- The relative masses of protons, neutrons and electrons are:
- Isotopes are atoms of the same element with the same number of protons but different number of neutrons.

Name of particle	Mass		
Proton	1		
Neutron	1		
Electron	Very small		

Relative atomic mass (Ar)

- It is a way of saying how heavy different atoms are in comparison to the isotope Carbon 12.
- The Ar of carbon 12 is exactly 12.
- When an element has more than 1 stable isotope, the relative atomic mass is an average value of the different isotopes.

Relative formula mass (Mr)

Relative formula mass calculations

Compound	Formula	Calculation	Mr		A_r of H = 1
Water	H ₂ O	1 + 1 + 16 =	18		A_r of $O = 16$
Sodium hydroxide	NaOH	23 + 16 + 1 =	40		A _r of Na = 23
Magnesium hydroxide	Mg(OH) ₂	24 + 16 + 16 + 1 + 1 = (remember that there are two of each atom inside the brackets)	58	.0.	A of Mg = 24
Moles • The kno • For • The is 2 • You this • E.g • Mo	e relative for own was one example, it ths 56g. e Mr of nitro 8g. i can conver triangle: how many t les = Mass /	mula mass of a substance in grams, is a more of that substance. CAr of Iron is 56 some mole of iron agen gas (N2) is 28 (2*14), so one mole of between moles and grams by using moles are there in 42g of carbon? Mr = 42/12 = 3.5 moles	amo	ma ount	relative formula g mol ⁻¹

Analysing substances

- Elements and compounds can be detected and identified using instrumental methods.
- Benefits of instrumental methods are that it's rapid, sensitive and useful when detecting small amounts.
- Chemical analysis can be used to identify additives in food e.g paper chromatography

We can use this to work out how much water is made:

A _r of hydrogen = 1	Mass of 1 mole of $H_2 = 2x1 = 2g$	
A _r of oxygen = 16	Mass of 1 mole of $O_2 = 2 \times 16 = 32g$	
M_r of water = (16+2) = 18	Mass of 1 mole of water = 18g	

Putting in the numbers from our balanced equation:

2 moles of hydrogen = 2 x 2g = 4g
1 mole of oxygen = 1 x 32g = 32g
2 moles of water = 2 x 18g = 36g

Even though no atoms are lost or gained in a chemical reaction, it's not always possible to contain the calculated amount of product because:

- The reaction may not go to completion because it's reversible
- The reactants may react different to expected
- Some product may be lost when separated from the reaction mixture

Chemical Calculations

- Tell us how much of two chemicals to react together to get a final produce Usually given one measurement $P_3(s) \rightarrow CaO(s) + CO_2(g)$ have 50g of CaCO₃, how much CaO duri we make? $f CaCO_3 = 40 + 24 + 16 + 16 = 100$
- •

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

If we have 50g of CaCO₃, how muc

Mr of CaCO₃ Mr of v

100g of CaCO₃ would yield 56g of CaO 50g of CaCO₃ would yield 28g of CaO So we can make 28g of CaO 22g of CO_2 would also be produced (50 - 28 = 22)

Percentage yield

Percentage yield = Amount of product produced x 100 Maximum amount of product possible

Reversible reactions

In some reactions, the products can react to produce the original reactants. These are called reversible reactions, and are presented like:

 $A + B \rightleftharpoons C + D$

For example:

ammonium chloride === ammonia + hydrogen chloride