So they only have 1 kcal/mol due to the equilibrium between the folded and unfolded States

Do electrostatic interactions each contribute 5kcal/mol to the free energy of folding?

- No-because the charges are fully solvated (neutralised) by water in the unfolded • state
- The entropic contribution of 1kcal/mol remains

Entropy of folding

- Entropy can be related to the number of states or degrees of freedom of the system
- S = k ln W --> Boltzmann's equation
- k = Boltzmann's constant

 W = number of states = for a molecule W is the number of different conformations For one molecule:

- $S=N_A k \ln W$ ($N_A = Avogadro's number$)
- Therefore S = R In W (R = gas constant = 2 cal K^{-1} mol⁻¹; R = N_Ak)

For a mole of protein:

- $S = S_{native} - S_{unfolded}$
 - = R ln W_n R ln W_u
 - $= R \ln (W_n / W_u)$
- W_u = 10¹⁰⁰ if there are 100 residues and if for every residue per Cire 10 conformations
 Therefore S_{folding} = R ln (1/10¹⁰⁰) = -0 40 logor¹ · 11
- Therefore at 300K
- G = free energy of folding
- The enthalpy of each H bid and the other non-covalent forces favour folding BUT entropy of the polypeptide chain greatly favours unfolding over the folded (ordered) state

ery unfavourable

- Therefore the free energy of folding a protein is typically only around 10 kcal/mol
- Therefore proteins are very easily destabilised by mutation or by a change in the • environment

The hydrophobic effect also drives protein-protein interactions

- Hydrophobic effect for a buried surface area of 100⁻² (1nm²)
- i.e. 0.024 kcal/mol/² of buried surface area
- The principle driving force for protein folding (or protein-protein interactions) in • aqueous solution is the increased entropy of the water molecules that results from burying hydrophobic amino-acid side-chains