ANSI standard, the main() function was commonly declared
as a void:

void main()

You may see this line in some older programming books or source code
examples. Note that nothing is wrong with it; it doesn’t cause the com­
puter to error, crash, or explode. (Nor has there ever been a documented
case of declaring void main() ever being a problem on any computer.)
Even so, it’s the standard now to declare main() as an int. If you don’t,
zillions of upset university sophomores will rise from the Internet to point
fingers at you. Not that it means anything, but they will point at you.

Give that human a bonus!

The following program, BONUS.C, contains a function that has three — count
’em, three — return statements. This program proves that you can stick a
return plum-dab in the middle of a function and no one will snicker at you —
not even university sophomores:

#include <stdio.h>

float bonus(char x);

int main()
{

char name[20];
char level;
float b;

printf(“Enter employee name:”);
gets(name);
printf(“Enter bonus level (0, 1 or 2):”);
level=getchar();
b=bonus(level);
b*=100;
printf(“The bonus for %s will be $%.2f.\n”,name,b);
return(0);

}

/* Calculate the bonus */

float bonus(char x)
{

if(x==’0’) return(0.33); /* Bottom-level bonus */
if(x==’1’) return(1.50); /* Second-level bonus */
return(3.10); /* Best bonus */

}

Preview from Notesale.co.uk

Page 309 of 411

28 570684 Ch22.qxd 3/31/04 2:59 PM Page 290

290 Part IV: C Level

The long, boring way:

float bonus(char x)
{

int v;

if(x==’0’)
{

v=0.33;
}
else if(x==’1’)
{

v=1.50;
}
else
{

v=3.10;
}
return(v);

}

The long, boring way minus all the darn curly braces:

float bonus(char x)
{

int v;

if(x==’0’)
v=0.33;

else if(x==’1’)
v=1.50;

else
v=3.10;

return(v);
}

And, without the integer variable v:

float bonus(char x)
{

if(x==’0’)
return(0.33);

else if(x==’1’)
return(1.50);

else
return(3.10);

}

Preview from Notesale.co.uk

Page 311 of 411

30 570684 Ch24.qxd 3/31/04 2:59 PM Page 310

310 Part IV: C Level

Able Baker Charlie
1 2 3
Alpha Beta Gamma

Though the \ts in the printf statements look sloppy, the output is definitely
organized. Tabular, dude!

� The “tab stops” are preset to every eighth column in C’s output. Using
a \t inserts a given number of space characters in the output, lining up
the next bit of text at the next tab stop. I mention this because some
people assume that the tab always moves over eight (or however many)
characters. That is not the case.

� The \f and \v characters display special symbols at the Windows com­
mand prompt. Rather than a form feed, \f displays the ankh character.
Rather than a vertical tab, \v displays the male symbol.

� As long as you know a character’s hexadecimal code value, you can
always get it displayed by using the \x escape sequence. Just plug in
the hexadecimal code and there you go!

The Complex printf() Format

The printf() function can also be used to display the contents of variables,
which you have been seeing throughout this book with integer variables and
the %d placeholder, character variables and %c, and so on. To make it happen,
printf() uses this format:

printf(“format_string”[,var[,...]]);

Text still appears in double quotes, but after it’s used to display the values in
variables, it becomes a format string. (It’s still the same text in double quotes.)
The format string is followed by one or more variables, var.

Those var variables are plugged in to appropriate spots in the format_string
according to special percent-sign placeholders. Those percent-sign place­
holders are called conversion characters. For example:

printf(“Yeah, I think %s is a jerk, too.\n”,jerk);

The format string is text that printf() displays on the screen: Yeah, I
think ____ is a jerk, too. The %s is a conversion character — a blank —
that must be filled by a string of text. (I call them placeholders, but the lords
of C claim that they’re conversion characters.)

Preview from Notesale.co.uk

Page 331 of 411

32 570684 Ch26.qxd 3/31/04 2:59 PM Page 329

Chapter 26: The Old Random-Number Function 329
the random numbers more random. To plant the seed, you use the srand()
function.

The srand function is used to help kick off the computer’s random-number
machine in a more random manner. Here’s the format:

void srand((unsigned)seed)

The seed value is an unsigned integer value or variable, ranging from 0 up to
65,000-something. It’s that value the compiler uses to help seed the random-
number-generation equipment located in the bowels of your PC.

You must include the following line at the beginning of your source code to
make the srand() function behave:

#include <stdlib.h>

Because the rand() function already requires this line, you have no need to
specify it twice (unless you’re just seeding the random-number generator out
of some perverse horticultural lust).

� The (unsigned) deal is used to ensure that the number srand() uses is
of the unsigned type (not negative). It’s known as type casting.

� Using the value 1 (one) to seed the random-number generator causes
the compiler to start over, by using the same, uninspirational numbers
you witness when srand() isn’t used. Avoid doing that, if possible.

Randoming up the RANDOM program

Now comes the time for some really random numbers. The following source
code is for RANDOM2.C, a mild modification to the original program. This
time, a new function is added, seedrnd(), which lets you reset the random-
number generator and produce more random numbers:

#include <stdio.h>
#include <stdlib.h>

int rnd(void);
void seedrnd(void);

int main()
{

int x;

seedrnd();
puts(“Behold! 100 Random Numbers!”);

Preview from Notesale.co.uk

Page 350 of 411

32 570684 Ch26.qxd 3/31/04 2:59 PM Page 330

330 Part IV: C Level

for(x=0;x<100;x++)
printf(“%d\t”,rnd());

return(0);
}

int rnd(void)
{

int r;

r=rand();
return(r);

}

/* seed the random number */

void seedrnd(void)
{

int seed;
char s[6];

printf(“Enter a random number seed (2 - 65000):”);
seed=(unsigned)atoi(gets(s));
srand(seed);

}

Type this program into your editor. You can start by editing the RANDOM1.C
source code. Add the prototype for seedrnd() up front, and then insert the
call to seedrnd() in the main() function. Finally, tack the seedrnd() func­
tion itself to the end of the source code. Double-check the whole thing before
you save it to make sure that you don’t leave anything out.

Use your editor’s Save As command to save the file to disk as RANDOM2.C.

Compile and run. You see this line:

Enter a random number seed (2-65000):

Type a number, from 0 up to 65,000-something. Press Enter and you see a new
and more random bunch of numbers displayed.

The true test that it worked is to run the program again. This time, type a dif­
ferent number as the seed. The next batch of random numbers is completely
different from the first.

� You have to seed the randomizer only once, as this program does up in
the main() function. Some purists insist on calling the seedrnd() func­
tion (or its equivalent) lots of times. Hey, random is random as random
can be with a computer. No sense in wasting time.

Preview from Notesale.co.uk

Page 351 of 411

32 570684 Ch26.qxd 3/31/04 2:59 PM Page 334

334 Part IV: C Level

Suppose that big is a big number in this statement:

m = blah % 5;

The values of variable m are in the range of 0 through 4, depending on the
remainder of big divided by 5.

The values of variable m for the following statement are either 0 or 1, depend­
ing on whether oddoreven is even or odd, respectively:

m = oddereven % 2;

For example, a die has six sides. Suppose that the computer coughs up the
random value 23,415. To pare it to a multiple of 6, you use this line:

dice1=23415 % 6;

The computer calculates how many times 6 gazinta 23,415. It then places the
remainder in the dice1 variable. (The result is the number 3, which is a more
realistic roll of a die than 23,415.)

� If the second value is larger than the first, as in 5 % 10, the result is
always equal to the second value. Therefore, you want the larger value
to come first in a modulus operation.

� The modulus operator is %, the percent sign. Pronounce it “mod.”

� No math! The modulus is used to help you pare your random numbers.
That’s all! You can dwell on the mathematical aspects of the % in other C
language books.

� Gazinta means “goes into.” I point it out here because my managing
editor loathes it when I use nondictionary words.

� If you want to pare a large random number as a roll of the dice, you need
this equation:

dice1=(random_value % 6)+1;

The random_value the computer produces must be pared via % 6 (mod 6).
It produces a number in the range of 0 to 5 (0 to 5 as a remainder — you
can’t have a remainder of 6 when you divide by 6.) After the % calculation,
you add 1 to the number and get a value in the range of 1 to 6, which are
the true numbers on any given side of a die.

� In the My Dear Aunt Sally theme of things, a modulus operation comes
just after division and before addition. See the nearby Technical Stuff
sidebar, “Introducing My Dear Mother’s Aunt Sally (Ugh!).”

� “Ah, yes, Dr. Modulus. I’m familiar with your work in astrogenetics. Is it
true that you got kicked out of the academy for engineering a third
gender in mice?” “You read too much, lad.”

Preview from Notesale.co.uk

Page 355 of 411

32 570684 Ch26.qxd 3/31/04 2:59 PM Page 336

336 Part IV: C Level

return(0);
}

int rnd(int range)
{

int r;

r=rand()%range;
return(r);

}

void seedrnd(void)
{

srand((unsigned)time(NULL));
}

Create the source code for RANDOM4.C. Start with your RANDOM3.C pro­
gram, and make modifications per the source code just shown. Save the file
to disk by using the name RANDOM4.C.

Compile and run the program. Here’s a sample of the output you may see:

4 1 3 0 6 6 1 0 8 9
2 9 5 9 8 7 6 8 0 9
5 6 2 0 5 8 5 5 9 0
9 9 2 6 1 2 0 2 0 7
8 4 4 7 1 6 0 0 5 1
3 7 1 2 1 2 5 0 8 5
9 2 0 7 9 8 4 5 6 0
8 8 7 6 0 8 3 9 3 4
0 4 0 5 5 6 3 0 4 3
7 6 1 2 2 7 6 7 4 8

Everything is in the range of 0 through 9, which is what the rnd(10) call does
in Line 14.

� The rnd() and seedrnd() functions become handy as you write your
own C programs — specifically, games. Feel free to copy and paste these
functions to other programs you may write. Remember that both require
the #include <stdlib> directive, with seedrnd() also requiring
#include <time.h>.

� To generate a roll of the dice, you stick the rnd() function in your pro­
gram and use this statement:

dice=rnd(6)+1; /* Roll dem bones! */

� Using the ever-collapsing C language function ability, you can rewrite the
rnd() function to only one statement:

return(rand()%range);

� You’re now only moments from writing your own Monopoly game. . . .

Preview from Notesale.co.uk

Page 357 of 411

34 570684 Ch27.qxd 3/31/04 2:58 PM Page 345

Chapter 27: Ten More Things You Need to Know about the C Language 345

Interacting with the Command Line

In Chapter 22, you may have read briefly about how the main() function
returns a value to the operating system when the program quits. That’s one
way that a program can communicate with the operating system. The other
way is to read in options directly from the command line. For example:

grep pirntf *.c

This shell command searches for misspellings in your C language source
code. The command has two command-line arguments: pirntf and *.c.
These two strings of text are passed to the main() function as arguments as
well, which the program can then evaluate and act on, just as arguments
passed to any function.

The problem with introducing such a thing in this book is that you need
to understand more about arrays and pointers to be able to deal with the
information passed to the main() function. That too will have to wait for
another day.

Disk Access

One of the reasons you have a computer is to store information and work on it
later. The C language is equipped with a wide variety of functions to read and
write information from and to the disk drives. You can save data to disk using
C just as you can with any program that has a File➪Save command — though
in C, it is you who writes the File➪Save command.

Interacting with the Operating System

The C language also lets you perform operating system functions. You can
change directories, make new directories, delete files, rename files, and do
a host of other handy tasks.

You can also have your programs run other programs — sometimes two at
once! Or, your program can run operating system commands and examine
the results.

Finally, you can have your program interact with the environment and exam­
ine the state of your computer. You can even run services or prowl out on the
network. Just about anything the computer can do, you can add into your
program and do it yourself.

Preview from Notesale.co.uk

Page 366 of 411

35 570684 Ch28.qxd 3/31/04 2:58 PM Page 347

Chapter 28

Ten Tips for the Budding

Programmer

In This Chapter
� Using the command history

� Keeping your editor open in another window

� Enjoying a color-coded editor

� Knowing your editor’s line number commands

� Keeping a command-prompt window open

� Understanding a few commands

� Naming your variables

� Solving incrementing and decrementing riddles

� Breaking out of a loop

Here are some of my top-notch suggestions for programmers just start­
ing out. Man, I wish I had had this list back in the steam-powered com­

puter days, when I first started learning how to program.

Use the Command-Line History

Going back and forth between your editor and compiler at the command
prompt gets tedious. Fortunately, most of the command-line shells out there
(in both Unix and Windows) have a command-repeat button. Use it!

For example, if you press the up-arrow key, you can recall the preceding com­
mand line. Pressing the up-arrow key again recalls the command before that.
If you find that you’re reediting a lot, use the up-arrow key to recall the com­
mand to start your editor, and ditto for the commands to recompile.

Preview from Notesale.co.uk

Page 368 of 411

35 570684 Ch28.qxd 3/31/04 2:58 PM Page 349

Chapter 28: Ten Tips for the Budding Programmer 349
uses different colors to present it to you on the screen. This feature is so
useful that if you ever go back to a monochrome editor, you notice that it
slows you down!

� To activate the colors in Vim, type a colon, :, and then syntax enable,
and press Enter.

� When you’re running Vim in a Windows window, choose Syntax➪
Automatic so that C language keywords are highlighted.

� In Unix, to keep syntax enable activated, edit or create a file named
.vimrc in your home directory. Into that file, add or include the follow­
ing command:

:syntax enable

Then save the .vimrc file back to disk.

� Another bonus to highlighted text is that you can easily spot missing
quotes; text between quotes is color-coded, so if a quote is missing, the
source code looks like blech.

� Turn on auto-indenting if your editor has such a feature. Vim turns on
auto-indenting when you use the syntax-enable command, or choose
Syntax➪Automatic from the menu.

Know the Line-Number Commands
in Your Editor

The C language compiler reports errors in your source code and lists the lines
on which the errors occur. If your text editor displays line numbers, you can
easily locate the specific line containing the error and then fix the error.

� In Windows Notepad, you can display the line and column number on
the status bar. To do so, first ensure that Word Wrap is off (choose
Format➪Word Wrap if necessary), and then choose View➪Status Bar.
(Note that the Status Bar command may not be available in earlier ver­
sions of Notepad.)

� Vim displays the cursor’s position on the bottom of the window, toward
the right side. (The line number is followed by a comma and the column
number, shown as 1,1 in Figure A-1 in Appendix A.)

� In Vim, the command to go to a specific line is G. For example, if the
compiler reports an error in Line 64, type 64G and VIM instantly jumps
to Line 64. Think “Line number, Goto” to remember this trick.

Preview from Notesale.co.uk

Page 370 of 411

35 570684 Ch28.qxd 3/31/04 2:58 PM Page 352

352 Part V: The Part of Tens

Breaking Out of a Loop

All your loops need an exit point. Whether that point is defined in the loop’s
controlling statement or set inside the loop by using a break command, be
sure that it’s there!

I recall many a time sitting at the computer and waiting for the program to
“wake up,” only to realize that it was stuck in a loop I had programmed with
no escape clause. This is especially easy to do when you work on larger pro­
grams with “tall” loops; after the source code for the loop extends past the
height of your text editor, it’s easy to lose track of things.

Preview from Notesale.co.uk

Page 373 of 411

36 570684 Ch29.qxd 3/31/04 2:58 PM Page 354

354 Part V: The Part of Tens

Work on One Thing at a Time

Address your bugs one at a time. Even if you’re aware that the program has
several things wrong with it, fix them methodically.

For example: You notice that the title is too far to the right, random characters
are at the bottom of the screen, and the scrolling technique doesn’t move the
top row. Avoid the temptation to address all three issues in the same editing
job. Instead, fix one problem. Compile and run to see how that works. Then
fix the next problem.

The problem you run into when you try to fix too much at once is that you
may introduce new errors. Catching those is easier if you remember that you
were working on, for example, only Lines 173 and 174 of your source code.

Break Up Your Code

As your source code gets larger, consider breaking off portions into separate
modules. I know that this topic isn’t covered in this book — and it probably
isn’t a problem you will encounter soon — but separate modules can really
make tracking bugs easy.

Even if you don’t use modules, consider using comments to help visually
break up your code into separate sections. Even consider announcing the
purpose of each section, such as

/***
Verification function

This function takes the filename passed to it
and confirms that it’s a valid filename and
that a file with that name doesn’t already
exist.

Returns TRUE/FALSE as defined in the header.
***/

I also put a break between functions, just to keep them visually separated:

/**/

Preview from Notesale.co.uk

Page 375 of 411

36 570684 Ch29.qxd 3/31/04 2:58 PM Page 356

356 Part V: The Part of Tens

Set Breakpoints

You know that the bug is in the windshield() function, but you don’t know
where. Does the bug lurk at the beginning of your code? In the initialization
routines? Just before the big math functions? Near the end? Where? Where?
Where?

One way to find out is to put breakpoints into your program. At a certain
spot, stick in a return() or exit() function, which immediately stops the
program. That way, you can narrow down the pesky code. If the program
stops per the breakpoint, the fault lies beyond that point in the program. If
the program doesn’t stop with the breakpoint, the fault lies before it.

Monitor Your Variables

Sometimes, a program runs amok because the values that you suspected
were in your variables just aren’t there. To confirm that the variables aren’t
carrying something outrageous, occasionally toss in a printf() statement to
display their values to the screen. Never mind if this technique screws up the
display; the purpose is debugging.

For example, I had a program with a nasty endless loop in it. I couldn’t figure
out for the life of me why it repeated and repeated. Talking through the source
code did nothing. But after I stuck in a printf() statement that displayed
the looping variable’s value, I noticed that it merrily skipped over the end-of-
loop value and kept incrementing itself to infinity and beyond. I added a simple
if statement to fix the problem, and the program ran just fine afterward.

Document Your Work

At university, they’re on you like gum on a theater floor about comments.
Comment this! Comment that! I remember seeing classmates turn in projects
that were three pages of greenbar paper in length, and half of that consisted
of the dumb comments at the “top” of the program. Such nonsense impresses
no one.

True, document your work. But documentation merely consists of notes to a
future version of yourself. It’s a reminder to say “This is what I was thinking”
or “Here is where my train of thought is going.”

You don’t have to document every little stupid part of the program. This
comment is useless:

Preview from Notesale.co.uk

Page 377 of 411

37 570684 AppA.qxd 3/31/04 2:58 PM Page 360

360 C For Dummies, 2nd Edition

The C language compiler

Thanks to the C language’s popularity, many compilers are available for you
to use with this book. I do, however, recommend the following:

Windows: If you’re using Windows, I recommend that you get a GCC-compatible
C compiler. A list of compilers is provided on this book’s Web page, at www.
c-for-dummies.com.

For this book, I used the MinGW compiler, which comes with the Dev-C++
IDE (Integrated Development Environment). It’s free and available from
www.bloodshed.net.

Whichever compiler you use, note its location on your PC’s hard drive. You
have to use this location to create a batch file or modify your system’s path
so that you can access the compiler from any folder in your disk system.
More on that later.

� Other compilers are out there, including the best-selling Microsoft Visual
C++ (MSVC). If you have MSVC, fine; you should be okay with running
the programs in this book. Note, however, that I’m not familiar with the
current version of MSVC and don’t refer to it in this book, nor can I
answer questions about it via e-mail. If you don’t have MSVC, you have
no reason to buy it.

� Plenty of free, shareware, and open-source C compilers are available on
the Internet.

� If you have other books on the C language, check in the back of the book
for a free compiler.

� Any GCC- or GNU-compatible C compiler works best with this book.

Linux, FreeBSD, or Mac OS X: If you’re using any of these variations of Unix,
you should already have the GCC compiler installed and ready to use. To
confirm, open a terminal window and type the following line at the command
prompt:

gcc -v

The version number of GCC and other information is displayed on the screen.
If you get a Command not found error, GCC isn’t installed; you have to update
your operating system to include GCC as well as all the C programming librar­
ies and other materials. (You can generally do that through your operating
system’s setup or configuration program; it doesn’t typically require that the
entire operating system be reinstalled.)

Preview from Notesale.co.uk

Page 381 of 411

37 570684 AppA.qxd 3/31/04 2:58 PM Page 363

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 363

Making Programs

To build programs, you need two tools: an editor and a compiler. You use the
editor to create or edit the source code — which is merely a text file. Then,
you use the compiler to magically transform that text into the language the
computer understands, stuffing it all into a program file.

This book illustrates programming techniques by using small programs tar­
geted to showcase specific examples of the C language. Because of that, you
can use the command prompt for compiling programs more easily than the
IDE that may have come with your compiler. I recommend that you become
familiar with the command prompt.

The following steps don’t apply to programming on the Macintosh before OS X.
If you’re using an older Mac, refer to your compiler’s documentation to find out
how to edit and compile programs. Remember to use the learn folder you cre­
ated to save all your stuff.

Finding your learn directory or folder

The first step to programming is to navigate your way to the learn directory
(or folder) by using the command prompt. Follow these steps:

1. Start a terminal or command-prompt window.

In Windows, run the CMD.EXE program, also known as the MS-DOS
prompt.

This program is on the Accessories or, often, main Programs menu, off
the Start button. Or, you can type CMD in the Run dialog box to start the
command-prompt window.

In Linux, OS X, FreeBSD, and other Unix-like operating systems, open a
terminal window if you’re using a graphical shell. Otherwise, any termi­
nal works.

2. Change to your home directory.

In Windows XP, type this command:

cd “my documents”

In other versions of Windows, type this command:

cd “\My Documents”

Preview from Notesale.co.uk

Page 384 of 411

37 570684 AppA.qxd 3/31/04 2:58 PM Page 365

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 365
My favorite editor for working with C is vim, a variant on the infamous vi editor
in Unix (see Figure A-1). Unlike vi, vim uses colors to code text. When you edit
your source code in vim, you see keywords, values, and other parts of the C
language highlighted in color.

Figure A-1:
The vim

editor.

� Versions of vim are available for Linux, FreeBSD, Mac OS X, Windows, and
even older Macs. You can pick it up at www.vim.org.

� Windows XP may not like the EDIT command. As an alternative, you can
use Notepad to edit your source code. For example, to edit the GOODBYE.C
text file, you type this command at the prompt:

NOTEPAD GOODBYE.C

Notepad opens in another window, where you can edit the text file. Simply
close the window when you’re done.

Compiling and linking

After the source-code text file is created, your next step is to compile and
link. This step transforms the meek and mild text file into a robust and use­
able program on your computer.

Read the proper subsection for compiling and linking specifics for your oper­
ating system. For Macs before OS X, see the reference material that came
with your compiler.

Making GCC work in Windows
Heck, for all the advances made with Windows, you may as well be using DOS
when it comes to compiling programs at the command prompt. Anyway. . . .

Preview from Notesale.co.uk

Page 386 of 411

37 570684 AppA.qxd 3/31/04 2:58 PM Page 369

Appendix A: The Stuff You Need to Know before You Read All the Other Stuff 369
1. Ensure that you’re in the learn folder.

Heed the steps in the section “Finding your learn directory or folder,”
earlier in this appendix.

2. Use your text editor to create your source code file.

Use vi, ee, or whatever your favorite text editor is to create and save
the source code file. For an example, you can refer to the listing of the
GOODBYE.C source in Chapter 1; type that text into your editor.

3. Compile and link the source code.

Compiling and linking are both handled by the GCC command. As an exam­
ple, here’s what you need to type to compile and link the GOODBYE.C
source code created in Step 1:

gcc goodbye.c -o goodbye

The code has four items:

• gcc, the command to compile and link the source code

• goodbye.c, the name of the source code file

• -o, the output switch

• goodbye, the name of the final program

If you leave off the -o switch and its option, GCC creates the program
file named a.out. I don’t recommend this. Instead, remember the -o
option and specify a name for the output program. The name can be the
same as the source code file, but without the .c extension.

4. Run the program.

Alas, your operating system doesn’t run your program if you type its
name at the prompt. That’s because Unix runs only programs found on
the path, and I don’t recommend putting your learn directory on the
path. (If you create your own programs that you want to run, copy them
to a bin directory beneath your home directory, and put that directory
on the path.)

To get the operating system to notice your program, you have to be spe­
cific about where the program lives (in the current folder, for example).
You do that by prefixing ./ to the program’s name. To run the goodbye
program, type the following at the prompt:

./goodbye

And the program runs.

Those steps are the basic ones you take (all in the learn folder) to create the
program examples in this book. As I have said, it eventually becomes second
nature to you.

Preview from Notesale.co.uk

Page 390 of 411

38 570684 AppB.qxd 3/31/04 2:58 PM Page 372

372 C For Dummies, 2nd Edition

Code Character Hex Binary Notes

20 ^T 14 0001 0100

21 ^U 15 0001 0101

22 ^V 16 0001 0110

23 ^W 17 0001 0111

24 ^X 18 0001 1000

25 ^Y 19 0001 1001

26 ^Z 1A 0001 1010 End of file (DOS)

27 ^[1B 0001 1011 Escape

28 ^\ 1C 0001 1100

29 ^] 1D 0001 1101

30 ^^ 1E 0001 1110

31 ^_ 1F 0001 1111

32 20 0010 0000 Space

33 ! 21 0010 0001

34 “ 22 0010 0010

35 # 23 0010 0011

36 $ 24 0010 0100

37 % 25 0010 0101

38 & 26 0010 0110

39 ‘ 27 0010 0111

40 (28 0010 1000

41) 29 0010 1001

42 * 2A 0010 1010

43 + 2B 0010 1011

44 , 2C 0010 1100

45 - 2D 0010 1101

46 . 2E 0010 1110

Preview from Notesale.co.uk

Page 393 of 411

38 570684 AppB.qxd 3/31/04 2:58 PM Page 376

376 C For Dummies, 2nd Edition

Preview from Notesale.co.uk

Page 397 of 411

39 570684 Index.qxd 3/31/04 2:58 PM Page 389

Index 389
structures, 341–342

styles of comments, 58–60

subtraction symbol (-), 87

switch command, 243, 247

switch keyword, 243–244

switch-case loops

break command, 244–245

case keyword, 244

case statements, 244

default statements, 244

introduction, 239

LOBBY1.C, 241–243

parentheses, 247

selection statements, 241

while loops and, 248–250

symbolic constants, 103

symbols, mathematical, 86–88

syntax, 24

syntax errors, 23

• T •

\t, printf() escape sequence, 307

talking through program, 355

tan() function, 319

TAXES.C, 155–157

text

display, printf(), 306

formatting, 47–49

justified, 47–49

lowercase, 13

printing, 42–44

puts() function, 67, 71

reading from keyboard, 125–126

reading to keyboard, 127–128

strings, 32

text editors

context-colored, 348–349

line-number commands, 349

running, 364–365

source code, 12

windows, 348

text files

size, 262

source code, 12

text strings, 31

time() function, 332

tweaking source code, 20

twiddling source code, 20

type command, 351

TYPER1.C, 197–198

TYPER2.C, 220–222

typing, source code, 14

• U •
%u conversion character, printf()

function, 311

underline, variable naming and, 96

Unix, compiler, 361

unsigned char keyword, numeric data

types, 109

unsigned character data types, 109

unsigned int keyword, numeric data

types, 109

unsigned integer data types, 109

unsigned long keyword, numeric data

types, 109

unsigned numeric data types, 111–113

unsigned short keyword, numeric data

types, 109

• V •
\v, printf() escape sequence, 307

values

absolute, 320

arrays, 340

constants, 91

declaring as variables, 276

floating-point, 99

functions, returning, 282–289

functions, sending to, 276–277

if keyword, 165

incrementation, 138

keyboard entry, 81

mathematical operators, 134

numbers and, 82

numeric variables and, 80–81, 97

parameters, 279

passing multiple to functions, 280–282

passing to functions, 279

predefining in variables, 124

return keyword, 285–287

returning from functions, 255

returning, main() function and, 287–288

variables, 96–98

variables, char, 124

variables

++ operator, 321

arrays, 339–340

BOMBER.C, 265–269

char keyword and, 40, 123–124

character, comparing, 166

comments, 95

constants and, 101

contents, 76

Preview from Notesale.co.uk

Page 410 of 411

