

Preview from Notesale.co.uk

Page 2 of 728

2 Let Us C

efore we can begin to write serious programs in C, it would
be interesting to find out what really is C, how it came into
existence and how does it compare with other computer

languages. In this chapter we would briefly outline these issues.

B
Four important aspects of any language are the way it stores data,
the way it operates upon this data, how it accomplishes input and
output and how it lets you control the sequence of execution of
instructions in a program. We would discuss the first three of these
building blocks in this chapter.

What is C
C is a programming language developed at AT & T’s Bell
Laboratories of USA in 1972. It was designed and written by a
man named Dennis Ritchie. In the late seventies C began to
replace the more familiar languages of that time like PL/I,
ALGOL, etc. No one pushed C. It wasn’t made the ‘official’ Bell
Labs language. Thus, without any advertisement C’s reputation
spread and its pool of users grew. Ritchie seems to have been
rather surprised that so many programmers preferred C to older
languages like FORTRAN or PL/I, or the newer ones like Pascal
and APL. But, that's what happened.

Possibly why C seems so popular is because it is reliable, simple
and easy to use. Moreover, in an industry where newer languages,
tools and technologies emerge and vanish day in and day out, a
language that has survived for more than 3 decades has to be really
good.

An opinion that is often heard today is – “C has been already
superceded by languages like C++, C# and Java, so why bother to

Preview from Notesale.co.uk

Page 19 of 728

Chapter 1: Getting Started 5

a close analogy between learning English language and learning C
language. The classical method of learning English is to first learn
the alphabets used in the language, then learn to combine these
alphabets to form words, which in turn are combined to form
sentences and sentences are combined to form paragraphs.
Learning C is similar and easier. Instead of straight-away learning
how to write programs, we must first know what alphabets,
numbers and special symbols are used in C, then how using them
constants, variables and keywords are constructed, and finally how
are these combined to form an instruction. A group of instructions
would be combined later on to form a program. This is illustrated
in the Figure 1.1.

 Alphabets Words Sentences Paragraphs

 Alphabets
Digits
Special sy-
mbols

 Constants
Variables
Keywords

Instructions

Program

Steps in learning English language:

Steps in learning C:

Figure 1.1

The C Character Set

A character denotes any alphabet, digit or special symbol used to
represent information. Figure 1.2 shows the valid alphabets,
numbers and special symbols allowed in C.

Preview from Notesale.co.uk

Page 22 of 728

14 Let Us C

(b)

(c)

(d)

(e)

(f)

The statements in a program must appear in the same order in
which we wish them to be executed; unless of course the logic
of the problem demands a deliberate ‘jump’ or transfer of
control to a statement, which is out of sequence.

Blank spaces may be inserted between two words to improve
the readability of the statement. However, no blank spaces are
allowed within a variable, constant or keyword.

All statements are entered in small case letters.

C has no specific rules for the position at which a statement is
to be written. That’s why it is often called a free-form
language.

Every C statement must end with a ;. Thus ; acts as a
statement terminator.

Let us now write down our first C program. It would simply
calculate simple interest for a set of values representing principle,
number of years and rate of interest.

/* Calculation of simple interest */
/* Author gekay Date: 25/05/2004 */
main()
{
 int p, n ;
 float r, si ;

 p = 1000 ;
 n = 3 ;
 r = 8.5 ;

 /* formula for simple interest */
 si = p * n * r / 100 ;

 printf ("%f" , si) ;

Preview from Notesale.co.uk

Page 31 of 728

16 Let Us C

− Although a lot of comments are probably not necessary in this
program, it is usually the case that programmers tend to use
too few comments rather than too many. An adequate number
of comments can save hours of misery and suffering when you
later try to figure out what the program does.

− The normal language rules do not apply to text written within

/* .. */. Thus we can type this text in small case, capital or a
combination. This is because the comments are solely given
for the understanding of the programmer or the fellow
programmers and are completely ignored by the compiler.

− Comments cannot be nested. For example,

/* Cal of SI /* Author sam date 01/01/2002 */ */

is invalid.

− A comment can be split over more than one line, as in,

/* This is
 a jazzy
 comment */

Such a comment is often called a multi-line comment.

− main() is a collective name given to a set of statements. This
name has to be main(), it cannot be anything else. All
statements that belong to main() are enclosed within a pair of
braces { } as shown below.

main()
{
 statement 1 ;
 statement 2 ;

Preview from Notesale.co.uk

Page 33 of 728

18 Let Us C

function is printf(). We have used it display on the screen the
value contained in si.

The general form of printf() function is,

printf ("<format string>", <list of variables>) ;

<format string> can contain,

%f for printing real values
%d for printing integer values
%c for printing character values

In addition to format specifiers like %f, %d and %c the
format string may also contain any other characters. These
characters are printed as they are when the printf() is
executed.

Following are some examples of usage of printf() function:

printf ("%f", si) ;
printf ("%d %d %f %f", p, n, r, si) ;
printf ("Simple interest = Rs. %f", si) ;
printf ("Prin = %d \nRate = %f", p, r) ;

The output of the last statement would look like this...

Prin = 1000
Rate = 8.5

What is ‘\n’ doing in this statement? It is called newline and it
takes the cursor to the next line. Therefore, you get the output
split over two lines. ‘\n’ is one of the several Escape
Sequences available in C. These are discussed in detail in
Chapter 11. Right now, all that we can say is ‘\n’ comes in

Preview from Notesale.co.uk

Page 35 of 728

Chapter 1: Getting Started 21

Receiving Input
In the program discussed above we assumed the values of p, n and
r to be 1000, 3 and 8.5. Every time we run the program we would
get the same value for simple interest. If we want to calculate
simple interest for some other set of values then we are required to
make the relevant change in the program, and again compile and
execute it. Thus the program is not general enough to calculate
simple interest for any set of values without being required to
make a change in the program. Moreover, if you distribute the
EXE file of this program to somebody he would not even be able
to make changes in the program. Hence it is a good practice to
create a program that is general enough to work for any set of
values.

To make the program general the program itself should ask the
user to supply the values of p, n and r through the keyboard during
execution. This can be achieved using a function called scanf().
This function is a counter-part of the printf() function. printf()
outputs the values to the screen whereas scanf() receives them
from the keyboard. This is illustrated in the program shown below.

/* Calculation of simple interest */
/* Author gekay Date 25/05/2004 */
main()
{
 int p, n ;
 float r, si ;
 printf ("Enter values of p, n, r") ;
 scanf ("%d %d %f", &p, &n, &r) ;

 si = p * n * r / 100 ;
 printf ("%f" , si) ;
}

Preview from Notesale.co.uk

Page 38 of 728

Chapter 1: Getting Started 25

is not. This is because here we are trying to use a even before
defining it.

(c) The following statements would work

int a, b, c, d ;
a = b = c = 10 ;

However, the following statement would not work

int a = b = c = d = 10 ;

Once again we are trying to use b (to assign to a) before
defining it.

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left
hand side of = and variable names & constants on the right hand
side of =. The variables and constants appearing on the right hand
side of = are connected by arithmetic operators like +, -, *, and /.

Ex.: int ad ;
 float kot, deta, alpha, beta, gamma ;
 ad = 3200 ;
 kot = 0.0056 ;
 deta = alpha * beta / gamma + 3.2 * 2 / 5 ;

Here,

*, /, -, + are the arithmetic operators.
= is the assignment operator.
2, 5 and 3200 are integer constants.
3.2 and 0.0056 are real constants.
ad is an integer variable.
kot, deta, alpha, beta, gamma are real variables.

Preview from Notesale.co.uk

Page 42 of 728

Chapter 1: Getting Started 31

 Arithmetic Instruction Result Arithmetic Instruction Result

 k = 2 / 9 0 a = 2 / 9 0.0
 k = 2.0 / 9 0 a = 2.0 / 9 0.2222
 k = 2 / 9.0 0 a = 2 / 9.0 0.2222
 k = 2.0 / 9.0 0 a = 2.0 / 9.0 0.2222
 k = 9 / 2 4 a = 9 / 2 4.0
 k = 9.0 / 2 4 a = 9.0 / 2 4.5
 k = 9 / 2.0 4 a = 9 / 2.0 4.5
 k = 9.0 / 2.0 4 a = 9.0 / 2.0 4.5

Figure 1.7

Note that though the following statements give the same result, 0,
the results are obtained differently.

k = 2 / 9 ;
k = 2.0 / 9 ;

In the first statement, since both 2 and 9 are integers, the result is
an integer, i.e. 0. This 0 is then assigned to k. In the second
statement 9 is promoted to 9.0 and then the division is performed.
Division yields 0.222222. However, this cannot be stored in k, k
being an int. Hence it gets demoted to 0 and then stored in k.

Hierarchy of Operations

While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it
get executed. For example, does the expression 2 * x - 3 * y
correspond to (2x)-(3y) or to 2(x-3y)? Similarly, does A / B * C
correspond to A / (B * C) or to (A / B) * C? To answer these
questions satisfactorily one has to understand the ‘hierarchy’ of
operations. The priority or precedence in which the operations in

Preview from Notesale.co.uk

Page 48 of 728

Chapter 1: Getting Started 39

(g) si = principal * rateofinterest * numberofyears / 100 ;

(h) area = 3.14 * r ** 2 ;

(i) volume = 3.14 * r ^ 2 * h ;

(j) k = ((a * b) + c) (2.5 * a + b) ;

(k) a = b = 3 = 4 ;

(l) count = count + 1 ;

(m) date = '2 Mar 04' ;

[C] Evaluate the following expressions and show their hierarchy.

(a) g = big / 2 + big * 4 / big - big + abc / 3 ;
(abc = 2.5, big = 2, assume g to be a float)

(b) on = ink * act / 2 + 3 / 2 * act + 2 + tig ;
(ink = 4, act = 1, tig = 3.2, assume on to be an int)

(c) s = qui * add / 4 - 6 / 2 + 2 / 3 * 6 / god ;
(qui = 4, add = 2, god = 2, assume s to be an int)

(d) s = 1 / 3 * a / 4 - 6 / 2 + 2 / 3 * 6 / g ;
(a = 4, g = 3, assume s to be an int)

[D] Fill the following table for the expressions given below and
then evaluate the result. A sample entry has been filled in the
table for expression (a).

Preview from Notesale.co.uk

Page 56 of 728

Chapter 1: Getting Started 41

int i = 2, j = 3, k, l ;
float a, b ;
k = i / j * j ;
l = j / i * i ;
a = i / j * j ;
b = j / i * i ;
printf("%d %d %f %f", k, l, a, b) ;

}

(b) main()
{

int a, b ;
a = -3 - - 3 ;
b = -3 - - (- 3) ;
printf ("a = %d b = %d", a, b) ;

}

(c) main()
{

float a = 5, b = 2 ;
int c ;
c = a % b ;
printf ("%d", c) ;

}

(d) main()
{

printf ("nn \n\n nn\n") ;
printf ("nn /n/n nn/n") ;

}

(e) main()
{

int a, b ;
printf ("Enter values of a and b") ;
scanf (" %d %d ", &a, &b) ;
printf ("a = %d b = %d", a, b) ;

}

Preview from Notesale.co.uk

Page 58 of 728

Chapter 1: Getting Started 47

(b) The distance between two cities (in km.) is input through the
keyboard. Write a program to convert and print this distance
in meters, feet, inches and centimeters.

(c) If the marks obtained by a student in five different subjects

are input through the keyboard, find out the aggregate marks
and percentage marks obtained by the student. Assume that
the maximum marks that can be obtained by a student in each
subject is 100.

(d) Temperature of a city in Fahrenheit degrees is input through

the keyboard. Write a program to convert this temperature
into Centigrade degrees.

(e) The length & breadth of a rectangle and radius of a circle are

input through the keyboard. Write a program to calculate the
area & perimeter of the rectangle, and the area &
circumference of the circle.

(f) Two numbers are input through the keyboard into two

locations C and D. Write a program to interchange the
contents of C and D.

(g) If a five-digit number is input through the keyboard, write a

program to calculate the sum of its digits.

(Hint: Use the modulus operator ‘%’)

(h) If a five-digit number is input through the keyboard, write a
program to reverse the number.

(i) If a four-digit number is input through the keyboard, write a

program to obtain the sum of the first and last digit of this
number.

(j) In a town, the percentage of men is 52. The percentage of

total literacy is 48. If total percentage of literate men is 35 of
the total population, write a program to find the total number

Preview from Notesale.co.uk

Page 64 of 728

Chapter 2: The Decision Control Structure 65

 if (per >= 60)
 printf ("First division ") ;
 else
 {
 if (per >= 50)
 printf ("Second division") ;
 else
 {
 if (per >= 40)
 printf ("Third division") ;
 else
 printf ("Fail") ;
 }
 }
}

This is a straight forward program. Observe that the program uses
nested if-elses. This leads to three disadvantages:

(a)

(b)

(c)

As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole
program creeps to the right.
Care needs to be exercised to match the corresponding ifs and
elses.
Care needs to be exercised to match the corresponding pair of
braces.

All these three problems can be eliminated by usage of ‘Logical
operators’. The following program illustrates this.

/* Method – II */
main()
{
 int m1, m2, m3, m4, m5, per ;

 printf ("Enter marks in five subjects ") ;
 scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
 per = (m1 + m2 + m3 + m4 + m5) / 5 ;

Preview from Notesale.co.uk

Page 82 of 728

68 Let Us C

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

− If the driver is married.
− If the driver is unmarried, male & above 30 years of age.
− If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to determine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not be ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

/* Insurance of driver - without using logical operators */
main()
{
 char sex, ms ;
 int age ;

 printf ("Enter age, sex, marital status ") ;
 scanf ("%d %c %c", &age, &sex, &ms) ;

 if (ms == 'M')
 printf ("Driver is insured") ;
 else
 {
 if (sex == 'M')
 {

Preview from Notesale.co.uk

Page 85 of 728

Chapter 2: The Decision Control Structure 75

 if (i == 5) ;
 printf ("You entered 5") ;
}

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if (i == 5)
 ;
printf ("You entered 5") ;

Here, if the condition evaluates to true the ; (null statement, which
does nothing on execution) gets executed, following which the
printf() gets executed. If the condition fails then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
evaluates to true or false the printf() is bound to get executed.
Remember that the compiler would not point out this as an error,
since as far as the syntax is concerned nothing has gone wrong, but
the logic has certainly gone awry. Moral is, beware of such
pitfalls.

The following figure summarizes the working of all the three
logical operators.

 Operands Results

 x y !x !y x && y x || y
 0 0 1 1 0 0
 0 non-zero 1 0 0 0
 non-zero 0 0 1 0 1
 non-zero non-zero 0 0 1 1

Figure 2.8

Preview from Notesale.co.uk

Page 92 of 728

Chapter 2: The Decision Control Structure 77

(a)

(b)

(c)

(a)

It’s not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex.: int i ;
 scanf ("%d", &i) ;
 (i == 1 ? printf ("Amit") : printf ("All and sundry")) ;

Ex.: char a = 'z' ;
 printf ("%c" , (a >= 'a' ? a : '!')) ;

The conditional operators can be nested as shown below.

int big, a, b, c ;
big = (a > b ? (a > c ? 3: 4) : (b > c ? 6: 8)) ;

Check out the following conditional expression:

a > b ? g = a : g = b ;

This will give you an error ‘Lvalue Required’. The error can
be overcome by enclosing the statement in the : part within a
pair of parenthesis. This is shown below:

a > b ? g = a : (g = b) ;

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
operators aren’t as frequently used as the if-else.

Summary
There are three ways for taking decisions in a program. First
way is to use the if-else statement, second way is to use the

Preview from Notesale.co.uk

Page 94 of 728

Chapter 2: The Decision Control Structure 93

}

[H] Point out the errors, if any, in the following programs:

(a) main()

{
 int tag = 0, code = 1 ;
 if (tag == 0)
 (code > 1 ? printf ("\nHello") ? printf ("\nHi")) ;
 else
 printf ("\nHello Hi !!") ;
}

(b) main()
{
 int ji = 65 ;
 printf ("\nji >= 65 ? %d : %c", ji) ;
}

(c) main()
{
 int i = 10, j ;
 i >= 5 ? (j = 10) : (j = 15) ;
 printf ("\n%d %d", i, j) ;
}

(d) main()
{
 int a = 5 , b = 6 ;
 (a == b ? printf("%d",a)) ;
}

(e) main()
{
 int n = 9 ;
 (n == 9 ? printf("You are correct") ; : printf("You are wrong") ;) ;
}

Preview from Notesale.co.uk

Page 110 of 728

94 Let Us C

(f) main()
{
 int kk = 65 ,ll ;
 ll = (kk == 65 : printf ("\n kk is equal to 65") : printf ("\n kk is not
equal to 65")) ;
 printf("%d", ll) ;
}

(g) main()
{
 int x = 10, y = 20 ;
 x == 20 && y != 10 ? printf("True") : printf("False") ;
}

[I] Rewrite the following programs using conditional operators.

(a) main()

{
 int x, min, max ;
 scanf ("\n%d %d", &max, &x) ;
 if (x > max)
 max = x ;
 else
 min = x ;
}

(b) main()
{
 int code ;
 scanf ("%d", &code) ;
 if (code > 1)
 printf ("\nJerusalem") ;
 else
 if (code < 1)
 printf ("\nEddie") ;
 else
 printf ("\nC Brain") ;
}

Preview from Notesale.co.uk

Page 111 of 728

114 Let Us C

Here, both, the comparison and the incrementation is done
through the same statement, ++i <= 10. Since ++ precedes i
firstly incrementation is done, followed by comparison. Note
that it is necessary to initialize i to 0.

Nesting of Loops

The way if statements can be nested, similarly whiles and fors can
also be nested. To understand how nested loops work, look at the
program given below:

/* Demonstration of nested loops */
main()
{
 int r, c, sum ;
 for (r = 1 ; r <= 3 ; r++) /* outer loop */
 {
 for (c = 1 ; c <= 2 ; c++) /* inner loop */
 {
 sum = r + c ;
 printf ("r = %d c = %d sum = %d\n", r, c, sum) ;
 }
 }
}

When you run this program you will get the following output:

r = 1 c = 1 sum = 2
r = 1 c = 2 sum = 3
r = 2 c = 1 sum = 3
r = 2 c = 2 sum = 4
r = 3 c = 1 sum = 4
r = 3 c = 2 sum = 5

Here, for each value of r the inner loop is cycled through twice,
with the variable c taking values from 1 to 2. The inner loop

Preview from Notesale.co.uk

Page 131 of 728

Chapter 3: The Loop Control Structure 117

Though it is simpler to program such a requirement using a do-
while loop, the same functionality if required, can also be
accomplished using for and while loops as shown below:

/* odd loop using a for loop */
main()
{
 char another = 'y' ;
 int num ;
 for (; another == 'y' ;)
 {
 printf ("Enter a number ") ;
 scanf ("%d", &num) ;
 printf ("square of %d is %d", num, num * num) ;
 printf ("\nWant to enter another number y/n ") ;
 scanf (" %c", &another) ;
 }
}

/* odd loop using a while loop */
main()
{
 char another = 'y' ;
 int num ;

 while (another == 'y')
 {
 printf ("Enter a number ") ;
 scanf ("%d", &num) ;
 printf ("square of %d is %d", num, num * num) ;
 printf ("\nWant to enter another number y/n ") ;
 scanf (" %c", &another) ;
 }
}

Preview from Notesale.co.uk

Page 134 of 728

Chapter 3: The Loop Control Structure 121

Note that when the value of i equals that of j, the continue
statement takes the control to the for loop (inner) bypassing rest of
the statements pending execution in the for loop (inner).

The do-while Loop
The do-while loop looks like this:

do
{
 this ;
 and this ;
 and this ;
 and this ;
} while (this condition is true) ;

There is a minor difference between the working of while and do-
while loops. This difference is the place where the condition is
tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while
tests the condition after having executed the statements within the
loop. Figure 3.5 would clarify the execution of do-while loop still
further.

Preview from Notesale.co.uk

Page 138 of 728

136 Let Us C

n real life we are often faced with situations where we are
required to make a choice between a number of alternatives
rather than only one or two. For example, which school to join

or which hotel to visit or still harder which girl to marry (you
almost always end up making a wrong decision is a different
matter altogether!). Serious C programming is same; the choice we
are asked to make is more complicated than merely selecting
between two alternatives. C provides a special control statement
that allows us to handle such cases effectively; rather than using a
series of if statements. This control instruction is in fact the topic
of this chapter. Towards the end of the chapter we would also
study a keyword called goto, and understand why we should avoid
its usage in C programming.

I

Decisions Using switch
The control statement that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up
the control statement. They most often appear as follows:

switch (integer expression)
{
 case constant 1 :
 do this ;
 case constant 2 :
 do this ;
 case constant 3 :
 do this ;
 default :
 do this ;
}

The integer expression following the keyword switch is any C
expression that will yield an integer value. It could be an integer
constant like 1, 2 or 3, or an expression that evaluates to an

Preview from Notesale.co.uk

Page 153 of 728

144 Let Us C

more so if there are multiple statements within each case of a
switch.

(h)

(i)

(j)

(k)

(a)
(b)

(c)

We can check the value of any expression in a switch. Thus
the following switch statements are legal.

 switch (i + j * k)
 switch (23 + 45 % 4 * k)
 switch (a < 4 && b > 7)

Expressions can also be used in cases provided they are
constant expressions. Thus case 3 + 7 is correct, however,
case a + b is incorrect.

The break statement when used in a switch takes the control
outside the switch. However, use of continue will not take
the control to the beginning of switch as one is likely to
believe.

In principle, a switch may occur within another, but in
practice it is rarely done. Such statements would be called
nested switch statements.

The switch statement is very useful while writing menu
driven programs. This aspect of switch is discussed in the
exercise at the end of this chapter.

switch Versus if-else Ladder
There are some things that you simply cannot do with a switch.
These are:

A float expression cannot be tested using a switch
Cases can never have variable expressions (for example it is
wrong to say case a +3 :)
Multiple cases cannot use same expressions. Thus the
following switch is illegal:

Preview from Notesale.co.uk

Page 161 of 728

Chapter 4: The Case Control Structure 147

}

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To err is human!
Enter the number of goals scored against India 7
About time soccer players learnt C
and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

− If the condition is satisfied the goto statement transfers control

to the label ‘sos’, causing printf() following sos to be
executed.

− The label can be on a separate line or on the same line as the

statement following it, as in,

sos : printf ("To err is human!") ;

− Any number of gotos can take the control to the same label.

− The exit() function is a standard library function which

terminates the execution of the program. It is necessary to use
this function since we don't want the statement

printf ("To err is human!")

to get executed after execution of the else block.

− The only programming situation in favour of using goto is

when we want to take the control out of the loop that is
contained in several other loops. The following program
illustrates this.

Preview from Notesale.co.uk

Page 164 of 728

Chapter 4: The Case Control Structure 149

Exercise

[A] What would be the output of the following programs:

(a) main()

{
 char suite = 3 ;
 switch (suite)
 {
 case 1 :
 printf ("\nDiamond") ;
 case 2 :
 printf ("\nSpade") ;
 default :
 printf ("\nHeart") ;
 }
 printf ("\nI thought one wears a suite") ;
}

(b) main()
{
 int c = 3 ;

 switch (c)
 {
 case 'v' :
 printf ("I am in case v \n") ;
 break ;
 case 3 :
 printf ("I am in case 3 \n") ;
 break ;
 case 12 :
 printf ("I am in case 12 \n") ;
 break ;
 default :
 printf ("I am in default \n") ;
 }

Preview from Notesale.co.uk

Page 166 of 728

150 Let Us C

}

(c) main()
{
 int k, j = 2 ;
 switch (k = j + 1)
 {
 case 0 :
 printf ("\nTailor") ;
 case 1 :
 printf ("\nTutor") ;
 case 2 :
 printf ("\nTramp") ;
 default :
 printf ("\nPure Simple Egghead!") ;
 }
}

(d) main()
{
 int i = 0 ;
 switch (i)
 {
 case 0 :
 printf ("\nCustomers are dicey") ;
 case 1 :
 printf ("\nMarkets are pricey") ;
 case 2 :
 printf ("\nInvestors are moody") ;
 case 3 :
 printf ("\nAt least employees are good") ;
 }
}

(e) main()
{
 int k ;
 float j = 2.0 ;

Preview from Notesale.co.uk

Page 167 of 728

164 Let Us C

}
message1()
{
 printf ("\nMary bought some butter") ;
}

Here, even though message1() is getting called before
message2(), still, message1() has been defined after
message2(). However, it is advisable to define the functions
in the same order in which they are called. This makes the
program easier to understand.

(g)

(h)

(i)

A function can call itself. Such a process is called ‘recursion’.
We would discuss this aspect of C functions later in this
chapter.

A function can be called from other function, but a function
cannot be defined in another function. Thus, the following
program code would be wrong, since argentina() is being
defined inside another function, main().

main()
{
 printf ("\nI am in main") ;
 argentina()
 {
 printf ("\nI am in argentina") ;
 }
}

There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.
User-defined functions Ex. argentina(), brazil() etc.

As the name suggests, library functions are nothing but
commonly required functions grouped together and stored in

Preview from Notesale.co.uk

Page 181 of 728

Chapter 5: Functions & Pointers 175

Function Declaration and Prototypes

Any C function by default returns an int value. More specifically,
whenever a call is made to a function, the compiler assumes that
this function would return a value of the type int. If we desire that a
function should return a value other than an int, then it is necessary
to explicitly mention so in the calling function as well as in the
called function. Suppose we want to find out square of a number
using a function. This is how this simple program would look like:

main()
{
 float a, b ;

 printf ("\nEnter any number ") ;
 scanf ("%f", &a) ;

 b = square (a) ;
 printf ("\nSquare of %f is %f", a, b) ;
}

square (float x)
{
 float y ;

 y = x * x ;
 return (y) ;
}

And here are three sample runs of this program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.000000
Enter any number 2.5
Square of 2.5 is 6.000000

Preview from Notesale.co.uk

Page 192 of 728

178 Let Us C

Here, the gospel() function has been defined to return void; means
it would return nothing. Therefore, it would just flash the four
messages about viruses and return the control back to the main()
function.

Call by Value and Call by Reference

By now we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed
something to it we have always passed the ‘values’ of variables to
the called function. Such function calls are called ‘calls by value’.
By this what we mean is, on calling a function we are passing
values of variables to it. The examples of call by value are shown
below:

sum = calsum (a, b, c) ;
f = factr (a) ;

We have also learnt that variables are stored somewhere in
memory. So instead of passing the value of a variable, can we not
pass the location number (also called address) of the variable to a
function? If we were able to do so it would become a ‘call by
reference’. What purpose a ‘call by reference’ serves we would
find out a little later. First we must equip ourselves with
knowledge of how to make a ‘call by reference’. This feature of C
functions needs at least an elementary knowledge of a concept
called ‘pointers’. So let us first acquire the basics of pointers after
which we would take up this topic once again.

An Introduction to Pointers

Which feature of C do beginners find most difficult to understand?
The answer is easy: pointers. Other languages have pointers but
few use them so frequently as C does. And why not? It is C’s
clever use of pointers that makes it the excellent language it is.

Preview from Notesale.co.uk

Page 195 of 728

Chapter 5: Functions & Pointers 195

A stack is a Last In First Out (LIFO) data structure. This means
that the last item to get stored on the stack (often called Push
operation) is the first one to get out of it (often called as Pop
operation). You can compare this to the stack of plates in a
cafeteria—the last plate that goes on the stack is the first one to get
out of it. Now let us see how the stack works in case of the
following program.

main()
{
 int a = 5, b = 2, c ;
 c = add (a, b) ;
 printf ("sum = %d", c) ;
}
add (int i, int j)
{
 int sum ;
 sum = i + j ;
 return sum ;
}

In this program before transferring the execution control to the
function fun() the values of parameters a and b are pushed onto
the stack. Following this the address of the statement printf() is
pushed on the stack and the control is transferred to fun(). It is
necessary to push this address on the stack. In fun() the values of
a and b that were pushed on the stack are referred as i and j. In
fun() the local variable sum gets pushed on the stack. When
value of sum is returned sum is popped up from the stack. Next
the address of the statement where the control should be returned
is popped up from the stack. Using this address the control returns
to the printf() statement in main(). Before execution of printf()
begins the two integers that were earlier pushed on the stack are
now popped off.

How the values are being pushed and popped even though we
didn’t write any code to do so? Simple—the compiler on

Preview from Notesale.co.uk

Page 212 of 728

196 Let Us C

encountering the function call would generate code to push
parameters and the address. Similarly, it would generate code to
clear the stack when the control returns back from fun(). Figure
5.5 shows the contents of the stack at different stages of execution.

 Address of
printf() xxxx

 Copy of a 5 Copy of a 5
 Copy of b 2 Copy of b 2

Before transfering
control to fun()

When call to
fun() is met

sum 7

Address xxxx xxxx

i 5 5

j 2 2

Empty stack

After co trol
reaches fun()

n On returning control
from fun()

While returnin
control from fun()

g

 Figure 5.5

Note that in this program popping of sum and address is done by
fun(), whereas popping of the two integers is done by main().
When it is done this way it is known as ‘CDecl Calling
Convention’. There are other calling conventions as well where
instead of main(), fun() itself clears the two integers. The calling
convention also decides whether the parameters being passed to
the function are pushed on the stack in left-to-right or right-to-left
order. The standard calling convention always uses the right-to-left

Preview from Notesale.co.uk

Page 213 of 728

Chapter 5: Functions & Pointers 203

 int i = 3, j = 4, k, l ;
 k = addmult (i, j) ;
 l = addmult (i, j) ;
 printf ("\n%d %d", k, l) ;
}
addmult (int ii, int jj)
{
 int kk, ll ;
 kk = ii + jj ;
 ll = ii * jj ;
 return (kk, ll) ;
}

(b) main()

{
 int a ;
 a = message() ;
}
message()
{
 printf ("\nViruses are written in C") ;
 return ;
}

(c) main()

{
 float a = 15.5 ;
 char ch = 'C' ;
 printit (a, ch) ;
}
printit (a, ch)
{
 printf ("\n%f %c", a, ch) ;
}

(d) main()

{
 message() ;

Preview from Notesale.co.uk

Page 220 of 728

206 Let Us C

(c) Write a general-purpose function to convert any given year
into its roman equivalent. The following table shows the
roman equivalents of decimal numbers:

Decimal Roman Decimal Roman

1 i 100 c
5 v 500 d
10 x 1000 m
50 l

Example:

Roman equivalent of 1988 is mdcccclxxxviii
Roman equivalent of 1525 is mdxxv

(d) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

(e) A positive integer is entered through the keyboard. Write a

function to obtain the prime factors of this number.

For example, prime factors of 24 are 2, 2, 2 and 3, whereas
prime factors of 35 are 5 and 7.

Function Prototypes, Call by Value/Reference, Pointers

[E] What would be the output of the following programs:

(a) main()

{
 float area ;
 int radius = 1 ;
 area = circle (radius) ;
 printf ("\n%f", area) ;
}
circle (int r)

Preview from Notesale.co.uk

Page 223 of 728

Chapter 5: Functions & Pointers 207

{
 float a ;
 a = 3.14 * r * r ;
 return (a) ;
}

(b) main()

{
 void slogan() ;
 int c = 5 ;
 c = slogan() ;
 printf ("\n%d", c) ;
}
void slogan()
{
 printf ("\nOnly He men use C!") ;
}

[F] Answer the following:

(a) Write a function which receives a float and an int from

main(), finds the product of these two and returns the product
which is printed through main().

(b) Write a function that receives 5 integers and returns the sum,

average and standard deviation of these numbers. Call this
function from main() and print the results in main().

(c) Write a function that receives marks received by a student in 3

subjects and returns the average and percentage of these
marks. Call this function from main() and print the results in
main().

[G] What would be the output of the following programs:

(a) main()

{
 int i = 5, j = 2 ;

Preview from Notesale.co.uk

Page 224 of 728

214 Let Us C

s seen in the first chapter the primary data types could be of
three varieties—char, int, and float. It may seem odd to
many, how C programmers manage with such a tiny set of

data types. Fact is, the C programmers aren’t really deprived. They
can derive many data types from these three types. In fact, the
number of data types that can be derived in C, is in principle,
unlimited. A C programmer can always invent whatever data type
he needs.

A

Not only this, the primary data types themselves could be of
several types. For example, a char could be an unsigned char or a
signed char. Or an int could be a short int or a long int.
Sufficiently confusing? Well, let us take a closer look at these
variations of primary data types in this chapter.

To fully define a variable one needs to mention not only its type
but also its storage class. In this chapter we would be exploring the
different storage classes and their relevance in C programming.

Integers, long and short
We had seen earlier that the range of an Integer constant depends
upon the compiler. For a 16-bit compiler like Turbo C or Turbo
C++ the range is –32768 to 32767. For a 32-bit compiler the range
would be –2147483648 to +2147483647. Here a 16-bit compiler
means that when it compiles a C program it generates machine
language code that is targeted towards working on a 16-bit
microprocessor like Intel 8086/8088. As against this, a 32-bit
compiler like VC++ generates machine language code that is
targeted towards a 32-bit microprocessor like Intel Pentium. Note
that this does not mean that a program compiled using Turbo C
would not work on 32-bit processor. It would run successfully but
at that time the 32-bit processor would work as if it were a 16-bit
processor. This happens because a 32-bit processor provides
support for programs compiled using 16-bit compilers. If this
backward compatibility support is not provided the 16-bit program

Preview from Notesale.co.uk

Page 231 of 728

Chapter 6: Data Types Revisited 215

would not run on it. This is precisely what happens on the new
Intel Itanium processors, which have withdrawn support for 16-bit
code.

Remember that out of the two/four bytes used to store an integer,
the highest bit (16th/32nd bit) is used to store the sign of the integer.
This bit is 1 if the number is negative, and 0 if the number is
positive.

C offers a variation of the integer data type that provides what are
called short and long integer values. The intention of providing
these variations is to provide integers with different ranges
wherever possible. Though not a rule, short and long integers
would usually occupy two and four bytes respectively. Each
compiler can decide appropriate sizes depending on the operating
system and hardware for which it is being written, subject to the
following rules:

(a)
(b)
(c)
(d)

shorts are at least 2 bytes big
longs are at least 4 bytes big
shorts are never bigger than ints
ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS
used.

 Compiler short int long

 16-bit (Turbo C/C++) 2 2 4
 32-bit (Visual C++) 2 4 4

Figure 6.1

long variables which hold long integers are declared using the
keyword long, as in,

Preview from Notesale.co.uk

Page 232 of 728

216 Let Us C

long int i ;
long int abc ;

long integers cause the program to run a bit slower, but the range
of values that we can use is expanded tremendously. The value of
a long integer typically can vary from -2147483648 to
+2147483647. More than this you should not need unless you are
taking a world census.

If there are such things as longs, symmetry requires shorts as
well—integers that need less space in memory and thus help speed
up program execution. short integer variables are declared as,

short int j ;
short int height ;

C allows the abbreviation of short int to short and of long int to
long. So the declarations made above can be written as,

long i ;
long abc ;
short j ;
short height ;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small
enough to be an int, but still we want to give it as much storage as
a long. In such cases we add the suffix ‘L’ or ‘l’ at the end of the
number, as in 23L.

Integers, signed and unsigned
Sometimes, we know in advance that the value stored in a given
integer variable will always be positive—when it is being used to

Preview from Notesale.co.uk

Page 233 of 728

Chapter 6: Data Types Revisited 219

overcome this difficulty? Would declaring ch as an unsigned char
solve the problem? Even this would not serve the purpose since
when ch reaches a value 255, ch++ would try to make it 256
which cannot be stored in an unsigned char. Thus the only
alternative is to declare ch as an int. However, if we are bent upon
writing the program using unsigned char, it can be done as shown
below. The program is definitely less elegant, but workable all the
same.

main()
{
 unsigned char ch ;

 for (ch = 0 ; ch <= 254 ; ch++)
 printf ("\n%d %c", ch, ch) ;

 printf ("\n%d %c", ch, ch) ;
}

Floats and Doubles
A float occupies four bytes in memory and can range from -3.4e38
to +3.4e38. If this is insufficient then C offers a double data type
that occupies 8 bytes in memory and has a range from -1.7e308 to
+1.7e308. A variable of type double can be declared as,

double a, population ;

If the situation demands usage of real numbers that lie even
beyond the range offered by double data type, then there exists a
long double that can range from -1.7e4932 to +1.7e4932. A long
double occupies 10 bytes in memory.

You would see that most of the times in C programming one is
required to use either chars or ints and cases where floats,
doubles or long doubles would be used are indeed rare.

Preview from Notesale.co.uk

Page 236 of 728

220 Let Us C

Let us now write a program that puts to use all the data types that
we have learnt in this chapter. Go through the following program
carefully, which shows how to use these different data types. Note
the format specifiers used to input and output these data types.

main()
{
 char c ;
 unsigned char d ;
 int i ;
 unsigned int j ;
 short int k ;
 unsigned short int l ;
 long int m ;
 unsigned long int n ;
 float x ;
 double y ;
 long double z ;

 /* char */
 scanf ("%c %c", &c, &d) ;
 printf ("%c %c", c, d) ;

 /* int */
 scanf ("%d %u", &i, &j) ;
 printf ("%d %u", i, j) ;

 /* short int */
 scanf ("%d %u", &k, &l) ;
 printf ("%d %u", k, l) ;

 /* long int */
 scanf ("%ld %lu", &m, &n) ;
 printf ("%ld %lu", m, n) ;

 /* float, double, long double */
 scanf ("%f %lf %Lf", &x, &y, &z) ;
 printf ("%f %lf %Lf", x, y, z) ;

Preview from Notesale.co.uk

Page 237 of 728

222 Let Us C

accurately by VC++ compiler as compared to TC/TC++
compilers. This is because TC/TC++ targets its compiled code
to 8088/8086 (16-bit) microprocessors. Since these
microprocessors do not offer floating point support, TC/TC++
performs all float operations using a software piece called
Floating Point Emulator. This emulator has limitations and
hence produces less accurate results. Also, this emulator
becomes part of the EXE file, thereby increasing its size. In
addition to this increased size there is a performance penalty
since this bigger code would take more time to execute.

(b)

(c)

If you look at ranges of chars and ints there seems to be one
extra number on the negative side. This is because a negative
number is always stored as 2’s compliment of its binary. For
example, let us see how -128 is stored. Firstly, binary of 128
is calculated (10000000), then its 1’s compliment is obtained
(01111111). A 1’s compliment is obtained by changing all 0s
to 1s and 1s to 0s. Finally, 2’s compliment of this number, i.e.
10000000, gets stored. A 2’s compliment is obtained by
adding 1 to the 1’s compliment. Thus, for -128, 10000000
gets stored. This is an 8-bit number and it can be easily
accommodated in a char. As against this, +128 cannot be
stored in a char because its binary 010000000 (left-most 0 is
for positive sign) is a 9-bit number. However +127 can be
stored as its binary 01111111 turns out to be a 8-bit number.

What happens when we attempt to store +128 in a char? The
first number on the negative side, i.e. -128 gets stored. This is
because from the 9-bit binary of +128, 010000000, only the
right-most 8 bits get stored. But when 10000000 is stored the
left-most bit is 1 and it is treated as a sign bit. Thus the value
of the number becomes -128 since it is indeed the binary
of -128, as can be understood from (b) above. Similarly, you
can verify that an attempt to store +129 in a char results in
storing -127 in it. In general, if we exceed the range from
positive side we end up on the negative side. Vice versa is

Preview from Notesale.co.uk

Page 239 of 728

236 Let Us C

(d) main()
{
 int x, y, s = 2 ;
 s *= 3 ;
 y = f (s) ;
 x = g (s) ;
 printf ("\n%d %d %d", s, y, x) ;
}
int t = 8 ;
f (int a)
{
 a += -5 ;
 t -= 4 ;
 return (a + t) ;
}
g (int a)
{
 a = 1 ;
 t += a ;
 return (a + t) ;
}

(e) main()

{
 static int count = 5 ;
 printf ("\ncount = %d", count--) ;
 if (count != 0)
 main() ;
}

(f) main()

{
 int i, j ;
 for (i = 1 ; i < 5 ; i++)
 {
 j = g (i) ;
 printf ("\n%d", j) ;
 }

Preview from Notesale.co.uk

Page 253 of 728

238 Let Us C

(i) int x = 10 ;
main()
{
 int x = 20 ;
 {
 int x = 30 ;
 printf ("\n%d", x) ;
 }
 printf ("\n%d", x) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 long num ;
 num = 2 ;
 printf ("\n%ld", num) ;
}

(b) main()

{
 char ch = 200 ;
 printf ("\n%d", ch) ;
}

(c) main()

{
 unsigned a = 25 ;
 long unsigned b = 25l ;
 printf ("\n%lu %u", a, b) ;
}

(d) main()

{
 long float a = 25.345e454 ;
 unsigned double b = 25 ;
 printf ("\n%lf %d", a, b) ;

Preview from Notesale.co.uk

Page 255 of 728

Chapter 6: Data Types Revisited 239

}

(e) main()

{
 float a = 25.345 ;
 float *b ;
 b = &a ;
 printf ("\n%f %u", a, b) ;
}

(f) static int y ;
main()
{
 static int z ;
 printf ("%d %d", y, z) ;
}

[C] State whether the following statements are True or False:

(a) Storage for a register storage class variable is allocated
each time the control reaches the block in which it is
present.

(b) An extern storage class variable is not available to the
functions that precede its definition, unless the variable is
explicitly declared in these functions.

(c) The value of an automatic storage class variable persists
between various function invocations.

(d) If the CPU registers are not available, the register storage
class variables are treated as static storage class variables.

(e) The register storage class variables cannot hold float
values.

(f) If we try to use register storage class for a float variable
the compiler will flash an error message.

Preview from Notesale.co.uk

Page 256 of 728

244 Let Us C

(c) Conditional Compilation
(d) Miscellaneous directives

Let us understand these features of preprocessor one by one.

Macro Expansion
Have a look at the following program.

#define UPPER 25
main()
{
 int i ;
 for (i = 1 ; i <= UPPER ; i++)
 printf ("\n%d", i) ;
}

In this program instead of writing 25 in the for loop we are writing
it in the form of UPPER, which has already been defined before
main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just
a ‘macro’. What purpose does it serve? During preprocessing, the
preprocessor replaces every occurrence of UPPER in the program
with 25. Here is another example of macro definition.

#define PI 3.1415
main()
{
 float r = 6.25 ;
 float area ;

 area = PI * r * r ;
 printf ("\nArea of circle = %f", area) ;
}

Preview from Notesale.co.uk

Page 261 of 728

Chapter 7: The C Preprocessor 255

a dialog box appears. In this dialog box against ‘Include
Directories’ we can specify the search path. We can also specify
multiple include paths separated by ‘;’ (semicolon) as shown
below:

c:\tc\lib ; c:\mylib ; d:\libfiles

The path can contain maximum of 127 characters. Both relative
and absolute paths are valid. For example ‘..\dir\incfiles’ is a valid
path.

Conditional Compilation
We can, if we want, have the compiler skip over part of a source
code by inserting the preprocessing commands #ifdef and #endif,
which have the general form:

#ifdef macroname
 statement 1 ;
 statement 2 ;
 statement 3 ;
#endif

If macroname has been #defined, the block of code will be
processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to compile
only a part of your program? In three cases:

(a) To “comment out” obsolete lines of code. It often happens
that a program is changed at the last minute to satisfy a client.
This involves rewriting some part of source code to the
client’s satisfaction and deleting the old code. But veteran
programmers are familiar with the clients who change their
mind and want the old code back again just the way it was.

Preview from Notesale.co.uk

Page 272 of 728

258 Let Us C

 #endif
 code common to both the computers
}

(c) Suppose a function myfunc() is defined in a file ‘myfile.h’
which is #included in a file ‘myfile1.h’. Now in your program
file if you #include both ‘myfile.h’ and ‘myfile1.h’ the
compiler flashes an error ‘Multiple declaration for myfunc’.
This is because the same file ‘myfile.h’ gets included twice.
To avoid this we can write following code in the header file.

/* myfile.h */
#ifndef __myfile_h
 #define __myfile_h

 myfunc()
 {
 /* some code */
 }

#endif

First time the file ‘myfile.h’ gets included the preprocessor
checks whether a macro called __myfile_h has been defined
or not. If it has not been then it gets defined and the rest of the
code gets included. Next time we attempt to include the same
file, the inclusion is prevented since __myfile_h already
stands defined. Note that there is nothing special about
__myfile_h. In its place we can use any other macro as well.

#if and #elif Directives
The #if directive can be used to test whether an expression
evaluates to a nonzero value or not. If the result of the expression
is nonzero, then subsequent lines upto a #else, #elif or #endif are
compiled, otherwise they are skipped.

Preview from Notesale.co.uk

Page 275 of 728

262 Let Us C

And here is the output of the program.

Inside fun1
Inside main
Inside fun2

Note that the functions fun1() and fun2() should neither
receive nor return any value. If we want two functions to get
executed at startup then their pragmas should be defined in
the reverse order in which you want to get them called.

(b) #pragma warn: This directive tells the compiler whether or
not we want to suppress a specific warning. Usage of this
pragma is shown below.

#pragma warn –rvl /* return value */
#pragma warn –par /* parameter not used */
#pragma warn –rch /* unreachable code */

int f1()
{
 int a = 5 ;
}

void f2 (int x)
{
 printf ("\nInside f2") ;
}

int f3()
{
 int x = 6 ;
 return x ;
 x++ ;
}

void main()

Preview from Notesale.co.uk

Page 279 of 728

Chapter 8: Arrays 293

can be thought of as setting up an array of 5 elements, each of
which is a one-dimensional array containing 2 integers. We refer
to an element of a one-dimensional array using a single subscript.
Similarly, if we can imagine s to be a one-dimensional array then
we can refer to its zeroth element as s[0], the next element as s[1]
and so on. More specifically, s[0] gives the address of the zeroth
one-dimensional array, s[1] gives the address of the first one-
dimensional array and so on. This fact can be demonstrated by the
following program.

/* Demo: 2-D array is an array of arrays */
main()
{
 int s[4][2] = {
 { 1234, 56 },
 { 1212, 33 },
 { 1434, 80 },
 { 1312, 78 }
 } ;
 int i ;

 for (i = 0 ; i <= 3 ; i++)
 printf ("\nAddress of %d th 1-D array = %u", i, s[i]) ;
}

And here is the output...

Address of 0 th 1-D array = 65508
Address of 1 th 1-D array = 65512
Address of 2 th 1-D array = 65516
Address of 3 th 1-D array = 65520

Let’s figure out how the program works. The compiler knows that
s is an array containing 4 one-dimensional arrays, each containing
2 integers. Each one-dimensional array occupies 4 bytes (two
bytes for each integer). These one-dimensional arrays are placed
linearly (zeroth 1-D array followed by first 1-D array, etc.). Hence

Preview from Notesale.co.uk

Page 310 of 728

298 Let Us C

 printf ("\n") ;
 }
 printf ("\n") ;
}

show (int (*q)[4], int row, int col)
{
 int i, j ;
 int *p ;

 for (i = 0 ; i < row ; i++)
 {
 p = q + i ;
 for (j = 0 ; j < col ; j++)
 printf ("%d ", * (p + j)) ;

 printf ("\n") ;
 }
 printf ("\n") ;
}

print (int q[][4], int row, int col)
{
 int i, j ;

 for (i = 0 ; i < row ; i++)
 {
 for (j = 0 ; j < col ; j++)
 printf ("%d ", q[i][j]) ;
 printf ("\n") ;
 }
 printf ("\n") ;
}

And here is the output…

1 2 3 4
5 6 7 8

Preview from Notesale.co.uk

Page 315 of 728

Chapter 8: Arrays 309

Bubble Sort

 Iteration 1 Iteration 2

 0 44 33 33 33 33 0 33 0 33

 1 33 44 44 44 44

1 44

1 22

 2 55 55 55 22 22 2 22 2 44

 3 22 22 22 55 11 3 11 3 11

 4 11

11

11

11

 0
1
2
3
4 55

4 55

4 55

 Iteration 3 Iteration 4

 Result

 0 33 0 22 0 22 0 11

 1 22 1 33 1 11 1 22

 2 11 2 11 2 33 2 33

 3 44 3 44 3 44 3 44

 4 55 4 55

4 55 4 55

Figure 8.11 (b)

Insertion Sort

 Iteration 1 Iteration 2 Iteration 3 Iteration 4 Result
 44 33 33 22 0 11
 33 44 44 33 1 22
 55 55 55 44 2 33
 22 22 22 55 3 44
 11 11 11 11 4 55

Figure 8.11 (c)

Preview from Notesale.co.uk

Page 326 of 728

310 Let Us C

(d) Implement the following procedure to generate prime
numbers from 1 to 100 into a program. This procedure is
called sieve of Eratosthenes.

step 1 Fill an array num[100] with numbers from 1 to 100
step 2 Starting with the second entry in the array, set all its

multiples to zero.
step 3 Proceed to the next non-zero element and set all its

multiples to zero.
step 4 Repeat step 3 till you have set up the multiples of

all the non-zero elements to zero
step 5 At the conclusion of step 4, all the non-zero entries

left in the array would be prime numbers, so print
out these numbers.

More on arrays, Arrays and pointers

[E] What would be the output of the following programs:

(a) main()

{
 int b[] = { 10, 20, 30, 40, 50 } ;
 int i ;
 for (i = 0 ; i <= 4 ; i++)
 printf ("\n%d" *(b + i)) ;
}

(b) main()
{
 int b[] = { 0, 20, 0, 40, 5 } ;
 int i, *k ;
 k = b ;
 for (i = 0 ; i <= 4 ; i++)
 {
 printf ("\n%d" *k) ;

Preview from Notesale.co.uk

Page 327 of 728

314 Let Us C

[G] Answer the following:

(a) What would happen if you try to put so many values into an

array when you initialize it that the size of the array is
exceeded?

1. nothing
2. possible system malfunction
3. error message from the compiler
4. other data may be overwritten

(b) In an array int arr[12] the word arr represents the

a_________ of the array

(c) What would happen if you put too few elements in an array

when you initialize it?

1. nothing
2. possible system malfunction
3. error message from the compiler
4. unused elements will be filled with 0’s or garbage

(d) What would happen if you assign a value to an element of an

array whose subscript exceeds the size of the array?

1. the element will be set to 0
2. nothing, it’s done all the time
3. other data may be overwritten
4. error message from the compiler

(e) When you pass an array as an argument to a function, what

actually gets passed?

1. address of the array
2. values of the elements of the array
3. address of the first element of the array
4. number of elements of the array

Preview from Notesale.co.uk

Page 331 of 728

9 Puppetting On
 Strings

• What are Strings
• More about Strings
• Pointers and Strings
• Standard Library String Functions

strlen()
strcpy()
strcat()
strcmp()

• Two-Dimensional Array of Characters
• Array of Pointers to Strings
• Limitation of Array of Pointers to Strings

Solution
• Summary
• Exercise

327

Preview from Notesale.co.uk

Page 344 of 728

330 Let Us C

}

And here is the output...

Klinsman

No big deal. We have initialized a character array, and then printed
out the elements of this array within a while loop. Can we write
the while loop without using the final value 7? We can; because
we know that each character array always ends with a ‘\0’.
Following program illustrates this.

main()
{
 char name[] = "Klinsman" ;
 int i = 0 ;

 while (name[i] != `\0')
 {
 printf ("%c", name[i]) ;
 i++ ;
 }
}

And here is the output...

Klinsman

This program doesn’t rely on the length of the string (number of
characters in it) to print out its contents and hence is definitely
more general than the earlier one. Here is another version of the
same program; this one uses a pointer to access the array elements.

main()
{
 char name[] = "Klinsman" ;
 char *ptr ;

Preview from Notesale.co.uk

Page 347 of 728

Chapter 9: Puppetting On Strings 333

While entering the string using scanf() we must be cautious about
two things:

(a)

(b)

The length of the string should not exceed the dimension of
the character array. This is because the C compiler doesn’t
perform bounds checking on character arrays. Hence, if you
carelessly exceed the bounds there is always a danger of
overwriting something important, and in that event, you
would have nobody to blame but yourselves.

scanf() is not capable of receiving multi-word strings.
Therefore names such as ‘Debashish Roy’ would be
unacceptable. The way to get around this limitation is by
using the function gets(). The usage of functions gets() and
its counterpart puts() is shown below.

main()
{
 char name[25] ;

 printf ("Enter your full name ") ;
 gets (name) ;
 puts ("Hello!") ;
 puts (name) ;
}

And here is the output...

Enter your name Debashish Roy
Hello!
Debashish Roy

The program and the output are self-explanatory except for
the fact that, puts() can display only one string at a time
(hence the use of two puts() in the program above). Also, on
displaying a string, unlike printf(), puts() places the cursor
on the next line. Though gets() is capable of receiving only

Preview from Notesale.co.uk

Page 350 of 728

338 Let Us C

xstrlen (char *s)
{
 int length = 0 ;

 while (*s != '\0')
 {
 length++ ;
 s++ ;
 }

 return (length) ;
}

The output would be...

string = Bamboozled length = 10
string = Humpty Dumpty length = 13

The function xstrlen() is fairly simple. All that it does is keep
counting the characters till the end of string is not met. Or in other
words keep counting characters till the pointer s doesn’t point to
‘\0’.

strcpy()

This function copies the contents of one string into another. The
base addresses of the source and target strings should be supplied
to this function. Here is an example of strcpy() in action...

main()
{
 char source[] = "Sayonara" ;

Preview from Notesale.co.uk

Page 355 of 728

346 Let Us C

While comparing the strings through strcmp(), note that the
addresses of the strings are being passed to strcmp(). As seen in
the last section, if the two strings match, strcmp() would return a
value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control
did reach inside the if or not. To begin with, we set flag to
NOTFOUND. Later through the loop if the names match, flag is
set to FOUND. When the control reaches beyond the for loop, if
flag is still set to NOTFOUND, it means none of the names in the
masterlist[][] matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.
Note that each string ends with a ‘\0’. The arrangement as you can
appreciate is similar to that of a two-dimensional numeric array.

65454 a k s h a y \0

65464 p a r a g \0

65474 r a m a n \0

65484 s r i n i v a s \0

65494 g o p a l \0

65504 r a j e s h \0 65513
(last location)

Figure 9.3

Preview from Notesale.co.uk

Page 363 of 728

354 Let Us C

[A] What would be the output of the following programs:

(a) main()

{
 char c[2] = "A" ;
 printf ("\n%c", c[0]) ;
 printf ("\n%s", c) ;
}

(b) main()
{
 char s[] = "Get organised! learn C!!" ;
 printf ("\n%s", &s[2]) ;
 printf ("\n%s", s) ;
 printf ("\n%s", &s) ;
 printf ("\n%c", s[2]) ;
}

(c) main()

{
 char s[] = "No two viruses work similarly" ;
 int i = 0 ;
 while (s[i] != 0)
 {
 printf ("\n%c %c", s[i], *(s + i)) ;
 printf ("\n%c %c", i[s], *(i + s)) ;
 i++ ;
 }
}

(d) main()
{
 char s[] = "Churchgate: no church no gate" ;
 char t[25] ;
 char *ss, *tt ;
 ss = s ;
 while (*ss != '\0')
 *ss++ = *tt++ ;

Preview from Notesale.co.uk

Page 371 of 728

Chapter 9: Puppetting On Strings 359

Hint: Write a function xstrrev (string) which should reverse
the contents of one string. Call this function for reversing each
string stored in s.

(d) Develop a program that receives the month and year from the
keyboard as integers and prints the calendar in the following
format.

 September 2004

 Mon Tue Wed Thu Fri Sat Sun
 1 2 3 4 5
 6 7 8 9 10 11 12
 13 14 15 16 17 18 19
 20 21 22 23 24 25 26
 27 28 29 30

Note that according to the Gregorian calendar 01/01/1900 was
Monday. With this as the base the calendar should be
generated.

(e) Modify the above program suitably so that once the calendar
for a particular month and year has been displayed on the

Preview from Notesale.co.uk

Page 376 of 728

366 Let Us C

The program becomes more difficult to handle as the number of
items relating to the book go on increasing. For example, we
would be required to use a number of arrays, if we also decide to
store name of the publisher, date of purchase of book, etc. To solve
this problem, C provides a special data type—the structure.

A structure contains a number of data types grouped together.
These data types may or may not be of the same type. The
following example illustrates the use of this data type.

main()
{
 struct book
 {
 char name ;
 float price ;
 int pages ;
 } ;
 struct book b1, b2, b3 ;

 printf ("\nEnter names, prices & no. of pages of 3 books\n") ;
 scanf ("%c %f %d", &b1.name, &b1.price, &b1.pages) ;
 scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages) ;
 scanf ("%c %f %d", &b3.name, &b3.price, &b3.pages) ;

 printf ("\nAnd this is what you entered") ;
 printf ("\n%c %f %d", b1.name, b1.price, b1.pages) ;
 printf ("\n%c %f %d", b2.name, b2.price, b2.pages) ;
 printf ("\n%c %f %d", b3.name, b3.price, b3.pages) ;
}

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

Preview from Notesale.co.uk

Page 382 of 728

Chapter 10: Structures 369

{
 char name ;
 float price ;
 int pages ;
} b1, b2, b3 ;

Like primary variables and arrays, structure variables can also be
initialized where they are declared. The format used is quite
similar to that used to initiate arrays.

struct book
{
 char name[10] ;
 float price ;
 int pages ;
} ;
struct book b1 = { "Basic", 130.00, 550 } ;
struct book b2 = { "Physics", 150.80, 800 } ;

Note the following points while declaring a structure type:

(a)

(b)

(c)

The closing brace in the structure type declaration must be
followed by a semicolon.
It is important to understand that a structure type declaration
does not tell the compiler to reserve any space in memory. All
a structure declaration does is, it defines the ‘form’ of the
structure.
Usually structure type declaration appears at the top of the
source code file, before any variables or functions are defined.
In very large programs they are usually put in a separate
header file, and the file is included (using the preprocessor
directive #include) in whichever program we want to use this
structure type.

Preview from Notesale.co.uk

Page 385 of 728

Chapter 10: Structures 373

This provides space in memory for 100 structures of the type
struct book.

(b) The syntax we use to reference each element of the array b is
similar to the syntax used for arrays of ints and chars. For
example, we refer to zeroth book’s price as b[0].price.
Similarly, we refer first book’s pages as b[1].pages.

(c) It should be appreciated what careful thought Dennis Ritchie
has put into C language. He first defined array as a collection
of similar elements; then realized that dissimilar data types
that are often found in real life cannot be handled using
arrays, therefore created a new data type called structure. But
even using structures programming convenience could not be
achieved, because a lot of variables (b1 to b100 for storing
data about hundred books) needed to be handled. Therefore he
allowed us to create an array of structures; an array of similar
data types which themselves are a collection of dissimilar data
types. Hats off to the genius!

(d)

(e)

In an array of structures all elements of the array are stored in
adjacent memory locations. Since each element of this array is
a structure, and since all structure elements are always stored
in adjacent locations you can very well visualise the
arrangement of array of structures in memory. In our example,
b[0]’s name, price and pages in memory would be
immediately followed by b[1]’s name, price and pages, and
so on.

What is the function linkfloat() doing here? If you don’t
define it you are bound to get the error "Floating Point
Formats Not Linked" with majority of C Compilers. What
causes this error to occur? When parsing our source file, if the
compiler encounters a reference to the address of a float, it
sets a flag to have the linker link in the floating-point
emulator. A floating point emulator is used to manipulate
floating point numbers in runtime library functions like

Preview from Notesale.co.uk

Page 389 of 728

378 Let Us C

we are passing the base addresses of the arrays name and
author, but the value stored in callno. Thus, this is a mixed
call—a call by reference as well as a call by value.

It can be immediately realized that to pass individual elements
would become more tedious as the number of structure
elements go on increasing. A better way would be to pass the
entire structure variable at a time. This method is shown in the
following program.

struct book
{
 char name[25] ;
 char author[25] ;
 int callno ;
} ;

main()
{
 struct book b1 = { "Let us C", "YPK", 101 } ;
 display (b1) ;
}

display (struct book b)
{
 printf ("\n%s %s %d", b.name, b.author, b.callno) ;
}

And here is the output...

Let us C YPK 101

Note that here the calling of function display() becomes quite
compact,

display (b1) ;

Preview from Notesale.co.uk

Page 394 of 728

380 Let Us C

operator requires a structure variable on its left. In such cases
C provides an operator ->, called an arrow operator to refer to
the structure elements. Remember that on the left hand side of
the ‘.’ structure operator, there must always be a structure
variable, whereas on the left hand side of the ‘->’ operator
there must always be a pointer to a structure. The arrangement
of the structure variable and pointer to structure in memory is
shown in the Figure 10.2.

655226549765472

b1.name b1.author b1.callno
101 YPK Let Us C

ptr

65524

65472

 Figure 10.2

Can we not pass the address of a structure variable to a
function? We can. The following program demonstrates this.

/* Passing address of a structure variable */
struct book
{
 char name[25] ;
 char author[25] ;
 int callno ;
} ;

main()
{
 struct book b1 = { "Let us C", "YPK", 101 } ;
 display (&b1) ;

Preview from Notesale.co.uk

Page 396 of 728

Chapter 10: Structures 381

}

display (struct book *b)
{
 printf ("\n%s %s %d", b->name, b->author, b->callno) ;
}

And here is the output...

Let us C YPK 101

Again note that to access the structure elements using pointer
to a structure we have to use the ‘->’ operator.

Also, the structure struct book should be declared outside
main() such that this data type is available to display() while
declaring pointer to the structure.

(e) Consider the following code snippet:

struct emp
{
 int a ;
 char ch ;
 float s ;
} ;
struct emp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s) ;

If we execute this program using TC/TC++ compiler we get
the addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after
the int and float begins immediately after the char.

Preview from Notesale.co.uk

Page 397 of 728

386 Let Us C

 char language[10] ;
 } ;
 struct employee e = { "Hacker", "C" } ;
 printf ("\n%s %d", e.name, e.language) ;
}

(c) struct virus
{

 char signature[25] ;
 char status[20] ;
 int size ;
} v[2] = {
 "Yankee Doodle", "Deadly", 1813,
 "Dark Avenger", "Killer", 1795
 } ;
main()
{
 int i ;
 for (i = 0 ; i <=1 ; i++)
 printf ("\n%s %s", v.signature, v.status) ;
}

(d) struct s
{
 char ch ;
 int i ;
 float a ;
} ;
main()
{
 struct s var = { 'C', 100, 12.55 } ;
 f (var) ;
 g (&var) ;
}
f (struct s v)
{
 printf ("\n%c %d %f", v -> ch, v -> i, v -> a) ;
}

Preview from Notesale.co.uk

Page 402 of 728

390 Let Us C

1. Add book information
2. Display book information
3. List all books of given author
4. List the title of specified book
5. List the count of books in the library
6. List the books in the order of accession number
7. Exit

Create a structure called library to hold accession number,
title of the book, author name, price of the book, and flag
indicating whether book is issued or not.

(g) Write a program that compares two given dates. To store date
use structure say date that contains three members namely
date, month and year. If the dates are equal then display
message as "Equal" otherwise "Unequal".

(h) Linked list is a very common data structure often used to store

similar data in memory. While the elements of an array
occupy contiguous memory locations, those of a linked list
are not constrained to be stored in adjacent location. The
individual elements are stored “somewhere” in memory,
rather like a family dispersed, but still bound together. The
order of the elements is maintained by explicit links between
them. Thus, a linked list is a collection of elements called
nodes, each of which stores two item of information—an
element of the list, and a link, i.e., a pointer or an address that
indicates explicitly the location of the node containing the
successor of this list element.

Write a program to build a linked list by adding new nodes at
the beginning, at the end or in the middle of the linked list.
Also write a function display() which display all the nodes
present in the linked list.

(i) A stack is a data structure in which addition of new element
or deletion of existing element always takes place at the same

Preview from Notesale.co.uk

Page 406 of 728

392 Let Us C

Preview from Notesale.co.uk

Page 408 of 728

Chapter 11: Console Input/Output 405

 int i = 10 ;
 char ch = 'A' ;
 float a = 3.14 ;
 char str[20] ;

 printf ("\n%d %c %f", i, ch, a) ;
 sprintf (str, "%d %c %f", i, ch, a) ;
 printf ("\n%s", str) ;
}

In this program the printf() prints out the values of i, ch and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn’t get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the second printf() statement.

The counterpart of sprintf() is the sscanf() function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified formats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using sscanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console I/O Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
those which handle one character at a time.

So far for input we have consistently used the scanf() function.
However, for some situations the scanf() function has one glaring
weakness... you need to hit the Enter key before the function can

Preview from Notesale.co.uk

Page 421 of 728

422 Let Us C

Closing the File

When we have finished reading from the file, we need to close it.
This is done using the function fclose() through the statement,

fclose (fp) ;

Once we close the file we can no longer read from it using getc()
unless we reopen the file. Note that to close the file we don’t use
the filename but the file pointer fp. On closing the file the buffer
associated with the file is removed from memory.

In this program we have opened the file for reading. Suppose we
open a file with an intention to write characters into it. This time
too a buffer would get associated with it. When we attempt to
write characters into this file using fputc() the characters would
get written to the buffer. When we close this file using fclose()
three operations would be performed:

(a)

(b)

(c)

The characters in the buffer would be written to the file on the
disk.
At the end of file a character with ASCII value 26 would get
written.
The buffer would be eliminated from memory.

You can imagine a possibility when the buffer may become full
before we close the file. In such a case the buffer’s contents would
be written to the disk the moment it becomes full. All this buffer
management is done for us by the library functions.

Counting Characters, Tabs, Spaces, …
Having understood the first file I/O program in detail let us now
try our hand at one more. Let us write a program that will read a
file and count how many characters, spaces, tabs and newlines are
present in it. Here is the program…

Preview from Notesale.co.uk

Page 438 of 728

428 Let Us C

 fp = fopen ("POEM.TXT", "w") ;
 if (fp == NULL)
 {
 puts ("Cannot open file") ;
 exit() ;
 }

 printf ("\nEnter a few lines of text:\n") ;
 while (strlen (gets (s)) > 0)
 {
 fputs (s, fp) ;
 fputs ("\n", fp) ;
 }

 fclose (fp) ;
}

And here is a sample run of the program...

Enter a few lines of text:
Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours !

Note that each string is terminated by hitting enter. To terminate
the execution of the program, hit enter at the beginning of a line.
This creates a string of zero length, which the program recognizes
as the signal to close the file and exit.

We have set up a character array to receive the string; the fputs()
function then writes the contents of the array to the disk. Since
fputs() does not automatically add a newline character to the end
of the string, we must do this explicitly to make it easier to read
the string back from the file.

Here is a program that reads strings from a disk file.

Preview from Notesale.co.uk

Page 444 of 728

Chapter 12: File Input/Output 435

 if (ft == NULL)
 {
 puts ("Cannot open target file") ;
 fclose (fs) ;
 exit() ;
 }

 while (1)
 {
 ch = fgetc (fs) ;

 if (ch == EOF)
 break ;
 else
 fputc (ch, ft) ;
 }

 fclose (fs) ;
 fclose (ft) ;
}

Using this program we can comfortably copy text as well as binary
files. Note that here we have opened the source and target files in
“rb” and “wb” modes respectively. While opening the file in text
mode we can use either “r” or “rt”, but since text mode is the
default mode we usually drop the ‘t’.

From the programming angle there are three main areas where text
and binary mode files are different. These are:

(a)
(b)
(c)

Handling of newlines
Representation of end of file
Storage of numbers

Let us explore these three differences.

Preview from Notesale.co.uk

Page 451 of 728

Chapter 12: File Input/Output 437

Text versus Binary Mode: Storage of Numbers

The only function that is available for storing numbers in a disk
file is the fprintf() function. It is important to understand how
numerical data is stored on the disk by fprintf(). Text and
characters are stored one character per byte, as we would expect.
Are numbers stored as they are in memory, two bytes for an
integer, four bytes for a float, and so on? No.

Numbers are stored as strings of characters. Thus, 1234, even
though it occupies two bytes in memory, when transferred to the
disk using fprintf(), would occupy four bytes, one byte per
character. Similarly, the floating-point number 1234.56 would
occupy 7 bytes on disk. Thus, numbers with more digits would
require more disk space.

Hence if large amount of numerical data is to be stored in a disk
file, using text mode may turn out to be inefficient. The solution is
to open the file in binary mode and use those functions (fread()
and fwrite() which are discussed later) which store the numbers in
binary format. It means each number would occupy same number
of bytes on disk as it occupies in memory.

Record I/O Revisited
The record I/O program that we did in an earlier section has two
disadvantages:

(a)

(b)

The numbers (basic salary) would occupy more number of
bytes, since the file has been opened in text mode. This is
because when the file is opened in text mode, each number is
stored as a character string.

If the number of fields in the structure increase (say, by
adding address, house rent allowance etc.), writing structures

Preview from Notesale.co.uk

Page 453 of 728

444 Let Us C

 switch (choice)
 {
 case '1' :

 fseek (fp, 0 , SEEK_END) ;
 another = 'Y' ;

 while (another == 'Y')
 {
 printf ("\nEnter name, age and basic sal. ") ;
 scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
 fwrite (&e, recsize, 1, fp) ;
 printf ("\nAdd another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }

 break ;

 case '2' :

 rewind (fp) ;

 while (fread (&e, recsize, 1, fp) == 1)
 printf ("\n%s %d %f", e.name, e.age, e.bs) ;

 break ;

 case '3' :

 another = 'Y' ;
 while (another == 'Y')
 {
 printf ("\nEnter name of employee to modify ") ;
 scanf ("%s", empname) ;

 rewind (fp) ;
 while (fread (&e, recsize, 1, fp) == 1)

Preview from Notesale.co.uk

Page 460 of 728

Chapter 12: File Input/Output 445

 {
 if (strcmp (e.name, empname) == 0)
 {
 printf ("\nEnter new name, age & bs") ;
 scanf ("%s %d %f", e.name, &e.age,
 &e.bs) ;
 fseek (fp, - recsize, SEEK_CUR) ;
 fwrite (&e, recsize, 1, fp) ;
 break ;
 }
 }

 printf ("\nModify another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }

 break ;

 case '4' :

 another = 'Y' ;
 while (another == 'Y')
 {
 printf ("\nEnter name of employee to delete ") ;
 scanf ("%s", empname) ;

 ft = fopen ("TEMP.DAT", "wb") ;

 rewind (fp) ;
 while (fread (&e, recsize, 1, fp) == 1)
 {
 if (strcmp (e.name, empname) != 0)
 fwrite (&e, recsize, 1, ft) ;
 }

 fclose (fp) ;
 fclose (ft) ;

Preview from Notesale.co.uk

Page 461 of 728

446 Let Us C

 remove ("EMP.DAT") ;
 rename ("TEMP.DAT", "EMP.DAT") ;

 fp = fopen ("EMP.DAT", "rb+") ;

 printf ("Delete another Record (Y/N) ") ;
 fflush (stdin) ;
 another = getche() ;
 }
 break ;

 case '0' :
 fclose (fp) ;
 exit() ;
 }
 }
}

To understand how this program works, you need to be familiar
with the concept of pointers. A pointer is initiated whenever we
open a file. On opening a file a pointer is set up which points to the
first record in the file. To be precise this pointer is present in the
structure to which the file pointer returned by fopen() points to.
On using the functions fread() or fwrite(), the pointer moves to
the beginning of the next record. On closing a file the pointer is
deactivated. Note that the pointer movement is of utmost
importance since fread() always reads that record where the
pointer is currently placed. Similarly, fwrite() always writes the
record where the pointer is currently placed.

The rewind() function places the pointer to the beginning of the
file, irrespective of where it is present right now.

The fseek() function lets us move the pointer from one record to
another. In the program above, to move the pointer to the previous
record from its current position, we used the function,

Preview from Notesale.co.uk

Page 462 of 728

Chapter 12: File Input/Output 451

O_CREAT - Creates a new file for writing (has no effect
 if file already exists)

O_RDONLY - Creates a new file for reading only
O_RDWR - Creates a file for both reading and writing
O_WRONLY - Creates a file for writing only
O_BINARY - Creates a file in binary mode
O_TEXT - Creates a file in text mode

These ‘O-flags’ are defined in the file “fcntl.h”. So this file must
be included in the program while usng low level disk I/O. Note
that the file “stdio.h” is not necessary for low level disk I/O. When
two or more O-flags are used together, they are combined using
the bitwise OR operator (|). Chapter 14 discusses bitwise
operators in detail.

The other statement used in our program to open the file is,

outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
 S_IWRITE) ;

Note that since the target file is not existing when it is being
opened we have used the O_CREAT flag, and since we want to
write to the file and not read from it, therefore we have used
O_WRONLY. And finally, since we want to open the file in
binary mode we have used O_BINARY.

Whenever O_CREAT flag is used, another argument must be
added to open() function to indicate the read/write status of the
file to be created. This argument is called ‘permission argument’.
Permission arguments could be any of the following:

S_IWRITE - Writing to the file permitted
S_IREAD - Reading from the file permitted

Preview from Notesale.co.uk

Page 467 of 728

456 Let Us C

 while (fscanf (fp, "%s %d", name, &age) != NULL)
 fclose (fp) ;
}

(g) main()
{
 FILE *fp ;
 char names[20] ;
 int i ;
 fp = fopen ("students.c", "wb") ;
 for (i = 0 ; i <= 10 ; i++)
 {
 puts ("\nEnter name ") ;
 gets (name) ;
 fwrite (name, size of (name), 1, fp) ;
 }
 close (fp) ;
}

(h) main()
{
 FILE *fp ;
 char name[20] = "Ajay" ;
 int i ;
 fp = fopen ("students.c", "r") ;
 for (i = 0 ; i <= 10 ; i++)
 fwrite (name, sizeof (name), 1, fp) ;
 close (fp) ;
}

(i) #include "fcntl.h"
main()
{
 int fp ;
 fp = open ("pr22.c" , "r") ;
 if (fp == -1)
 puts ("cannot open file") ;
 else
 close (fp) ;

Preview from Notesale.co.uk

Page 472 of 728

Chapter 12: File Input/Output 459

[C] Attempt the following:

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Write a program to read a file and display contents with its
line numbers.

Write a program to find the size of a text file without
traversing it character by character.

Write a program to add the contents of one file at the end of
another.

Suppose a file contains student’s records with each record
containing name and age of a student. Write a program to read
these records and display them in sorted order by name.

Write a program to copy one file to another. While doing so
replace all lowercase characters to their equivalent uppercase
characters.

Write a program that merges lines alternately from two files
and writes the results to new file. If one file has less number
of lines than the other, the remaining lines from the larger file
should be simply copied into the target file.

Write a program to display the contents of a text file on the
screen. Make following provisions:

Display the contents inside a box drawn with opposite corner
co-ordinates being (0, 1) and (79, 23). Display the name of
the file whose contents are being displayed, and the page
numbers in the zeroth row. The moment one screenful of file
has been displayed, flash a message ‘Press any key...’ in 24th
row. When a key is hit, the next page’s contents should be
displayed, and so on till the end of file.

Write a program to encrypt/decrypt a file using:

Preview from Notesale.co.uk

Page 475 of 728

Chapter 12: File Input/Output 461

 float amount ;
} ;

The parameter trans_type contains D/W indicating deposit or
withdrawal of amount. Write a program to update
‘CUSTOMER.DAT’ file, i.e. if the trans_type is ‘D’ then
update the balance of ‘CUSTOMER.DAT’ by adding
amount to balance for the corresponding accno. Similarly, if
trans_type is ‘W’ then subtract the amount from balance.
However, while subtracting the amount make sure that the
amount should not get overdrawn, i.e. at least 100 Rs. Should
remain in the account.

(j)

(k)

There are 100 records present in a file with the following
structure:

struct date
{
 int d, m, y ;
} ;

struct employee
{
 int empcode[6] ;
 char empname[20] ;
 struct date join_date ;
 float salary ;
} ;

Write a program to read these records, arrange them in
ascending order of join_date and write them in to a target
file.

A hospital keeps a file of blood donors in which each record
has the format:
Name: 20 Columns
Address: 40 Columns

Preview from Notesale.co.uk

Page 477 of 728

Chapter 13: More Issues In Input/Output 475

shown in the following sample run. The Ctrl-Z character is often
called end of file character.

C>UTIL.EXE
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth ^Z
C>

Now let’s see what happens when we invoke this program from in
a different way, using redirection:

C>UTIL.EXE > POEM.TXT
C>

Here we are causing the output to be redirected to the file
POEM.TXT. Can we prove that this the output has indeed gone to
the file POEM.TXT? Yes, by using the TYPE command as
follows:

C>TYPE POEM.TXT
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth
C>

There’s the result of our typing sitting in the file. The redirection
operator, ‘>’, causes any output intended for the screen to be
written to the file whose name follows the operator.

Note that the data to be redirected to a file doesn’t need to be typed
by a user at the keyboard; the program itself can generate it. Any
output normally sent to the screen can be redirected to a disk file.
As an example consider the following program for generating the
ASCII table on screen:

Preview from Notesale.co.uk

Page 491 of 728

484 Let Us C

}
And here is the output...

Decimal 0 is same as binary 0000000000000000
Decimal 1 is same as binary 0000000000000001
Decimal 2 is same as binary 0000000000000010
Decimal 3 is same as binary 0000000000000011
Decimal 4 is same as binary 0000000000000100
Decimal 5 is same as binary 0000000000000101

Let us now explore the various bitwise operators one by one.

One’s Complement Operator

On taking one’s complement of a number, all 1’s present in the
number are changed to 0’s and all 0’s are changed to 1’s. For
example one’s complement of 1010 is 0101. Similarly, one’s
complement of 1111 is 0000. Note that here when we talk of a
number we are talking of binary equivalent of the number. Thus,
one’s complement of 65 means one’s complement of 0000 0000
0100 0001, which is binary equivalent of 65. One’s complement of
65 therefore would be, 1111 1111 1011 1110. One’s complement
operator is represented by the symbol ~. Following program shows
one’s complement operator in action.

main()
{
 int j, k ;

 for (j = 0 ; j <= 3 ; j++)
 {
 printf ("\nDecimal %d is same as binary ", j) ;
 showbits (j) ;

 k = ~j ;
 printf ("\nOne’s complement of %d is ", j) ;

Preview from Notesale.co.uk

Page 500 of 728

Chapter 14: Operations On Bits 489

5225 left shift 0 gives 0001010001101001
5225 left shift 1 gives 0010100011010010
5225 left shift 2 gives 0101000110100100
5225 left shift 3 gives 1010001101001000
5225 left shift 4 gives 0100011010010000

Having acquainted ourselves with the left shift and right shift
operators, let us now find out the practical utility of these
operators.

In DOS/Windows the date on which a file is created (or modified)
is stored as a 2-byte entry in the 32 byte directory entry of that file.
Similarly, a 2-byte entry is made of the time of creation or
modification of the file. Remember that DOS/Windows doesn’t
store the date (day, month, and year) of file creation as a 8 byte
string, but as a codified 2 byte entry, thereby saving 6 bytes for
each file entry in the directory. The bitwise distribution of year,
month and date in the 2-byte entry is shown in Figure 14.3.

month

0 1 2 3 4 5 6 7 9 8 10 11 12 13 15 14
Y Y Y Y Y Y Y M M M M D D D D D

day year

Figure 14.3

DOS/Windows converts the actual date into a 2-byte value using
the following formula:

date = 512 * (year - 1980) + 32 * month + day

Suppose 09/03/1990 is the date, then on conversion the date will
be,

date = 512 * (1990 - 1980) + 32 * 3 + 9 = 5225

Preview from Notesale.co.uk

Page 505 of 728

Chapter 14: Operations On Bits 491

0 1 2 9 8 7 6 5 4 3 10 11 12 13 15 14
0 0 0 1 0 1 0 0 0 1 1 0 1 0 0

month day year

1

year

0 1 2 9 8 7 6 5 4 3 10 11 12 13 15 14
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Right shifting by 9 gives

Figure 14.5

On similar lines, left shifting by 7, followed by right shifting by 12
yields month.

Preview from Notesale.co.uk

Page 507 of 728

504 Let Us C

 Figure 14.13

H H H H H M M M M M M S S S S S
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(f)

(g)

In order to save disk space information about student is stored
in an integer variable. If bit number 0 is on then it indicates Ist
year student, bit number 1 to 3 stores IInd year, IIIrd year and
IVth year student respectively. The bit number 4 to 7 stores
stream Mechanical, Chemical, Electronics and IT. Rest of the
bits store room number. Based on the given data, write a
program that asks for the room number and displays the
information about the student, if its data exists in the array.
The contents of array are,

int data[] = { 273, 548, 786, 1096 } ;

What will be the output of the following program:

main()
{
 int i = 32, j = 65, k, l, m, n, o, p ;
 k = i | 35 ; l = ~k ; m = i & j ;
 n = j ^ 32 ; o = j << 2 ; p = i >> 5 ;
 printf ("\nk = %d l = %d m = %d", k, l, m) ;
 printf ("\nn = %d o = %d p = %d", n, o, p) ;
}

Preview from Notesale.co.uk

Page 520 of 728

540 Let Us C

called single-tasking environment. Since only one program could
run at any given time entire resources of the machine like memory
and hardware devices were accessible to this program. Under 32-
bit environment like Windows several programs reside and work
in memory at the same time. Hence it is known as a multi-tasking
environment. But the moment there are multiple programs running
in memory there is a possibility of conflict if two programs
simultaneously access the machine resources. To prevent this,
Windows does not permit any application direct access to any
machine resource. To channelize the access without resulting into
conflict between applications several new mechanisms were
created in the Microprocessor & OS. This had a direct bearing on
the way the application programs are created. This is not a
Windows OS book. So we would restrict our discussion about the
new mechanisms that have been introduced in Windows to topics
that are related, to C programming. These topics are ‘Memory
Management and Device Access’.

Memory Management

Since users have become more demanding, modern day
applications have to contend with these demands and provide
several features in them. To add to this, under Windows several
such applications run in memory simultaneously. The maximum
allowable memory—1 MB—that was used in 16-bit environment
was just too small for this. Hence Windows had to evolve a new
memory management model. Since Windows runs on 32-bit
microprocessors each CPU register is 32-bit long. Whenever we
store a value at a memory location the address of this memory
location has to be stored in the CPU register at some point in time.
Thus a 32-bit address can be stored in these registers. This means
that we can store 232 unique addresses in the registers at different
times. As a result, we can access 4 GB of memory locations using
32-bit registers. As pointers store addresses, every pointer under
32-bit environment also became a 4-byte entity.

Preview from Notesale.co.uk

Page 526 of 728

Chapter 16: C Under Windows 541

However, if we decide to install 4 GB memory it would cost a lot.
Hence Windows uses a memory model which makes use of as
much of physical memory (say 128 MB) as has been installed and
simulates the balance amount of memory (4 GB – 128 MB) on the
hard disk. Be aware that this balance memory is simulated as and
when the need to do so arises. Thus memory management is
demand based.

Note that programs cannot execute straight-away from hard disk.
They have to be first brought into physical memory before they
can get executed. Suppose there are multiple programs already in
memory and a new program starts executing. If this new program
needs more memory than what is available right now, then some of
the existing programs (or their parts) would be transferred to the
disk in order to free the physical memory to accommodate the new
program. This operation is often called page-out operation. Here
page stands for a block of memory (usually of size 4096 bytes).
When that part of the program that was paged out is needed it is
brought back into memory (called page-in operation) and some
other programs (or their parts) are paged out. This keeps on
happening without a common user’s knowledge all the time while
working with Windows. A few more facts that you must note
about paging are as follows:

(a)

(b)

Part of the program that is currently executing might also be
paged out to the disk.

When the program is paged in (from disk to memory) there is
no guarantee that it would be brought back to the same
physical location where it was before it was paged out.

Now imagine how the paging operations would affect our
programming. Suppose we have a pointer pointing to some data
present in a page. If this page gets paged out and is later paged in
to a different physical location then the pointer would obviously
have a wrong address. Hence under Windows the pointer never
holds the physical address of any memory location. It always holds
a virtual address of that location. What is this virtual address? At

Preview from Notesale.co.uk

Page 527 of 728

Chapter 16: C Under Windows 543

offset (from the start of the page) of the physical memory location
to be accessed.

Note that the CR3 register is not accessible from an application.
Hence an application can never directly reach a physical address.
Also, as the paging activity is going on the OS would suitably keep
updating the values in the two tables.

Device Access

All devices under Windows are shared amongst all the running
programs. Hence no program is permitted a direct access to any of
the devices. The access to a device is routed through a device
driver program, which finally accesses the device. There is a
standard way in which an application can communicate with the
device driver. It is device driver’s responsibility to ensure that
multiple requests coming from different applications are handled
without causing any conflict. This standard way of communication
is discussed in detail in Chapter 17.

DOS Programming Model
Typical 16-bit environments like DOS use a sequential
programming model. In this model programs are executed from
top to bottom in an orderly fashion. The path along which the
control flows from start to finish may vary during each execution
depending on the input that the program receives or the conditions
under which it is run. However, the path remains fairly predictable.
C programs written in this model begin execution with main()
(often called entry point) and then call other functions present in
the program. If you assume some input data you can easily walk
through the program from beginning to end. In this programming
model it is the program and not the operating system that
determines which function gets called and when. The operating
system simply loads and executes the program and then waits for it
to finish. If the program wishes it can take help of the OS to carry

Preview from Notesale.co.uk

Page 529 of 728

Chapter 16: C Under Windows 557

nCmdShow: This is an integer value that is passed to the
function. This integer tells the program whether the window
that it creates should appear minimized, as an icon, normal, or
maximized when it is displayed for the first time.

− The MessageBox() function pops up a message box whose
title is ‘Title’ and which contains a message ‘Hello!’.

− Returning 0 from WinMain() indicates success, whereas,
returning a nonzero value indicates failure.

− Instead of printing ‘Hello!’ in the message box we can print
the command line arguments that the user may supply while
executing the program. The command line arguments can be
supplied to the program by executing it from Start | Run as
shown in Figure 16.7.

 Figure 16.7

Note from Figure 16.7 that ‘myapp.exe’ is the name of our
application, whereas, ‘abc ijk xyz’ represents command line
arguments. The parameter lpszCmdline points to the string
“abc ijk xyz”. This string can be printed using the following
statement:

MessageBox (0, lpszCmdline, "Title", 0) ;

If the entire command line including the filename is to be
retrieved we can use the GetCommandLine() function.

Preview from Notesale.co.uk

Page 543 of 728

Chapter 16: C Under Windows 559

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(a)
(b)

(c)
(d)
(e)
(f)

(g)

(h)

Windows does not permit direct access to memory or
hardware devices.
Windows uses a Demand-based Virtual Memory Model to
manage memory.
Under Windows there is two-way communication between the
program and the OS.
Windows maintains a system message queue common for all
applications.
Windows maintains an application message queue per running
application.
Calling convention decides the order in which the parameters
are passed to a function and whether the calling function or
the called function clears the stack.
Commonly used calling conventions are __cdecl and
__stdcall.
Hungarian notation though good its usage is not
recommended any more.

Exercise

[A] State True or False:

MS-DOS uses a procedural programming model.
A Windows program can directly call a device driver program
for a device.
API functions under Windows do not have names.
DOS functions are called using an interrupt mechanism.
Windows uses a 4 GB virtual memory space.
Size of a pointer under Windows depends upon whether it is
near or far.
Under Windows the address stored in a pointer is a virtual
address and not a physical address.
One of the parameters of WinMain() called hPrevInstance
is no longer relevant.

Preview from Notesale.co.uk

Page 545 of 728

564 Let Us C

int _stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdLine, int nCmdShow)
{
 HWND h ;

 h = CreateWindow (“BUTTON”, “Hit Me”, WS_OVERLAPPEDWINDOW,
 10, 10, 150, 100, 0, 0, i, 0) ;
 ShowWindow (h, nCmdShow) ;
 MessageBox (0, “Hi!”, “Waiting”, MB_OK) ;
 return 0 ;
}

Here is the output of the program…

Figure 17.2

Let us now understand the program. Every window enjoys certain
properties—background color, shape of cursor, shape of icon, etc.
All these properties taken together are known as ‘window class’.
The meaning of ‘class’ here is ‘type’. Windows insists that a
window class should be registered with it before we attempt to
create windows of that type. Once a window class is registered we
can create several windows of that type. Each of these windows
would enjoy the same properties that have been registered through
the window class. There are several predefined window classes.
Some of these are BUTTON, EDIT, LISTBOX, etc. Our program
has created one such window using the predefined BUTTON class.

Preview from Notesale.co.uk

Page 550 of 728

Chapter 17: Windows Programming 567

 h[x] = CreateWindow ("BUTTON", "Press Me",
 WS_OVERLAPPEDWINDOW, x * 20,
 x * 20, 150, 100, 0, 0, i, 0) ;
 ShowWindow (h[x], l) ;
 }

 MessageBox (0, "Hi!", "Waiting", 0) ;
 return 0 ;
}

Figure 17.3

Note that each window created in this program is assigned a
different handle. You may experiment a bit by changing the name
of the window class to EDIT and see the result.

A Real-World Window
Suppose we wish to create a window and draw a few shapes in it.
For creating such a window there is no standard window class
available. Hence we would have to create our own window class,
register it with Windows OS and then create a window on the basis
of it. Instead of straightway jumping to a program that draws

Preview from Notesale.co.uk

Page 553 of 728

568 Let Us C

shapes in a window let us first write a program that creates a
window using our window class and lets us interact with it. Here is
the program…

#include <windows.h>
#include "helper.h"

void OnDestroy (HWND) ;

int __stdcall WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpszCmdline, int nCmdShow)
{
 MSG m ;

 /* perform application initialization */
 InitInstance (hInstance, nCmdShow, "title") ;

 /* message loop */
 while (GetMessage (&m, 0, 0, 0))
 DispatchMessage (&m) ;

 return 0 ;
}

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;
 default :
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

Preview from Notesale.co.uk

Page 554 of 728

Chapter 17: Windows Programming 569

void OnDestroy (HWND hWnd)
{
 PostQuitMessage (0) ;
}

On execution of this program the window shown in Figure 17.4
appears on the screen. We can use minimize and the maximize
button it its title bar to minimize and maximize the window. We
can stretch its size by dragging its boundaries. Finally, we can
close the window by clicking on the close window button in the
title bar.

Figure 17.4

Let us now try to understand this program step by step.

Creation and Displaying of Window

Creating and displaying a window on the screen is a 4-step
process. These steps are:

(a)
(b)
(c)
(d)

Creation of a window class.
Registering the window class with the OS.
Creation of a window based on the registered class.
Displaying the window on the screen.

Creation of a window class involves setting up of elements of a
structure called WNDCLASSEX. This structure contains several

Preview from Notesale.co.uk

Page 555 of 728

Chapter 17: Windows Programming 571

mouse cursor and the status of mouse buttons. Since it is difficult
to memorize the message ids they have been suitably #defined in
‘windows.h’. The message id and the additional information are
stored in a structure called MSG.

In WinMain() this MSG structure is retrieved from the message
queue by calling the API function GetMessage(). The first
parameter passed to this function is the address of the MSG
structure variable. GetMessage() would pick the message info
from the message queue and place it in the structure variable
passed to it. Don’t bother about the other parameters right now.

After picking up the message from the message queue we need to
process it. This is done by calling the DispatchMessage() API
function. This function does several activities. These are as
follows:

(a)

(b)

(c)

(d)

From the MSG structure that we pass to it,
DisplayMessage() extracts the handle of the window for
which this message is meant for.
From the handle it figures out the window class based on
which the window has been created.
From the window class structure it obtains the address of a
function called WndProc() (short for window procedure).
Well I didn’t tell you earlier that in InitInstance() while
filling the WNDCLASSEX structure one of the elements has
been set up with the address of a user-defined function called
WndProc().
Using this address it calls the function WndProc().

Since several messages get posted into the message queue picking
of the message and processing it should be done repeatedly. Hence
calls to GetMesage() and DispatchMessage() have been made in
a while loop in WinMain(). When GetMessage() encounters a
message with id WM_QUIT it returns a 0. Now the control comes
out of the loop and WinMain() comes to an end.

Preview from Notesale.co.uk

Page 557 of 728

Chapter 17: Windows Programming 575

Program Instances
Windows allows you to run more than one copy of a program at a
time. This is handy for cutting and pasting between two copies of
Notepad or when running more than one terminal session with a
terminal emulator program. Each running copy of a program is
called a ‘program instance’.

Windows performs an interesting memory optimization trick. It
shares a single copy of the program’s code between all running
instances. For example, if you get three instances of Notepad
running, there will only be one copy of Notepad’s code in
memory. All three instances share the same code, but will have
separate memory areas to hold the text data being edited. The
difference between handling of the code and the data is logical, as
each instance of Notepad might edit a different file, so the data
must be unique to each instance. The program logic to edit the files
is the same for every instance, so there is no reason why a single
copy of Notepad’s code cannot be shared.

Summary
(a)

(b)

(c)
(d)

(e)

(f)

(g)

A message box can be displayed by calling the
MessageBox() API function.
Message boxes are often used to ascertain the flow of a
program.
Appearance of a message box can be customized.
The CreateWindow() API function creates the window in
memory.
The window that is created in memory is displayed using the
ShowWindow() API function.
A ‘window class’ specifies various properties of the window
that we are creating.
The header file ‘Windows.h’ contains declaration of several
macros used in Windows programming.

Preview from Notesale.co.uk

Page 561 of 728

578 Let Us C

Preview from Notesale.co.uk

Page 564 of 728

Chapter 18: Graphics Under Windows 597

WndProc() function and the message handlers that perform this
task are given below

int x1, y1, x2, y2 ;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
 WPARAM wParam, LPARAM lParam)
{
 switch (message)
 {
 case WM_DESTROY :
 OnDestroy (hWnd) ;
 break ;

 case WM_LBUTTONDOWN :
 OnLButtonDown (hWnd, LOWORD (lParam),
 HIWORD (lParam)) ;
 break ;

 case WM_LBUTTONUP :
 OnLButtonUp() ;
 break ;

 case WM_MOUSEMOVE :
 OnMouseMove (hWnd, wParam, LOWORD (lParam),
 HIWORD (lParam)) ;
 break ;

 default:
 return DefWindowProc (hWnd, message, wParam, lParam) ;
 }
 return 0 ;
}

void OnLButtonDown (HWND hWnd, int x, int y)
{
 SetCapture (hWnd) ;
 x1 = x ;

Preview from Notesale.co.uk

Page 583 of 728

604 Let Us C

HPEN
HBRUSH

HBITMAP
HFONT

200

Other Info

400

800 .
.
.

Memory DC after selecting bitmap

40000

200
Black Pen

400
White Brush

40000
190x220 24 –color

bitmap

800
FontNew O/P Device

HPEN
HBRUSH

HBITMAP
HFONT

200

Other Info

400
405
800 .

.

.

Default Memory DC

800
Font

400
White Brush

200
Black Pen

Default Drawing Objects

405
1x1 Monochrome

bitmap

Default O/P Device

Figure 18.7

What purpose would just increasing the bitmap size/color would
serve? Whatever we draw here would get drawn on the bitmap but
would still not be visible. We can make it visible by simply
copying the bitmap image (including what has been drawn on it) to
the screen DC by using the API function BitBlt().

Before transferring the image to the screen DC we need to make
the memory DC compatible with the screen DC. Here making
compatible means making certain adjustments in the contents of
the memory DC structure. Looking at these values the screen
device driver would suitably adjust the colors when the pixels in

Preview from Notesale.co.uk

Page 590 of 728

Chapter 18: Graphics Under Windows 609

 hmemdc = CreateCompatibleDC (hdc) ;
 holdbmp = SelectObject (hmemdc, hbmp) ;

 ReleaseDC (hWnd, hdc) ;

 srand (time (NULL)) ;

 GetClientRect (hWnd, &r) ;

 x = rand() % r.right - 22 ;
 y = rand() % r.bottom - 22 ;

 SetTimer (hWnd, 1, 50, NULL) ;
}

void OnDestroy (HWND hWnd)
{
 KillTimer (hWnd, 1) ;
 SelectObject (hmemdc, holdbmp) ;
 DeleteDC (hmemdc) ;
 DeleteObject (hbmp) ;
 PostQuitMessage (0) ;
}

void OnTimer (HWND hWnd)
{
 HDC hdc ;
 RECT r ;
 const int wd = 22, ht = 22 ;
 static int dx = 10, dy = 10 ;

 hdc = GetDC (hWnd) ;
 BitBlt (hdc, x, y, wd, ht, hmemdc, 0, 0, WHITENESS) ;
 GetClientRect (hWnd, &r) ;

 x += dx ;
 if (x < 0)
 {

Preview from Notesale.co.uk

Page 595 of 728

Chapter 18: Graphics Under Windows 615

(f) If we don’t select any brush or pen into the device context
then the drawing drawn in the client area would be drawn
with the default pen (black pen) and default brush (white
brush).

(g) RGB is a macro representing the Red, Green and Blue
elements of a color. RGB (0, 0, 0) gives black color,
whereas, RGB (255, 255, 255) gives white color.

(h) Animation involves repeatedly drawing the same image at
successive positions.

Exercise
[A] State True or False:

(a) Device independence means the same program is able to work
using different screens, keyboards and printers without
modifications to the program.

(b) The WM_PAINT message is generated whenever the client
area of the window needs to be redrawn.

(c) The API function EndPaint() is used to release the DC.
(d) The default pen in the DC is a solid pen of white color.
(e) The pen thickness for the pen style other than PS_SOLID has

to be 1 pixel.
(f) BeginPaint() and GetDC() can be used interchangeably.
(g) If we drag the mouse from (10, 10) to (110, 100), 100

WM_MOUSEMOVE messages would be posted into the
message queue.

(h) WM_PAINT message is raised when the window contents are
scrolled.

(i) With each DC a default monochrome bitmap of size 1 pixel x
1 pixel is associated.

(j) The WM_CREATE message arrives whenever a window is
displayed.

[B] Answer the following:

(a) What is meant by Device Independent Drawing and how it is
achieved?

Preview from Notesale.co.uk

Page 601 of 728

Chapter 19: Interaction With Hardware 625

Windows does not permit an application program to directly
access any of the devices. Instead it provides several API functions
to carry out the interaction. These functions have names so calling
them is much easier than calling DOS/BIOS functions. When we
call an API function to interact with a device, it in turn accesses
the device driver program for the device. It is the device driver
program that finally accesses the device. There is a standard way
in which an application can communicate with the device driver. It
is device driver’s responsibility to ensure that multiple requests
coming from different applications are handled without causing
any conflict. In the sections to follow we would see how to
communicate with the device driver to be able to interact with the
hardware.

One last question—won’t the API change if a new device comes
into existence? No it won’t. That is the beauty of the Windows
architecture. All that would change is the device driver program
for the new device. The API functions that we would need to
interact with this new device driver would remain same. This is
shown in Figure 19.4

Windows API

Device Driver

Hardware

C Program

Figure 19.4

Preview from Notesale.co.uk

Page 611 of 728

Chapter 19: Interaction With Hardware 633

that when WriteFile() is to be used we need to specify the
GENERIC_WRITE flag in the call to CreateFile() API
function. Given below is the code of WriteSector() function that
works exactly opposite to the ReadSector() function.

void WriteSector (char *src, int ss, int num, void* buff)
{
 HANDLE h ;
 unsigned int br ;
 h = CreateFile (src, GENERIC_WRITE,
 FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0) ;
 SetFilePointer (h, (ss * 512), NULL, FILE_BEGIN) ;
 WriteFile (h, buff, 512 * num, &br, NULL))
 CloseHandle (h) ;
}

Accessing Other Storage Devices
Note that the mechanism of reading from or writing to any device
remains standard under Windows. We simply need to change the
string that specifies the device. Here are some sample calls for
reading/writing from/to various devices:

ReadSector ("\\\\.\\a:", 0, 1, &b) ; /* reading from 2nd floppy drive */
ReadSector ("\\\\.\\d:", 0, 1, buffer) ; /* reading from a CD-ROM drive */
WriteSector ("\\\\.\\c:", 0, 1, &b) ; /* writing to a hard disk */
ReadSector ("\\\\.\\physicaldrive0", 0, 1, &b) ; /* reading partition table */

Here are a few interesting points that you must note.

(a)

(b)

If we are to read from the second floppy drive we should
replace A: with B: while calling ReadSector().

To read from storage devices like hard disk drive or CD-ROM
or ZIP drive, etc. use the string with appropriate drive letter.
The string can be in the range \\.\C: to \\.\Z:.

Preview from Notesale.co.uk

Page 619 of 728

642 Let Us C

opposite to their order of installation. This means the last hook
procedure installed is the first one to get called.

If the nCode parameter contains a value HC_ACTION it means
that the message that was just removed form the system message
queue was a keyboard message. If it is so, then we have checked
the previous state of the key before the message was sent. If the
state of the key was ‘depressed’ (30th bit of lParam is 1) then we
have obtained the state of the CapsLock key by calling the
GetKeyState() API function. If it is off (0th bit of state variable is
0) then we have turned on the CapsLock by simulating a keypress.
For this simulation we have called the function keybd_event()
twice—first call is for pressing the CapsLock and second is for
releasing it. Note that keybd_event() creates a keyboard message
from the parameters that we pass to it and posts it into the system
message queue. The parameter VK_CAPITAL represents the code
for the CapsLock key.

A word of caution! When we use keybd_event() to post keyboard
message for a simulated CapsLock keypress, once again our hook
procedure would be called when these messages are retrieved from
the system message queue. But this time the CapsLock would be
on so we would end up passing control to the next hook procedure
through a call to CallNextHookEx().

When we close the application window as usual the OnDestroy()
would be called. In this handler we have obtained the address of
the removehook() exported function and called it. In the
removehook() function we have unregistered our hook procedure
by calling the UnhookWindowsHookEx() API function. Note
that to this function we have passed the handle to our hook. As a
result our hook procedure is now removed from the hook chain.
Hereafter the CapsLock would behave normally. Having unhooked
our hook procedure the control would return to OnDestroy()
handler where we have promptly unload the DLL from memory by
calling the FreeLibrary() API function.

Preview from Notesale.co.uk

Page 628 of 728

Chapter 19: Interaction With Hardware 651

but may contain different application programs, libraries,
frameworks, installation scripts, utilities, etc. Which one is better
than the other is only a matter of taste.

Linux was first developed for x86-based PCs (386 or higher).
These days it also runs on Compaq Alpha AXP, Sun SPARC,
Motorola 68000 machines (like Atari ST and Amiga), MIPS,
PowerPC, ARM, Intel Itanium, SuperH, etc. Thus Linux works on
literally every conceivable microprocessor architecture.

Under Linux one is faced with simply too many choices of Linux
distributions, graphical shells and managers, editors, compilers,
linkers, debuggers, etc. For simplicity (in my opinion) I have
chosen the following combination:

Linux Distribution - Red Hat Linux 9.0
Console Shell - BASH
Graphical Shell - KDE 3.1-10
Editor - KWrite
Compiler - GNU C and C++ compiler (gcc)

We would be using and discussing these in the sections to follow.

C Programming Under Linux
How is C under Linux any different than C under DOS or C under
Windows? Well, it is same as well as different. It is same to the
extent of using language elements like data types, control
instructions and the overall syntax. The usage of standard library
functions is also same even though the implementation of each
might be different under different OS. For example, a printf()
would work under all OSs, but the way it is defined is likely to be
different for different OSs. The programmer however doesn’t
suffer because of this since he can continue to call printf() the
same way no matter how it is implemented.

Preview from Notesale.co.uk

Page 637 of 728

Chapter 19: Interaction With Hardware 657

 }
 else
 {
 printf ("In parent process\n") ;
 /* code to copy file */
 }
}

As we know, fork() creates a child process and duplicates the
code of the parent process in the child process. There onwards the
execution of the fork() function continues in both the processes.
Thus the duplication code inside fork() is executed once, whereas
the remaining code inside it is executed in both the parent as well
as the child process. Hence control would come back from fork()
twice, even though it is actually called only once. When control
returns from fork() of the parent process it returns the PID of the
child process, whereas when control returns from fork() of the
child process it always returns a 0. This can be exploited by our
program to segregate the code that we want to execute in the
parent process from the code that we want to execute in the child
process. We have done this in our program using an if statement.
In the parent process the ‘else block’ would get executed, whereas
in the child process the ‘if block’ would get executed.

Let us now write one more program. This program would use the
fork() call to create a child process. In the child process we would
print the PID of child and its parent, whereas in the parent process
we would print the PID of the parent and its child. Here is the
program…

include <sys/types.h>
int main()
{
 int pid ;
 pid = fork() ;

 if (pid == 0)

Preview from Notesale.co.uk

Page 643 of 728

660 Let Us C

After forking a child process we have called the execl() function.
This function accepts variable number of arguments. The first
parameter to execl() is the absolute path of the program to be
executed. The remaining parameters describe the command line
arguments for the program to be executed. The last parameter is an
end of argument marker which must always be NULL. Thus in our
case the we have called upon the execl() function to execute the ls
program as shown below

ls -al /etc

As a result, all the contents of the /etc directory are listed on the
screen. Note that the printf() below the call to execl() function is
not executed. This is because the exec family functions overwrite
the image of the calling process with the code and data of the
program that is to be executed. In our case the child process’s
memory was overwritten by the code and data of the ls program.
Hence the call to printf() did not materialize.

It would make little sense in calling execl() before fork(). This is
because a child would not get created and execl() would simply
overwrite the main process itself. As a result, no statement beyond
the call to execl() would ever get executed. Hence fork() and
execl() usually go hand in hand.

Zombies and Orphans
We know that the ps –A command lists all the running processes.
But from where does the ps program get this information? Well,
Linux maintains a table containing information about all the
processes. This table is called ‘Process Table’. Apart from other
information the process table contains an entry of ‘exit code’ of the
process. This integer value indicates the reason why the process
was terminated. Even though the process comes to an end its entry
would remain in the process table until such time that the parent of
the terminated process queries the exit code. This act of querying

Preview from Notesale.co.uk

Page 646 of 728

668 Let Us C

ommunication is the essence of all progress. This is true in
real life as well as in programming. In today’s world a
program that runs in isolation is of little use. A worthwhile

program has to communicate with the outside world in general and
with the OS in particular. In Chapters 16 and 17 we saw how a
Windows based program communicates with Windows. In this
chapter let us explore how this communication happens under
Linux.

C

Communication using Signals
In the last chapter we used fork() and exec() library function to
create a child process and to execute a new program respectively.
These library functions got the job done by communication with
the Linux OS. Thus the direction of communication was from the
program to the OS. The reverse communication—from the OS to
the program—is achieved using a mechanism called ‘Signal’. Let
us now write a simple program that would help you experience the
signal mechanism.

int main()
{
 while (1)
 printf ("Pogram Running\n") ;
 return 0 ;
}

The program is fairly straightforward. All that we have done here
is we have used an infinite while loop to print the message
"Program Running" on the screen. When the program is running
we can terminate it by pressing the Ctrl + C. When we press Ctrl +
C the keyboard device driver informs the Linux kernel about
pressing of this special key combination. The kernel reacts to this
by sending a signal to our program. Since we have done nothing to
handle this signal the default signal handler gets called. In this

Preview from Notesale.co.uk

Page 654 of 728

674 Let Us C

 printf ("SIGINT Received\n") ;
 break ;

 case SIGTERM :
 printf ("SIGTERM Received\n") ;
 break ;

 case SIGCONT :
 printf ("SIGCONT Received\n") ;
 break ;
 }
}

int main()
{
 signal (SIGINT, sighandler) ;
 signal (SIGTERM, sighandler) ;
 signal (SIGCONT, sighandler) ;

 while (1)
 printf ("\rProgram running") ;

 return 0 ;
}

In this program during each call to the signal() function we have
specified the address of a common signal handler named
sighandler(). Thus the same signal handler function would get
called when one of the three signals are received. This does not
lead to a problem since the sighandler() we can figure out inside
the signal ID using the first parameter of the function. In our
program we have made use of the switch-case construct to print a
different message for each of the three signals.

Note that we can easily afford to mix the two methods of
registering signals in a program. That is, we can register separate
signal handlers for some of the signals and a common handler for

Preview from Notesale.co.uk

Page 660 of 728

676 Let Us C

 case SIGCONT :
 printf ("SIGCONT Received\n") ;
 break ;
 }
}

int main()
{
 char buffer [80] = "\0” ;
 sigset_t block ;

 signal (SIGTERM, sighandler) ;
 signal (SIGINT, sighandler) ;
 signal (SIGCONT, sighandler) ;

 sigemptyset (&block) ;
 sigaddset (&block, SIGTERM) ;
 sigaddset (&block, SIGINT) ;

 sigprocmask (SIG_BLOCK, &block, NULL) ;

 while (strcmp (buffer,"n") != 0)
 {
 printf ("Enter a String: ") ;
 gets (buffer) ;
 puts (buffer) ;
 }

 sigprocmask (SIG_UNBLOCK, &block, NULL) ;

 while (1)
 printf ("\rProgram Running") ;

 return 0 ;
}

In this program we have registered a common handler for the
SIGINT, SIGTERM and SIGCONT signals. Next we want to

Preview from Notesale.co.uk

Page 662 of 728

Chapter 21: More Linux Programming 679

We need to compile this program as follows:

gcc mywindow.c `pkg-config gtk+-2.0 - -cflags - -libs`

Here we are compiling the program ‘mywindow.c’ and then
linking it with the necessary libraries from GTK toolkit. Note the
quotes that we have used in the command.

Here is the output of the program…

Figure 21.1

The GTK library provides a large number of functions that makes
it very easy for us to create GUI programs. Every window under
GTK is known as a widget. To create a simple window we have to
carry out the following steps:

Preview from Notesale.co.uk

Page 665 of 728

Chapter 21: More Linux Programming 685

(g)

(h)

(i)
(j)
(k)
(l)

(m)

(a)

(b)
(c)
(d)
(e)

(f)

(g)

(h)

(a)

(b)

 A process can block a signal or a set of signals using the
sigprocmask() function.
Blocked signals are delivered to the process when the signals
are unblocked.
A SIGSTOP signal is generated when we press Ctrl + Z.
A SIGSTOP signal is un-catchable signal.
A suspended process can be resumed using the fg command.
A process receives the SIGCONT signal when it resumes
execution.
In GTK, the g_signal_connect() function can be used to
connect a function with an event.

Exercise

[A] State True or False:

All signals registered signals must have a separate signal
handler.
Blocked signals are ignored by a process.
Only one signal can be blocked at a time.
Blocked signals are ignored once the signals are unblocked.
If our signal handler gets called the default signal handler
automatically gets called.
gtk_main() function makes uses of a loop to prevent the
termination of the program.
Multiple signals can be registered at a time using a single call
to signal() function.
The sigprocmask() function can block as well as unblock
signals.

[B] Answer the following:

How does the Linux OS know if we have registered a signal
or not?

What happens when we register a handler for a signal?

Preview from Notesale.co.uk

Page 671 of 728

696 Let Us C

rewind Repositions file pointer to beginning of a file
scanf Reads formatted data from keyboard
sscanf Reads formatted input from a string
sprintf Writes formatted output to a string
tell Gets current file pointer position
write Writes data to a file

File Handling Functions

Function Use

remove Deletes file
rename Renames file
unlink Deletes file

Directory Control Functions

Function Use

chdir Changes current working directory
getcwd Gets current working directory
fnsplit Splits a full path name into its components
findfirst Searches a disk directory
findnext Continues findfirst search
mkdir Makes a new directory
rmdir Removes a directory

Buffer Manipulation Functions

Function Use

memchr Returns a pointer to the first occurrence, within a specified
number of characters, of a given character in the buffer

memcmp Compares a specified number of characters from two
buffers

Preview from Notesale.co.uk

Page 682 of 728

698 Let Us C

execl Executes child process with argument list
exit Terminates the process
spawnl Executes child process with argument list
spawnlp Executes child process using PATH variable and argument

list
system Executes an MS-DOS command

Graphics Functions

Function Use

arc Draws an arc
ellipse Draws an ellipse
floodfill Fills an area of the screen with the current color
getimage Stores a screen image in memory
getlinestyle Obtains the current line style
getpixel Obtains the pixel’s value
lineto Draws a line from the current graphic output position to the

specified point
moveto Moves the current graphic output position to a specified

point
pieslice Draws a pie-slice-shaped figure
putimage Retrieves an image from memory and displays it
rectangle Draws a rectangle
setcolor Sets the current color
setlinestyle Sets the current line style
putpixel Plots a pixel at a specified point
setviewport Limits graphic output and positions the logical origin

within the limited area

Time Related Functions

Function Use

clock Returns the elapsed CPU time for a process
difftime Computes the difference between two times

Preview from Notesale.co.uk

Page 684 of 728

Appendix B: Standard Library Functions 699

ftime Gets current system time as structure
strdate Returns the current system date as a string
strtime Returns the current system time as a string
time Gets current system time as long integer
setdate Sets DOS date
getdate Gets system date

Miscellaneous Functions

Function Use

delay Suspends execution for an interval (milliseconds)
getenv Gets value of environment variable
getpsp Gets the Program Segment Prefix
perror Prints error message
putenv Adds or modifies value of environment variable
random Generates random numbers
randomize Initializes random number generation with a random value

based on time
sound Turns PC speaker on at specified frequency
nosound Turns PC speaker off

DOS Interface Functions

Function Use

FP_OFF Returns offset portion of a far pointer
FP_SEG Returns segment portion of a far pointer
getvect Gets the current value of the specified interrupt vector
keep Installs terminate-and-stay-resident (TSR) programs
int86 Issues interrupts
int86x Issues interrupts with segment register values
intdos Issues interrupt 21h using registers other than DX and AL
intdosx Issues interrupt 21h using segment register values
MK_FP Makes a far pointer

Preview from Notesale.co.uk

Page 685 of 728

708 Let Us C

ch = "z" ;

a pointer to the character string “a” is assigned to ch.

Note that in the first case, the declaration of ch would be,

char ch ;

whereas in the second case it would be,

char *ch ;

[13] Forgetting the bounds of an array.

main()
{
 int num[50], i ;

 for (i = 1 ; i <= 50 ; i++)
 num[i] = i * i ;
}

Here, in the array num there is no such element as num[50],
since array counting begins with 0 and not 1. Compiler would
not give a warning if our program exceeds the bounds. If not
taken care of, in extreme cases the above code might even
hang the computer.

[14] Forgetting to reserve an extra location in a character array for the
null terminator.

Remember each character array ends with a ‘\0’, therefore its
dimension should be declared big enough to hold the normal
characters as well as the ‘\0’.

Preview from Notesale.co.uk

Page 694 of 728

C Creating
 Libraries

701

Preview from Notesale.co.uk

Page 699 of 728

Appendix E: ASCII Chart 721

1╕ 84
209
╤ 213 ╒

╘212

╞198

╧ 190 ╛196

╡181╪
216

186

═ ═205╔201 ╗ 187╦203

╠ 204 ╣185 ╬
206

╩ ╝ ╚

199

╙ 211

╟ ╫
215

╓
214

╜ 189

╢ 182

╨ 208

╖ 183 ╥
210

188
202

200

─ 179

┌ ─ 218 129

┼
197

├195

┴
193 └192

┐191

┤180

┘
217

┬ 194

Figure E.2

Preview from Notesale.co.uk

Page 711 of 728

724 Let Us C

Preview from Notesale.co.uk

Page 714 of 728

726 Let Us C

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;

HINSTANCE hInst ; // current instance

/* FUNCTION: InitInstance (HANDLE, int
 PURPOSE: Saves instance handle and creates main window
 COMMENTS: In this function, we save the instance handle in a global
 variable and create and display the main program window.
*/
BOOL InitInstance (HINSTANCE hInstance, int nCmdShow, char* pTitle)
{
 char classname[] = "MyWindowClass" ;
 HWND hWnd ;

 WNDCLASSEX wcex ;
 wcex.cbSize = sizeof (WNDCLASSEX) ;
 wcex.style = CS_HREDRAW | CS_VREDRAW ;
 wcex.lpfnWndProc = (WNDPROC) WndProc ;
 wcex.cbClsExtra = 0 ;
 wcex.cbWndExtra = 0 ;
 wcex.hInstance = hInstance ;
 wcex.hIcon = NULL ;
 wcex.hCursor = LoadCursor (NULL, IDC_ARROW) ;
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1) ;
 wcex.lpszMenuName = NULL ;
 wcex.lpszClassName = classname ;
 wcex.hIconSm = NULL ;

 if (!RegisterClassEx (&wcex))
 return FALSE ;

 hInst = hInstance ; // Store instance handle in our global variable

 hWnd = CreateWindow (classname, pTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
 NULL, hInstance, NULL) ;
 if (!hWnd)

Preview from Notesale.co.uk

Page 716 of 728

Appendix G: Boot Parameters 731

 Description Length Typical Values

 Jump instruction 3 EB3C90
 OEM name 8 MSWIN4.1
 Bytes per sector 2 512
 Sectors per cluster 1 64
 Reserved sectors 2 1
 Number of FAT copies 1 2
 Max. Root directory entries 2 512
 Total sectors 2 0
 Media descriptor 1 F8
 Sectors per FAT 2 256

 Sectors per track 2 63
 No. of sides 2 255
 Hidden sectors 4 63
 Huge sectors 4 4192902
 BIOS drive number 1 128
 Reserved sectors 1 1
 Boot signature 1 41
 Volume ID 4 4084677574
 Volume label 11 ICIT
 File system type 8 FAT16

Figure G.1

Let us now take a look at the 32-bit FAT system’s boot sector
contents. These are shown in Figure G.2.

Preview from Notesale.co.uk

Page 721 of 728

