vi

C++: The Complete Reference

16 Inheritance il 419
17 Virtual Functions and Polymorphism 445
18 Templates 461
19 ExceptionHandling 489
20 C++1/OSystemBasics 511
21 C++Filel/O ... o 541
22 Run-Time Type ID and the Casting Operators 569
23 Namespaces, Conversion Functions,and Other
Advanced Topics i 593
24 Introducing the Standard Template Library 625
The Standard Function Library \/
-
25 The C-Based I/O Functionsq - CO .-.\) 695
26 The String and Character Functions a\e 719
27 The Mathematical Fungti te.s 733

28

Time, Date, and muncm@ A_& 743

_The D tion Fun r%‘ ;5:;
P (& tﬁ\i{r aSitlons OC‘Y) 5

The Standard C++ Class Library

32 The Standard C++1/OClasses 783
33 The STL Container Classescccvon... 807
34 The STL Algorithms 835
35 STL Iterators, Allocators, and Function Objects 857
36 TheStringClassccoiiiiiiiio... 877
37 The NumericClassesc..oiiiiiiin. 893
38 Exception Handling and Miscellaneous Classes 921
Applying C++
39 Integrating New Classes: A Custom String Class 931
40 An Object-Oriented Expression Parser 959

Index ... 995

Contents

e\N
P '} 6\’\ Pr@g%ion of C++: The C Subset

1 AnOverviewofC il 3
The Originsof C L 4
CIsaMiddle-Level Language 4
ClsaStructured Language 6
CIs aProgrammer's Language 8
The Formof a CProgram 9
The Library and Linking 10
Separate Compilationl 12
Understanding the .C and .CPP File Extensions 12

2 EXpressionsiiiiiiiiiiiiiia 13
The Five Basic Data Types 14

vii

Xvi

C++: The Complete Reference

Py

18

20

Using Virtual Functions
Early vs. Late Binding

Templates i
Generic Functions oL
A Function with Two Generic Types
Explicitly Overloading a Generic Function
Overloading a Function Template

Using Standard Parameters with Template Functions

Generic Function Restrictions
Applying Generic Functions
A GenericSort ...
Compactingan Arrayo.a..
Generic Classes ... vvvii it e
An Example with Two Generic Data Types

Applying Template Classes: A Generic Array Class

Using Non-Type Arguments with Genex: Clasﬁ

Using Default Arguments with Tem

Explicit Class Spec1ahzat1ox’

The typename and export

e \Eeptlon Han ggli‘g_ ntals
sTypes ...l
ltiple catch Statements

Handhng Derlved Class Exceptions

Exception Handling Options

Catching All Exceptions
Restricting Exceptions
Rethrowing an Exception
Understanding terminate() and unexpected()
Setting the Terminate and Unexpected Handlers

The uncaught_exception() Function

The exception and bad_exception Classes

Applying Exception Handling

e §<§jﬁf‘ ‘Mci‘ AOAY

The C++1/0O System Basics
Old vs. Modern C++1/O i
CH+5treamsot
The C++ Stream Classes ...,

C++'s Predefined Streams
Formatted I/O

B\

8

483

XX CG++: The Complete Reference

2 1S3 8 1) S P 706
printf ... 707
PUtC 710
putchar 710
PULS e 710
<3 0.0 10)74 < T 711
<3 0 =10 U< 711
rewind ... 711
SCANS ... 711
setbuf ... 715
setvbuf 715
sprintf ... 716
SSCANS ... e 716
tmpfile 716
tmpnam 717
ungetc ...y W
vprintf, vfprintf, and vsprintf CO « 18
26 The String and Character Fu e% 719
isalnum N 720
isal ha lO A/L 720
................................... 721
1s;ﬁ /L . 0" 721
\, e isgraph _e~. ../ M. ..o 721
P { e Wag .. 721
.. 722

ispunct ...l 722
ISSPACE oottt 722
ISUPPET .ot 723
isxdigit ... 723
MEeMChT ... e 723
MEMCINP ottt ettt iee e e et e e iiiee e 723
IMNEIMCPY + et vee ettt tiee et et iiie e 724
INEIMINIOVE .« o e ettt ettt e ettt et ettt e eeeee s 724
MEMSet .. e 725
Strcat .. 725
StrChr .. 725
stremp ... 726
Streoll ... 726
SICPY oo 727
SIICSpN ... 727
L] 0 <) o 0 N 727

StElen .. 727

XXiv. C++: The Complete Reference

PUb 798
putback oo oo 798
rdstate ... i 798
read ... 799
readsome ...l 799
seekgandseekpl 800
setf . 801
setstate i 801
Str 802
stringstream, istringstream, ostringstream 802
sync_with_stdio oo ool 803
tellgandtellpl 804
unsetf ... 804
width ... 804

W o e 805
33 The STL Contai Classesc.... ~, .u%7
T hontainer Classes .- eGP
Ditset ..o, esa- 810
?etque N O‘. A/L 2};
1IST /N V.. N\, . . R
m% Om 0 818
\,-\e\Nmult@ ?p o 50 gig
multiset. . .. £. . . e
P ((% . o 825

Il < LS 1<) 1< 826
SOt i 827
StaCK .. 829
VO ottt e 830

34 TheSTL Algorithms 835
adjacent_find oo il 836
binary_search o i 836
COPY t et 837
copy_backwardol 837
COUNE .ttt e e et e et e e 837
COUNt_If o o 838
equal ... 838
equal_range il 838
filland fill n ... 839
find ..o 839
find_end ... 839

find_first of 839

Preface

o ¥

a\e.©

This is the third edition of C++: The Co xg the yearq that have transpired
since the second edition, C++ has any cha e@’A&the most important

is that it is now a stand e In No ber ,the ANSI/ISO
Commlttee eh ith task of staRd %u i ++,passed out of committee an
Inter rd for C++ is €yw¥ marked the end of a very long, and at
eXcon ntlous, mber of the ANSI/ISO C++ committee, I watched
the progress of the? ndard, following each debate and argument. Near the
end, there was a world-wide, daily dialogue, conducted via e-mail, in which the pros

and cons of this or that issue were put forth, and finally resolved. While the process
was longer and more exhausting than anyone at first envisioned, the result was worth
the trouble. We now have a standard for what is, without question, the most important
programming language in the world.

During standardization, several new features were added to C++. Some are
relatively small. Others, like the STL (Standard Template Library) have ramifications
that will affect the course of programming for years to come. The net effect of the
additions was that the scope and range of the language were greatly expanded. For
example, because of the addition of the numerics library, C++ can be more conveniently
used for numeric processing. Of course, the information contained in this edition

XXix

2 C++: The Complete Reference

support object-oriented programming (OOP). However, the C-like aspects of
C++ were never abandoned, and the ANSI/ISO C standard is a base document for
the International Standard for C++. Thus, an understanding of C++ implies an
understanding of C.

In a book such as this Complete Reference, dividing the C++ language into two
pieces—the C foundation and the C++-specific features—achieves three major benefits:

1. The dividing line between C and C++ is clearly delineated.
2. Readers already familiar with C can easily find the C++-specific information.
3. It provides a convenient place in which to discuss those features of C++ that

relate mostly to the C subset.

Understanding the dividing line between C and C++ is important because both are
widely used languages and it is very likely that you will be called upon to write or
maintain both C and C++ code. When working on C code, you need to know whe
ends and C++ begins. Many C++ programmers will, from time to time, be req;\;ﬁ

write code that is limited to the "C subset." This will be espec1 lly tru
systems programming and the maintenance of ex1st1ng a & wmg the
difference between C and C++ is 51mply part of h profess1onal C++
programmer.

A clear understanding of C i le when C n de into C++. To
do thisina professmnal-§\ n’ d knowled ﬁ_ red For example,
without a tho ding o tis not possible to efficiently

con ténsive C pr

P ‘ eaders a ag(overmg the C-like features of C++ in their own
section makes it eas perienced C programmer to quickly and easily find
information about C++ without having to wade through reams of information that he
or she already knows. Of course, throughout Part One, any minor differences between
C and C++ are noted. Also, separating the C foundation from the more advanced,
object-oriented features of C++ makes it possible to tightly focus on those advanced
features because all of the basics will have already been discussed.

Although C++ contains the entire C language, not all of the features provided by
the C language are commonly used when writing "C++-style" programs. For example,
the C I/O system is still available to the C++ programmer even though C++ defines its
own, object-oriented version. The preprocessor is another example. The preprocessor is
very important to C, but less so to C++. Discussing several of the "C-only" features in
Part One prevents them from cluttering up the remainder of the book.

The C subset described in Part One constitutes the core of C++ and the foundation
upon which C++'s object-oriented features are built. All the features described here
are part of C++ and available for your use.

| Part One of this book is adapted from my book C: The Complete Reference
— (Osborne/McGraw-Hill). If you are particularly interested in C, you will find this
book helpful.

Chapter 1: An Overview of C 9

Compilers

File utilities

B Performance enhancers

Real-time executives

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die
out. Such has not been the case. First, not all programs require the application of the
object-oriented programming features provided by C++. For example, applications
such as embedded systems are still typically programmed in C. Second, much of the
world still runs on C code, and those programs will continue to be enhanced a y
maintained. While C's greatest legacy is as the foundation for C++, it C]@‘l’q
be a vibrant, widely used language for many years to com

oresa
___| The Form of 551 AA—
e

Table 1-2 hsts the a@ al C syntax, form the C
progra f these 27 ef1 y the original version of C. These
g\fae y the : enum, const, signed, void, and volatile.
fcourse p anguage
auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while
Table 1-2. The 32 Keywords Defined by Standard C

16 C++: The Complete Reference

You can apply the modifiers signed, short, long, and unsigned to integer base
types. You can apply unsigned and signed to characters. You may also apply long to
double. Table 2-1 shows all valid data type combinations, along with their minimal
ranges and approximate bit widths. (These values also apply to a typical C++
implementation.) Remember, the table shows the minimum range that these types will
have as specified by Standard C/C++, not their typical range. For example, on
computers that use two's complement arithmetic (which is nearly all), an integer will
have a range of at least 32,767 to -32,768.

The use of signed on integers is allowed, but redundant because the default integer
declaration assumes a signed number. The most important use of signed is to modify
char in implementations in which char is unsigned by default.

The difference between signed and unsigned integers is in the way that the high-
order bit of the integer is interpreted. If you specify a signed integer, the compiler
generates code that assumes that the high-order bit of an integer is to be used as a sign
flag. If the sign flag is 0, the number is positive; if it is 1, the number is negative.

In general, negative numbers are represented usmg the two’s complement a \é‘
which reverses all bits in the number (except the sign flag), adds 1 to
sets the sign flag to 1.

Signed integers are important for a great ma éﬁa they only have half
the absolute magnitude of their unmgneﬂ I{ ample, Te is 32,767:
011111111111‘(1@ -‘ 'X_O
ft %’ b1 were set er would be interpreted as —1. However,
clare this t d int, the number becomes 65,535 when the high-

order bit is set to 1

| 1dentifier Names

In C/C++, the names of variables, functions, labels, and various other user-defined

objects are called identifiers. These identifiers can vary from one to several characters.
The first character must be a letter or an underscore, and subsequent characters must
be either letters, digits, or underscores. Here are some correct and incorrect identifier

names:
Correct Incorrect
Count lcount
test23 hi'there

high_balance high...balance

Chapter 2: Expressions

In C, identifiers may be of any length. However, not all characters will necessarily
be significant. If the identifier will be involved in an external link process, then at
least the first six characters will be significant. These identifiers, called external names,
include function names and global variables that are shared between files. If the
identifier is not used in an external link process, then at least the first 31 characters
will be significant. This type of identifier is called an internal name and includes the
names of local variables, for example. In C++, there is no limit to the length of an
identifier, and at least the first 1,024 characters are significant. This difference may
be important if you are converting a program from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count, Count,
and COUNT are three separate identifiers.

An identifier cannot be the same as a C or C++ keyword, and should not have the
same name as functions that are in the C or C++ library.

___| variables \)\4

As you probably know, a variable is a named location in mem at to hold a
value that may be modified by the program. All Varlab &clared before they

can be used. The general form of a declaﬁr@
type variable_list; _‘(O _‘ IX‘O Afl

Here ahd data t modlflers, and variable_list may consist of
m e 1dent1f a@& y commas. Here are some declarations:

inti,j,l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, in C/C++ the name of a variable has nothing to do with its type.

Where Variables Are Declared

Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables

Variables that are declared inside a function are called local variables. In some C/C++
literature, these variables are referred to as automatic variables. This book uses the more

24 C++: The Complete Reference

void sp_to_dash(const char *str)
{
while(*str) {
if(*str=="") printf("%c", '-");
else printf("%c", *str);
str++;

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

[* This is wrong. */

void sp_to_dash(const char *str) O \)K

{ while(*str) { Sa\e C
if(*str=="") *str = '-'; /* can't do this; str is conte

printf("%c", *str);

sir++ N o £ ,LO AA,

P (l\@\lunctlons % library use const in their parameter declarations.
F 1

or example, the str n(on has this prototype:
size_t strlen(const char *str);

Specifying str as const ensures that strlen() will not modify the string pointed to by str.
In general, when a standard library function has no need to modify an object pointed to
by a calling argument, it is declared as const.

You can also use const to verify that your program does not modify a variable.
Remember, a variable of type const can be modified by something outside your
program. For example, a hardware device may set its value. However, by declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

volatile

The modifier volatile tells the compiler that a variable's value may be changed in ways
not explicitly specified by the program. For example, a global variable's address may
be passed to the operating system's clock routine and used to hold the real time of the

C++: The Complete Reference

the outcome of a relational or logical operation is true or false. But since this
automatically converts into 1 or 0, the distinction between C and C++ on this issue is
mostly academic.

Table 2-5 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1's and 0's.

p q p&&q pllqg 'p
0 0 0 0 1
0 1 0 1 1
1 1 1 1 0
1 0 0 1 0

Both the relational and logical operators are lower in precedence than the
arithmetic operators. That is, an expression like 10 > 1+12 is evaluated as 6 T K
written 10 > (1+12). Of course, the result is false. C .

You can combine several operations together into Oéﬂx@m as shown here:

o\e

1055 && 1(10<9) | | 3<=4 N
i :eg\ i A (\AA—
Y
Relati l'\ae tor e ’(3 O

% ‘@L pad

Action

Greater than

>= Greater than or equal
< Less than

<= Less than or equal
== Equal

I= Not equal

Logical Operators

Operator Action

&& AND

Il OR

! NOT

Table 2-5. Relational and Logical Operators

42

C++: The Complete Reference

0&&0110

is false. However, when you add parentheses to the same expression, as shown here,
the result is true:

'0&&0) 110
Remember, all relational and logical expressions produce either a true or false

result. Therefore, the following program fragment is not only correct, but will print
the number 1.

int x;

X =100;

printf("%d", x>10); K
o\

Bitwise Operators \e C

Unlike many other languages, C/C++ S% &L ement of bitwise

operators. Since C was de51gned asse - bly, &:ge for most
programming tasks, 1t le 0 supp that can be done
in assembler, inclugi ns onb Blt gper efers to testing, setting, or
shifting th X@ 1n a byte or o respond to the char and int data

@\if s. You ca operatlons on float, double, long double,

g,ﬁ ol, or othe\?ar‘lg) types Table 2-6 lists the operators that apply to

bitwise operations. §hese opeTations are applied to the individual bits of the
operands.

Operator Action

& AND

| OR

A Exclusive OR (XOR)

~ One's complement (NOT)

Table 2-6. Bitwise Operators

50

C++: The Complete Reference

C/C++ defines (using typedef) a special type called size_t, which corresponds
loosely to an unsigned integer. Technically, the value returned by sizeof is of type
size_t. For all practical purposes, however, you can think of it (and use it) as if it were
an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the
built-in data types. For example, imagine a database program that needs to store six
integer values per record. If you want to port the database program to a variety of
computers, you must not assume the size of an integer, but must determine its actual
length using sizeof. This being the case, you could use the following routine to write a
record to a disk file:

[* Write 6 integers to a disk file. */
void put_rec(int rec[6], FILE *fp)
{

int len; uK

len = fwrite(rec, sizeof(int)*6, 1, fp);

if(len != 1) printf("Write Error"); a\e -CO ’

} x_eS
Coded as shown, put_ r c s s cor c A\lonment including
those that useéNa'rﬁZB {“

One fi eof is evaluat e, and the value it produces is
ant w1th1n

The Comma Op a?

The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
becomes the value of the total comma-separated expression. For example,

X = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.
Essentially, the comma causes a sequence of operations. When you use it on the
right side of an assignment statement, the value assigned is the value of the last
expression of the comma-separated list.
The comma operator has somewhat the same meaning as the word "and" in normal
English as used in the phrase "do this and this and this."

f

re touse a
h1s slows e SLT
ﬂoatmg point operfgtiont]

Chapter 3: Statements

to true and any zero value converts to false, there is no practical difference between C
and C++ on this point.

Selection Statements

C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.

The general form of the if statement is

if (expression) statement;
else statement;

where a statement may consist of a single statement, a block of statements nﬁ&
(in the case of empty statements). The else clause is optional. .

If expression evaluates to true (anything other than ¥ r block that
forms the target of if is executed; otherwis t@ ock that is the target of
else will be executed, if it exists. Remem&@ de ass d with if or the
code associated with else exe K

In C, the conditio a%k controlhng &st p e a scalar result. A scalar
is e1ther an wara ter, pointe ati int type. In C++, it may also be of

) % mber to control a conditional statement

onsiderably. (It takes several instructions to perform
#kes relatively few instructions to perform an integer or

character operation.)

The following program contains an example of if. The program plays a very simple
version of the "guess the magic number" game. It prints the message ** Right ** when
the player guesses the magic number. It generates the magic number using the
standard random number generator rand(), which returns an arbitrary number
between 0 and RAND_MAX (which defines an integer value that is 32,767 or larger).
rand() requires the header file stdlib.h. (A C++ program may also use the new-style
header <cstdlib>.)

[* Magic number program #1. */
#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int magic; /* magic number */

59

Chapter 3: Statements

#include <stdio.h>
#include <stdlib.h>

int main(void)

{
int magic; /* magic number */
int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** ");
printf("%d is the magic number", magic); UK
} CO .
else _if(gliess > magic). N Sa\e .
o o NQ\.G
return O -‘(O O—‘
S N \eWN 9e 00
TI‘E Alternati o

You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;

However, the target of both if and else must be a single expression—not another
statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Expl ? Exp2 : Exp3

where Expl, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined as follows: Exp1 is evaluated. If it is true,
Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated and its value becomes the value of the expression. For example,
consider

63

66 C++: The Complete Reference

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right **);
printf("%d is the magic number", magic);
}
else
guess > magic ? printf("High") : printf("Low");

return O;

Here, the ? operator displays the proper message based on the outcorm

. MK
guess > magic. Sa\e
The Conditional Expressmn Q‘e A:)’
an use any valid

Sometimes newcomers used by
expression t to co tr 1 he e oper re not restricted to
expressm the relatlonal jica erators (as is the case in languages

ascal The e st simply evaluate to either a true or false
r nonzero) V@ Qmple the following program reads two integers from
the keyboard and didplays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

[* Divide the first number by the second. */
#include <stdio.h>

int main(void)

{

int a, b;

printf("Enter two numbers: ");
scanf("%d%d", &a, &b);

if(b) printf("%d\n", a/b);
else printf("Cannot divide by zero.\n");

return O;

78

C++: The Complete Reference

First, ch is initialized to null. As a local variable, its value is not known when
wait_for_char() is executed. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute if the condition is false to begin with.
This feature may eliminate the need to perform a separate conditional test before the
loop. The pad() function provides a good illustration of this. It adds spaces to the end
of a string to fill the string to a predefined length. If the string is already at the desired
length, no spaces are added.

#include <stdio.h>
#include <string.h>

void pad(char *s, int length); K
int main(f/oid) | _CO ‘u
a\e
{ char str[80]; NO‘GS A&
sggiasyéstr, "this is aw;om O" ,X_O
éﬂ'% g M(str)): e lll

P pag

[* Add spaces to the end of a string. */
void pad(char *s, int length)
{

intl;
| = strlen(s); /* find out how long it is */

while(I<length) {
s[l] =""; /* insert a space */
++;
}
s[l]= "\0'; /* strings need to be
terminated in a null */

Chapter 4: Arrays and Null-Terminated Strings

matrix[0][i]==matrix[2][i]) return matrix[O][i];

[* test diagonals */
if(matrix[0][0]==matrix[1][1] &&
matrix[1][1]==matrix[2][2])
return matrix[0][O];

if(matrix[0][2]==matrix[1][1] &&
matrix[1][1]==matrix[2][0])

return matrix[0][2];

return '’

111

122 C++: The Complete Reference

Arrays of Pointers

Pointers may be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the
pointer array, write

X[2] = &var;

To find the value of var, write

- vk
If you want to pass an array of pointers into a function, é‘:\,@ ug!hgame

method that you use to pass other arrays—51mp with the array name

without any indexes. For example afu 1ve ar looks
like this: &WX—

v0|dd|sp+a &D
preN ang 66 °

for(t=0; t<10; t++
printf("%d ", *q[t]);

Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to
integers. Therefore you need to declare the parameter q as an array of integer pointers,
as just shown. You cannot declare q simply as an integer pointer because that is not
what it is.

Pointer arrays are often used to hold pointers to strings. You can create a function
that outputs an error message given its code number, as shown here:

void syntax_error(int num)
{
static char *err[] ={
"Cannot Open File\n",
"Read Error\n",

Chapter 6: Functions 139

by other parts of the program. Stated another way, the code and data that are defined
within one function cannot interact with the code or data defined in another function
because the two functions have a different scope.

Variables that are defined within a function are called local variables. A local
variable comes into existence when the function is entered and is destroyed upon
exit. That is, local variables cannot hold their value between function calls. The only
exception to this rule is when the variable is declared with the static storage class
specifier. This causes the compiler to treat the variable as if it were a global variable
for storage purposes, but limits its scope to within the function. (Chapter 2 covers
global and local variables in depth.)

In C (and C++) you cannot define a function within a function. This is why neither
C nor C++ are technically block-structured languages.

___| Function Arguments "4

If a function is to use arguments, it must declare variables that accept t e e
of the arguments. These variables are called the formal parame E ion.
They behave like other local variables inside the funct1 ¢ated upon entry

into the function and destroyed upon ex it. 10w1 function, the
parameter declarations occur after t ?i_
[* Return,1 if CW 6&‘ 9 0 oth séZ
int s{,c\ rc) ﬁ
P ({ While(*s) ? ge
=c) return 1;

if(*s=
else s++;
return O;

}

The function is_in() has two parameters: s and c. This function returns 1 if the
character c is part of the string s; otherwise, it returns 0.

As with local variables, you may make assignments to a function's formal
parameters or use them in an expression. Even though these variables perform
the special task of receiving the value of the arguments passed to the function,
you can use them as you do any other local variable.

Call by Value, Call by Reference

In a computer language, there are two ways that arguments can be passed to a
subroutine. The first is known as call by value. This method copies the value of an

152 C++: The Complete Reference

#include <stdio.h>
char *match(char c, char *s); /* prototype */

int main(void)

{
char s[80], *p, ch;

gets(s);
ch = getchar();
p = match(ch, s);

if(*p) /* there is a match */

printf("%s ", p);
else

printf("No match found."); K
return 0; \e CO ‘u
}

This program reads a string and If the c ﬁ e string, the
program prints the strmﬁfv@ t of match prints No match found.
g e vo
of void's use declare functions that do not return values. This

prevents their use any expression and helps avert accidental misuse. For example,
the function print_vertical() prints its string argument vertically down the side of
the screen. Since it returns no value, it is declared as void.

void print_vertical(char *str)
{
while(*str)
printf("%c\n", *str++);

}

Here is an example that uses print_vertical().

#include <stdio.h>

void print_vertical(char *str); /* prototype */

Chapter 6: Functions

int main(int argc, char *argv[])

{
if(argc > 1) print_vertical(argv[1]);

return O;

}

void print_vertical(char *str)
{
while(*str)
printf("%c\n", *str++);

One last point: Early versions of C did not define the void keyword. Thus, 1n
early C programs, functions that did not return values simply defaulted to typg i M
Therefore, don't be surprised to see many examples of this in older co@O

What Does main() Return?
The main() function returns an 1nt s¢ g proce A%_ generally the
operating system. Retur o main() i 1 m calling exit()
with the same va, f oes no c1t alue, the value passed
to the calli ‘ s techmcally actlce most C/C++ compilers

Ptfet return 0, bu@@t this 1f portablhty is a concern.
___|Recu rsmn

In C/C++, a function can call itself. A function is said to be recursive if a statement in
the body of the function calls itself. Recursion is the process of defining something in
terms of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(), which computes the factorial of
an integer. The factorial of a number n is the product of all the whole numbers between
1 and n. For example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative
equivalent are shown here:

/* recursive */
int factr(int n) {
int answer;

if(n==1) return(1);
answer = factr(n-1)*n; /* recursive call */
return(answer);

153

160 C++: The Complete Reference

function, but without the overhead associated with a function call. For this reason,
inline code is often used instead of function calls when execution time is critical.
Inline code is faster than a function call for two reasons. First, a CALL instruction
takes time to execute. Second, if there are arguments to pass, these have to be placed
on the stack, which also takes time. For most applications, this very slight increase in
execution time is of no significance. But if it is, remember that each function call uses
time that would be saved if the function's code were placed in line. For example, the
following are two versions of a program that prints the square of the numbers from 1
to 10. The inline version runs faster than the other because the function call adds time.

in line function call

#include <stdio.h> #include <stdio.h>
int sgr(int a);

int main(void) int main(void) UK
{ int x; { int x; \e CO '

for(x=1; x<11; ++Xx) for(x=1;
PHNtE"%d", X*X); /mg " ’LOA‘,L

mumo
P €e\,‘e P age lg?)int sqr(int a)

{

return a*a;

}

| In C++, the concept of inline functions is expanded and formalized. In fact, inline

functions are an important component of the C++ language.

164

C++: The Complete Reference

Name 30 bytes
Street 40 bytes
City 20 bytes

State 3 bytes

ZIP 4bytes

cO-
.
Figure 7-1. The addr_info structure i Bx'

If you only nge né‘xxg‘e V&iﬂ@f?\e @ﬁlre

means L\, \
P

w1 2Q°

char name[30

char street[40];

char city[20];

char state[3];

unsigned long int zip;
} addr_info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct struct-type-name {
type member-name;
type member-name;
type member-name;

} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.

166

___| Arrays of Structures ()‘.e

C++: The Complete Reference

struct {
int a;
int b;
Xy
x.a=10;
y = X; [* assign one structure to another */

printf("%d", y.a);

return O;

After the assignment, y.a will contain the value 10.

C
s\e

Perhaps the most com res isin fi’ es To declare
an array of structu y It first d st then declare an array
Varlable 0 t‘ or example ng “element array of structures of
dafifted earher
struct addr addr Efo[lOO]

This creates 100 sets of variables that are organized as defined in the structure addr.
To access a specific structure, index the structure name. For example, to print the
ZIP code of structure 3, write

printf("%d", addr_info[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

___| Passing Structures to Functions

This section discusses passing structures and their members to functions.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

Passing Structure Members to Functions

When you pass a member of a structure to a function, you are actually passing
the value of that member to the function. Therefore, you are passing a simple
variable (unless, of course, that element is compound, such as an array). For
example, consider this structure:

struct fred
{
char x;
inty;
float z;
char s[10];
} mike;

Here are examples of each member being passed to a function: O uK
func(mike.x); /* passes character value of x */ \e -C
func2(mike.y); /* passes integer value of y */ tes
func3(mike.z); /* passes float value of
func4(mike.s); /* passes addre trm 0 A’L
func(mike.s[2]); /* pasﬂ!@mue of s[2] */ .‘ l

% &@ ss the addy @ (Ql structure member, put the & operator

e structu ample to pass the address of the members of the
structure mike, w

func(&mike.x); /* passes address of character x */
func2(&mike.y); /* passes address of integery */
func3(&mike.z); /* passes address of float z */
func4(mike.s); /* passes address of string s */
func(&mike.s[2]); /* passes address of character s[2] */

Remember that the & operator precedes the structure name, not the individual
member name. Note also that s already signifies an address, so no & is required.

Passing Entire Structures to Functions

When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. Of course, this means that any changes

167

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types

places the address of the structure person into the pointer p.
To access the members of a structure using a pointer to that structure, you must
use the —> operator. For example, this references the balance field:

p->balance

The —> is usually called the arrow operator, and consists of the minus sign followed
by a greater-than sign. The arrow is used in place of the dot operator when you are
accessing a structure member through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which
prints the hours, minutes, and seconds on your screen using a software timer.

[* Display a software timer. */
#include <stdio.h>

#define DELAY 128000

struct my_time {
int hours;

s oD ¢ 10A
W A O
@M)/gruct m\;>e 20

update(str
void delay(v0|d)

int main(void)

{

struct my_time systime;

systime.hours = 0;
systime.minutes = 0;
systime.seconds =0

for(;;) {
update(&systime);
display(&systime);
}

return O;

171

172 C++: The Complete Reference

void update(struct my_time *t)

{

t->seconds++;

if(t->seconds==60) {
t->seconds = 0;
t->minutes++;

}

if(t->minutes==60) {
t->minutes = 0;
t->hours++;

}

if(t->hours==24) t->hours = 0; K
delay();
void display(struct my_time *t) Sa'
{ NQ\.G
printf("%02d:" t >ho rs)
printf("%02d:" m&
r{tfi? ds)
P v0|d deIay(vmd)P ag

longint t;

[* change this as needed */
for(t=1; t<DELAY; ++1) ;
}

The timing of this program is adjusted by changing the definition of DELAY.

As you can see, a global structure called my_time is defined but no variable is
declared. Inside main(), the structure systime is declared and initialized to 00:00:00.
This means that systime is known directly only to the main() function.

The functions update() (which changes the time) and display() (which prints
the time) are passed the address of systime. In both functions, their arguments are
declared as a pointer to a my_time structure.

Inside update() and display(), each member of systime is accessed via a pointer.
Because update() receives a pointer to the systime structure, it can update its value.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 173

For example, to set the hours back to 0 when 24:00:00 is reached, update() contains
this line of code:

if(t->hours==24) t->hours = 0;

This tells the compiler to take the address of t (which points to systime in main())
and to reset hours to zero.

Remember, use the dot operator to access structure elements when operating on
the structure itself. When you have a pointer to a structure, use the arrow operator.

___| Arrays and Structures Within Structures

A member of a structure may be either a simple or compound type. A simple
member is one that is of any of the built-in data types, such as integer or charact
You have already seen one type of compound element: the character ar (¥
addr. Other compound data types include one-dimensional and mu
arrays of the other data types and structures.

A member of a structure that is an array is tr ght expect from

the earlier examples. For example, conmﬂl@ = A/L

et O
\pﬁé @\g aQ®° 920

To reference integer 3,7 in a of structure y, write

y-a[3][7]

When a structure is a member of another structure, it is called a nested structure.
For example, the structure address is nested inside emp in this example:

struct emp {
struct addr address; /* nested structure */
float wage;

} worker;

Here, structure emp has been defined as having two members. The first is a structure
of type addr, which contains an employee's address. The other is wage, which holds
the employee's wage. The following code fragment assigns 93456 to the zip element
of address.

Chapter 7: Structures, Unions, Enumerations, and User-Defined Types 175

Bit Meaning When Set

Change in clear-to-send line
Change in data-set-ready
Trailing edge detected
Change in receive line
Clear-to-send
Data-set-ready

Telephone ringing

N N O B W kO

Received signal

You can represent the information in a status byte using the following bit-field: K

struct status_type { \e CO .
. .

unsigned delta_cts: 1;
unsigned delta_dsr: 1; es

unsigned tr_edge: 1, N Al
unsigned delta_rec: m IX—O
unsigned cts O O"

Q
‘?‘am*v age 20

You might use a routine similar to that shown here to enable a program to determine
when it can send or receive data.

status = get_port_status();
if(status.cts) printf("clear to send");
if(status.dsr) printf("data ready");

To assign a value to a bit-field, simply use the form you would use for any other type
of structure element. For example, this code fragment clears the ring field:

status.ring = 0;

As you can see from this example, each bit-field is accessed with the dot operator.
However, if the structure is referenced through a pointer, you must use the —> operator.

184 C++: The Complete Reference

struct s {
char ch;
inti;
double f;

}s_var;

Here, sizeof(s_var) is at least 13 (8 + 4 + 1). However, the size of s_var might be
greater because the compiler is allowed to pad a structure in order to achieve word
or paragraph alignment. (A paragraph is 16 bytes.) Since the size of a structure may
be greater than the sum of the sizes of its members, you should always use sizeof
when you need to know the size of a structure.

Since sizeof is a compile-time operator, all the information necessary to comp te
the size of any variable is known at compile time. This is especially meaningfu UK
unions, because the size of a union is always equal to the size of its la@GI

For example, consider a\e

union u { NO‘@S A&
int i; m -‘ 'X_O
doublaf \N " O (@)
Here, the sizeof(u agt run time, it does not matter what u_var is actually
holding. All that matters is the size of its largest member, because any union must

char ch;
A T
be as large as its largest element.

___ | typedef

You can define new data type names by using the keyword typedef. You are not
actually creating a new data type, but rather defining a new name for an existing
type. This process can help make machine-dependent programs more portable. If
you define your own type name for each machine-dependent data type used by your
program, then only the typedef statements have to be changed when compiling for a
new environment. typedef also can aid in self-documenting your code by allowing
descriptive names for the standard data types. The general form of the typedef
statement is

196 C++: The Complete Reference

Code Format

%i Signed decimal integers

Y%oe Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

Y%f Decimal floating point

%g Uses %e or %f, whichever is shorter
%G Uses %E or %F, whichever is shorter
%0 Unsigned octal

%s String of characters

%u Unsigned decimal integers

Yox Unsigned hexadecimal (lowercase letters) O uK
.
%X Unsigned hexadecimal (uppercaﬁi\t@)

%p Displays a p01 nte
%n The as Qnt must e@u
mber of

is spec1f c.%ses h
aracters wi@ f@) e put into that integer.

e ! e
F’(/e\,\ Pri e %
Table 8-2. primkf() Format Specifiers (continued)

Printing Characters

To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers

You may use either %d or %i to indicate a signed decimal number. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned value, use %u.

The %f format specifier displays numbers in floating point.

200 C++: The Complete Reference

#include <stdio.h>

int main(void)

{

}

inti;

[* display a table of squares and cubes */

for(i=1; i<20; i++)

printf("%8d %8d %8d\n", i, i*i, i*i*i);

return O;

A sample of its output is shown here:

O©CO~NOOUA~, WNPRF

1

4

9
16
25
36
49
64

qeets

144
3 169
14 196
15 225
16 256
17 289
18 324
19 361

2197
2744
3375
4096
4913
5832
6859

The Precision Specifier

The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the
type of data it is applied to.

When you apply the precision specifier to floating-point data using the %f, %e,
or %E specifiers, it determines the number of decimal places displayed. For example,

Chapter 8: C-Style Console 1/0 203

R

printf("%*.*f", 10, 4, 123.3);

0

Figure 8-1. How the * is matched to its value

___ | scanf()

scanf() is the general-purpose console input routine. It can read all the built-in
data types and automatically convert numbers into the proper internal format. It i
much like the reverse of printf(). The prototype for scanf() is k

int scanf(const char *control_string, ...); 5 \e C
The scanf() function returns the nur?é% @‘aeems sygce ﬁlm ssigned a
value. If an error occurs ca The c tr ines how
values are read 1nt t e% omted t]g t 1st.
The co ists of th %at of characters:
P (e: mat sp?

® White-spac® characters
B Non-white-space characters

Let's take a look at each of these now.

Format Specifiers

The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list. Let's look
at some examples.

Inputting Numbers

To read an integer, use either the %d or %i specifier. To read a floating-point number
represented in either standard or scientific notation, use %e, %f, or %g.

You can use scanf() to read integers in either octal or hexadecimal form by using
the %o and %x format commands, respectively. The %x may be in either upper- or

211

212 C++: The Complete Reference

his chapter describes the C file system. As explained in Chapter 8, C++ supports

two complete I/O systems: the one inherited from C and the object-oriented

system defined by C++. This chapter covers the C file system. (The C++ file
system is discussed in Part Two.) While most new code will use the C++ file system,
knowledge of the C file system is still important for the reasons given in the preceding
chapter.

___| ¢ Versus C++ File 1/0

There is sometimes confusion over how C's file system relates to C++. First, C++
supports the entire Standard C file system. Thus, if you will be porting older C code
to C++, you will not have to change all of your I/O routines right away. Second, C++
defines its own, object-oriented I/O system, which includes both I/O functions and
I/0O operators. The C++1/0 system completely duplicates the functionality of the C
I/0 system and renders the C file system redundant. While you will usually wa

use the C++1/0 system, you are free to use the C file system if you lik

most C++ programmers elect to use the C++ /O system for rﬁes tRa made

clear in Part Two of this book. es

IStreams and {J N ﬁ
Before begl ssion of 5}! t is necessary to know the
if eb n the terms s The C I/0 system supplies a consistent
to the pr as; sgupendent of the actual device being accessed. That
is, the C1I/0O systektp a level of abstraction between the programmer and the

device. This abstraction is called a stream and the actual device is called a file. It is
important to understand how streams and files interact.

| The concept of streams and files is also important to the C++ I/O system discussed
‘ in Part Two.

| streams

The C file system is designed to work with a wide variety of devices, including
terminals, disk drives, and tape drives. Even though each device is very different, the
buffered file system transforms each into a logical device called a stream. All streams
behave similarly. Because streams are largely device independent, the same function
that can write to a disk file can also be used to write to another type of device, such as
the console. There are two types of streams: text and binary.

214 C++: The Complete Reference

If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a
consistent interface. You need only think in terms of streams and use only one file
system to accomplish all I/O operations. The I/O system automatically converts the
raw input or output from each device into an easily managed stream.

___| File System Basics

The C file system is composed of several interrelated functions. The most common of
these are shown in Table 9-1. They require the header stdio.h. C++ programs may also
use the new-style header <cstdio>.

Name
fopen()
fclose()

pute()
fputc()

gete()

Function

Opens a file. O uK

Closes a file.

e.C
Writes ﬁ Qt@&a\

w &7 o@ﬂsac N pAY

fgete() \e tc().
V) (\, age s a string from a file.
fputs() P Writes a string to a file.
fseek() Seeks to a specified byte in a file.
ftell() Returns the current file position.
rintf() Is to a file what printf() is to the console.
p
fscanf() Is to a file what scanf() is to the console.
feof() Returns true if end-of-file is reached.
ferror() Returns true if an error has occurred.
rewind() Resets the file position indicator to the
beginning of the file.
remove() Erases a file.
fflush() Flushes a file.
Table 9-1. Commonly Used C File-System Functions

Chapter 9: File 1/0

and fclose(). It reads characters from the keyboard and writes them to a disk file until
the user types a dollar sign. The filename is specified from the command line. For
example, if you call this program KTOD, typing KTOD TEST allows you to enter lines
of text into the file called TEST.

[* KTOD: A key to disk program. */
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv([])

{
FILE *fp;
char ch;

if(argc!=2) {

printf("You forgot to enter the filename.\n"); O UK

exit(1); .

) S G
o\
if((fpffc;p?%n(arg\;[l], "w;?l)==l:IULL) { O‘e
ST YO ¢ 10
P(é\{"\e\N ge 252
ch= getch@ a

putc(ch, fp),
} while (ch I='$");

fclose(fp);

return O;

}

The complementary program DTOS reads any text file and displays the contents on
the screen.

[* DTOS: A program that reads files and displays them
on the screen. */

#include <stdio.h>

#include <stdlib.h>

219

Chapter 9: File 1/0 221

problems, the C file system includes the function feof(), which determines when the
end of the file has been encountered. The feof() function has this prototype:

int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0.
Therefore, the following routine reads a binary file until the end of the file is
encountered:

while(!feof(fp)) ch = getc(fp);
Of course, you can apply this method to text files as well as binary files.

The following program, which copies text or binary files, contains an example of
feof(). The files are opened in binary mode and feof() checks for the end of the file.

#include <stdio.h>

#include <stdlib.h> tes
|nt main(int argc, char *argv[]) m NO

* A

printf("You Porgot to enter a filename.\n");
exit(1);
}

I* Copy afile. */ \e ‘CO ‘\)

if((in=fopen(argv[1], "rb"))==NULL) {
printf("Cannot open source file.\n");
exit(1);

}

if((out=fopen(argv[2], "wb")) == NULL) {
printf("Cannot open destination file.\n");
exit(1);

}

[* This code actually copies the file. */
while(!feof(in)) {
ch = getc(in);

234 C++: The Complete Reference

The Console 1/0 Connection

Recall from Chapter 8 that there is little distinction between console I/O and file I/O.
The console I/O functions described in Chapter 8 actually direct their I/O operations to
either stdin or stdout. In essence, the console I/O functions are simply special versions
of their parallel file functions. The reason they exist is as a convenience to you, the
programmer.

As described in the previous section, you can perform console I/O using any of the
file system functions. However, what might surprise you is that you can perform disk
file I/ O using console I/O functions, such as printf()! This is because all of the console
I/0 functions operate on stdin and stdout. In environments that allow redirection of
I/0, this means that stdin and stdout could refer to a device other than the keyboard
and screen. For example, consider this program:

#include <stdio.h>

int main(void)

{ \e CO
char str[80]; 5
printf("Enter a string: *); m N

gets(str); \N _‘
prlntf(str) 26’(

G padP

Assume that this program is called TEST. If you execute TEST normally, it displays
its prompt on the screen, reads a string from the keyboard, and displays that string on
the display. However, in an environment that supports I/O redirection, either stdin,
stdout, or both could be redirected to a file. For example, in a DOS or Windows
environment, executing TEST like this:

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST like
this:

TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
When a program terminates, any redirected streams are reset to their default status.

238 C++: The Complete Reference

C/C++ program. These are called preprocessor directives, and although not
actually part of the C or C++ language per se, they expand the scope of the
programming environment. This chapter also examines comments.

You can include various instructions to the compiler in the source code of a

___| The Preprocessor

Before beginning, it is important to put the preprocessor in historical perspective.
As it relates to C++, the preprocessor is largely a holdover from C. Moreover, the
C++ preprocessor is virtually identical to the one defined by C. The main difference
between C and C++ in this regard is the degree to which each relies upon the
preprocessor. In C, each preprocessor directive is necessary. In C++, some features
have been rendered redundant by newer and better C++ language elements. In fact,
one of the long-term design goals of C++ is the elimination of the preprocessor
altogether. But for now and well into the foreseeable future, the preprocessor wil
still be widely used. O

The preprocessor contains the following directives: \e C

#define #elif N tes 2end1f
#error Qm #ifdef def
#include " @x #undef
SP V §n see ll 2! ctives begin with a # sign. In addition, each
pr @l

rocessing dir e on its own line. For example,
#include <stdio.h> #include <stdlib.h>

will not work.

| #define

The #define directive defines an identifier and a character sequence (i.e., a set of
characters) that will be substituted for the identifier each time it is encountered in the
source file. The identifier is referred to as a macro name and the replacement process as
macro replacement. The general form of the directive is

#define macro-name char-sequence

242 C++: The Complete Reference

| #include

The #include directive instructs the compiler to read another source file in addition to
the one that contains the #include directive. The name of the additional source file
must be enclosed between double quotes or angle brackets. For example,

#include "stdio.h"
#include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library
functions.

Include files can have #include directives in them. This is referred to as nested
includes. The number of levels of nesting allowed varies between compilers. However,
Standard C stipulates that at least eight nested inclusions will be available. Standard
C++ recommends that at least 256 levels of nesting be supported.

Whether the filename is enclosed by quotes or by angle brackets deter ne&)
how the search for the specified file is conducted. If the filena e i e @1 gle
brackets, the file is searched for in a manner defined by th % compiler.
Often, this means searching some special d1rect0 1nclude files. If the
filename is enclosed in quotes, the file i 1s nother 1 tatlon defined

manner. For many compﬂers ns e c ing dlrectory If
the file is not found, e eated 1f t en%,e d been enclosed in angle

brackets
s progr % ackets to include the standard header
P e Use of q served for including files specifically related to
the program at h. ‘? -\# T, there is no hard and fast rule that demands this usage.
In addition to files, a C++ program can use the #include directive to include a C++
header. C++ defines a set of standard headers that provide the information necessary
to the various C++ libraries. A header is a standard identifier that might, but need not,
map to a filename. Thus, a header is simply an abstraction that guarantees that the
appropriate information required by your program is included. Various issues
associated with headers are described in Part Two.

___| conditional Compilation Directives

There are several directives that allow you to selectively compile portions of your
program's source code. This process is called conditional compilation and is used widely
by commercial software houses that provide and maintain many customized versions
of one program.

248 C++: The Complete Reference

One reason for using defined is that it allows the existence of a macro name to be
determined by a #elif statement.

___| #line

The #line directive changes the contents of __LINE__and _ _FILE__, which are
predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line
number of the currently compiled line of code. The _ _FILE_ _ identifier is a string that
contains the name of the source file being compiled. The general form for #line is

#line number "filename"

where number is any positive integer and becomes the new value of _ _LINE_ _, and

the optional filename is any valid file identifier, which becomes the new value of

_ _FILE_ _. #line is primarily used for debugging and special applications. K
For example, the following code specifies that the line count will

The printf() statement displays the number 102 because it at.\e@r ifle In the

program after the #line 100 statement. tes

#include <stdio.h> N "
#Ilne 100° /*&sgt the lin %’X— O
)d 6 [* line 10684/ 2
E prlntf("%d\n"g@g line 102 */

return O;

___ | #pragma

#pragma is an implementation-defined directive that allows various instructions to
be given to the compiler. For example, a compiler may have an option that supports
program execution tracing. A trace option would then be specified by a #pragma
statement. You must check the compiler's documentation for details and options.

___| The # and ## Preprocessor Operators

There are two preprocessor operators: # and ##. These operators are used with the
#define statement.

258

C++: The Complete Reference

worked. Object-oriented methods were created to help programmers break through
these barriers.
Object-oriented programming took the best ideas of structured programming
and combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in
one of two ways: around its code (what is happening) or around its data (who is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as "code acting on data." For
example, a program written in a structured language such as C is defined by its
functions, any of which may operate on any type of data used by the program.
Object-oriented programs work the other way around. They are organized
around data, with the key principle being "data controlling access to code." In an
object-oriented language, you define the data and the routines that are permitted
to act on that data. Thus, a data type defines precisely what sort of operations can
be applied to that data.
To support the principles of object-oriented programming, all OOP lan
have three traits in common: encapsulation, polymorphism, and 1nhe é
examine each.

Encapsulation ﬁ(}"e Ad}’
Encapsulation is the me togethe _ﬁ k a it manipulates,
isur

In an object-oriented

language ata may be ¢ a way that a self-contained "black

and keeps b both Tﬁe 1nterf,£r ce

@c hen co mked together in this fashion, an object is
cr te In other '@ d5r t is the device that supports encapsulation.
a

Within an ob]e CO ta, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is,
private code or data may not be accessed by a piece of the program that exists outside
the object. When code or data is public, other parts of your program may access it even
though it is defined within an object. Typically, the public parts of an object are used to
provide a controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may
seem strange that an object that links both code and data can be thought of as a
variable. However, in object-oriented programming, this is precisely the case. Each
time you define a new type of object, you are creating a new data type. Each specific
instance of this data type is a compound variable.

Polymorphism

Object-oriented programming languages support polymorphism, which is characterized
by the phrase "one interface, multiple methods." In simple terms, polymorphism is the
attribute that allows one interface to control access to a general class of actions. The

Chapter 11: An Overview of C++ 261

name iostream. The reason is that <iostream> is one of the new-style headers defined
by Standard C++. New-style headers do not use the .h extension.
The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a recent addition

to C++. A namespace creates a declarative region in which various program elements
can be placed. Namespaces help in the organization of large programs. The using
statement informs the compiler that you want to use the std namespace. This is the
namespace in which the entire Standard C++ library is declared. By using the std
namespace you simplify access to the standard library. The programs in Part One,
which use only the C subset, don't need a namespace statement because the C library
functions are also available in the default, global namespace.

] Since both new-style headers and namespaces are recent additions to C++ m K
Note
encounter older code that does not use them. Also, if you are us
it may not support them. Instructions for usmg an ol x% d Zuter mn
this chapter.

Now examine the followi N A—l
,mma\,r’\e\N X¢ tg)ﬂ'\g A O ol 'XD

che that the pa 91 maln() is empty. In C++, this indicates that main()
has no parameters ThlS differs from C. In C, a function that has no parameters must
use void in its parameter list, as shown here:

int main(void)

This was the way main() was declared in the programs in Part One. However, in
C++, the use of void is redundant and unnecessary. As a general rule, in C++ when
a function takes no parameters, its parameter list is simply empty; the use of void is
not required.

The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment
First, the statement

cout << "This is output.\n";

268

C++: The Complete Reference

int main()

{

return O;

}

This version uses the new-style header and specifies a namespace. Both of these
features were mentioned in passing earlier. Let's look closely at them now.

The New C++ Headers

As you know, when you use a library function in a program, you must include its
header file. This is done using the #include statement. For example, in C, to include the
header file for the I/O functions, you include stdio.h with a statement like this:

#include <stdio.h>]\4

.
Here, stdio.h is the name of the file used by the I/O functi k thgreceding
statement causes that file to be included in your ﬁ ey point is that this
#include statement includes a file. ‘
When C++ was first invente &e &Qd the same

yea s
style of headers as did (&T t sed header fi -& dard C++ still supports
C-style heade les th backward compatibility.

at te a
How ++ creat % header that is used by the Standard
P é‘ he not specify filenames. Instead, they simply
s

pecify standard ? at may be mapped to files by the compiler, although
they need not be. The new-style C++ headers are an abstraction that simply guarantee
that the appropriate prototypes and definitions required by the C++ library have
been declared.
Since the new-style headers are not filenames, they do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example, here
are some of the new-style headers supported by Standard C++.

<iostream> <fstream> <vector> <string>

The new-style headers are included using the #include statement. The only difference
is that the new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard
C-style header files associated with that library. That is, header files such as stdio.h
or ctype.h are still available. However, Standard C++ also defines new-style headers
that you can use in place of these header files. The C++ versions of the C standard
headers simply add a "c" prefix to the filename and drop the .h. For example, the C++
new-style header for math.h is <cmath>. The one for string.h is <cstring>. Although it

270 C++: The Complete Reference

Working with an Old Compiler

As explained, both namespaces and the new-style headers are fairly recent additions
to the C++ language, added during standardization. While all new C++ compilers
support these features, older compilers may not. When this is the case, your compiler
will report one or more errors when it tries to compile the first two lines of the sample
programs in this book. If this is the case, there is an easy work-around: simply use an
old-style header and delete the namespace statement. That is, just replace

#include <iostream>
using namespace std;

with

#include <iostream.h> K

This change transforms a modern program into an old- style 0 nc Qd‘style
header reads all of its contents into the global names \ o*need for a
namespace statement.

One other point: for now and fo ars yo il e%:-any C++
programs that use the o — s a d do not cl atement. Your
C++ compiler will 1le the er, for new programs, you
should us Xj&j le becau e of program that complies with

m d While o sgn s w111 continue to be supported for many
ey are terwaa‘ pliant.

___| Introducing C++ Classes

This section introduces C++'s most important feature: the class. In C++, to create an
object, you first must define its general form by using the keyword class. A class is
similar syntactically to a structure. Here is an example. The following class defines a
type called stack, which will be used to create a stack:

#define SIZE 100

/I This creates the class stack.
class stack {

int stck[SIZE];

int tos;
public:

void init();

Chapter 11: An Overview of C+ +

void push(int i);
int pop();
3

A class may contain private as well as public parts. By default, all items defined in
a class are private. For example, the variables stck and tos are private. This means that
they cannot be accessed by any function that is not a member of the class. This is one
way that encapsulation is achieved—access to certain items of data may be tightly
controlled by keeping them private. Although it is not shown in this example, you can
also define private functions, which then may be called only by other members of the
class.

To make parts of a class public (that is, accessible to other parts of your program),
you must declare them after the public keyword. All variables or functions defined
after public can be accessed by all other functions in the program. Essentially, the gest
of your program accesses an object through its public functions. Although ou k
have public variables, good practice dictates that you should try to 11 &

Instead, you should make all data private and control acce public
functions. One other point: Notice that the pubh ed by a colon.

The functions init(), push(), and p x’ ber func s because they
are part of the class stack. The v a tl tos arega v&r variables (or data
members). Remember, a bond betwe }_ i data. Only member

and stck and tos
g u have defi can create an object of that type by using the
claSs name. In ess & s name becomes a new data type specifier. For example,

this creates an objett called mystack of type stack:

functions have éﬁt private m la s. Thus, only init(), push(),

stack mystack;

When you declare an object of a class, you are creating an instance of that class. In this
case, mystack is an instance of stack. You may also create objects when the class is
defined by putting their names after the closing curly brace, in exactly the same way as
you would with a structure.

To review: In C++, class creates a new data type that may be used to create objects
of that type. Therefore, an object is an instance of a class in just the same way that some
other variable is an instance of the int data type, for example. Put differently, a class is
a logical abstraction, while an object is real. (That is, an object exists inside the memory
of the computer.)

The general form of a simple class declaration is

class class-name {
private data and functions

271

278

C++: The Complete Reference

Operator Overloading

Polymorphism is also achieved in C++ through operator overloading. As you know, in
C++, it is possible to use the << and >> operators to perform console I/O operations.
They can perform these extra operations because in the <iostream> header, these
operators are overloaded. When an operator is overloaded, it takes on an additional
meaning relative to a certain class. However, it still retains all of its old meanings.

In general, you can overload most of C++'s operators by defining what they mean
relative to a specific class. For example, think back to the stack class developed earlier
in this chapter. It is possible to overload the + operator relative to objects of type stack
so that it appends the contents of one stack to the contents of another. However, the +
still retains its original meaning relative to other types of data.

Because operator overloading is, in practice, somewhat more complex than function
overloading, examples are deferred until Chapter 14.

Inheritance 0 u\(

As stated earlier in this chapter, inheritance is one of the %0? an object-
oriented programming language. In C++ ﬁ m ed by allowing one
class to incorporate another class intg its nherlt &a hierarchy
of classes to be built, mo eral to m t cess involves
first defmlng a base ¢l & efines thos qu n to all objects to be
derlved frofy Bams

hé base cla 6&; ost general description. The
&rred to as derived classes. A derived class

om the base
a 1 featur Qh base class and then adds qualities specific to the

derlved class. To d mo ow this works, the next example creates classes that
categorize different types of buildings.

To begin, the building class is declared, as shown here. It will serve as the base for
two derived classes.

class building {
int rooms;
int floors;
int area;

public:
void set_rooms(int num);
int get_rooms();
void set_floors(int num);
int get_floors();
void set_area(int num);
int get_area();

Chapter 11: An Overview of C++ 279

Because (for the sake of this example) all buildings have three common
features—one or more rooms, one or more floors, and a total area—the building
class embodies these components into its declaration. The member functions beginning
with set set the values of the private data. The functions starting with
get return those values.

You can now use this broad definition of a building to create derived classes that
describe specific types of buildings. For example, here is a derived class called house:

I/l house is derived from building
class house : public building {
int bedrooms;
int baths;
public:
void set_bedrooms(int num);
int get_bedrooms();

void set_baths(int num); O \)K
.

int get_baths();

g \ C
eso,
Notice how building is inherited. T%@&) fori eﬁ% is

Cla/Sj céerived-clu Zigx IQ—SL-S\{ O" lﬁ
oreltel (o 317

Here, access is optHal. owever, if present, it must be public, private, or protected.
(These options are further examined in Chapter 12.) For now, all inherited classes

will use public. Using public means that all of the public members of the base class
will become public members of the derived class. Therefore, the public members of the
class building become public members of the derived class house and are available

to the member functions of house just as if they had been declared inside house.
However, house's member functions do not have access to the private elements of
building. This is an important point. Even though house inherits building, it has
access only to the public members of building. In this way, inheritance does not
circumvent the principles of encapsulation necessary to OOP.

) o
A derived class has direct access to both its own members and the public members of
. the base class.

Here is a program illustrating inheritance. It creates two derived classes of building
using inheritance; one is house, the other, school.

public:
stack(); // constructor
~stack(); // destructor
void push(int i);
int pop();

h

/Il stack's constructor function
stack::stack()

{

tos = 0;

cout << "Stack Initialized\n";

}

/I stack's destructor function
stack::~stack()

{

cout << "Stack Destroyed\n";

}

Notice that, like constr

v

To see how, cttr(an@ destr é\
pr%gr *@ rlier in thls d S erve that init() is no longer needed.

Chapter 11: An Overview of C+ +

uK
o1ese a\e-0
iohsh dﬁmtor uﬁ anfhave return values.

e 1§ a new version of the stack

/l Using a const? aegtructor
am>

#include <iostre
using namespace std;

#define SIZE 100

/I This creates the class stack.

class stack {
int stck[SIZE];
int tos;

public:
stack(); // constructor
~stack(); // destructor
void push(int i);
int pop();

3

/I stack's constructor function
stack::stack()

285

C++: The Complete Reference

{
tos = 0;
cout << "Stack Initialized\n";

}

/I stack's destructor function
stack::~stack()

{

cout << "Stack Destroyed\n";

}

void stack::push(int i)
{
if(tos==SIZE) {
cout << "Stack is full.\n";
return;

}
stck[tos] = 1i;
tos++;

}

|nt stack: pop()

BN
‘Wv Pl o

tos—-,
return stck[tos];

}

int main()

{

stack a, b; // create two stack objects

a.push(l);
b.push(2);

a.push(3);
b.push(4);

cout << a.pop() <<

288 C++: The Complete Reference

public register reinterpret_cast return
short signed sizeof static
static_cast struct switch template
this throw true try
typedef typeid typename union
unsigned using virtual void
volatile wchar _t while

Table 11-1. The C++ keywords (continued)

| The General Form of a C++ Progra‘E
¢'this general form:

Although individual styles will differ, most C++ {ég
#includes m N 0 A&_
base-class declarations l
derived dlas W,t ﬁ(O l O‘
gwl% prototypes 32

nonmember function definitions

In most large projects, all class declarations will be put into a header file and included
with each module. But the general organization of a program remains the same.

The remaining chapters in this section examine in greater detail the features
discussed in this chapter, as well as all other aspects of C++.

&

prel ?an?fﬂbjects

e\l\"

289

296 C++: The Complete Reference

unsigned short u;
unsigned char c[2];

b

void swap_byte::swap()

{

unsigned char t;

t = ¢[0];
c[0] = c[1];
c[l] =t;

}

void swap_byte::show_word()

{

} cout << u; O ‘UK

void swap_byte::set_byte(unsigned short i) tesa'\e ‘C
O

o \N“Om of 'XDAA

‘?@f}ip a0e 322

b.set_byte(49034);
b.swap();
b.show_word();

return O;

Like a structure, a union declaration in C++ defines a special type of class. This
means that the principle of encapsulation is preserved.

There are several restrictions that must be observed when you use C++ unions.
First, a union cannot inherit any other classes of any type. Further, a union cannot be a
base class. A union cannot have virtual member functions. (Virtual functions are
discussed in Chapter 17.) No static variables can be members of a union. A reference
member cannot be used. A union cannot have as a member any object that overloads
the = operator. Finally, no object can be a member of a union if the object has an
explicit constructor or destructor function.

298 C++: The Complete Reference

| Friend Functions

It is possible to grant a nonmember function access to the private members of a class

by using a friend. A friend function has access to all private and protected members
of the class for which it is a friend. To declare a friend function, include its prototype
within the class, preceding it with the keyword friend. Consider this program:

P

#include <iostream>
using namespace std;

class myclass {
inta, b;

public:
friend int sum(myclass x);

void set_ab(int i, int j);
h \(
O AS
void myclass::set_ab(int i, int j) 5 \e _C

(o
2: NOXe 'LOAA'

// mYCIas>N aimgmé %:)ﬂass"

[* Because sum() is a friend of myclass, it can
directly access a and b. */

return x.a + x.b;

}

int main()

{
myclass n;
n.set_ab(3, 4);

cout << sum(n);

return O;

304 C++: The Complete Reference

precede its definition with the inline keyword. For example, in this program, the
function max() is expanded in line instead of called:

#include <iostream>
using namespace std;

inline int max(int a, int b)

{
}

return a>b ? a: b;

int main()
{
cout << max(10, 20);
cout <<"" << max(99, 88);

return O;

As far as the compiler is concerned, tﬁ‘@%rogrﬁ E@alemt to this one:
#include <|ostr " O 7 O"

cout << (10>20 ? 10 : 20);
cout << "" << (99>88 ? 99 : 88);

return O;

The reason that inline functions are an important addition to C++ is that they allow
you to create very efficient code. Since classes typically require several frequently
executed interface functions (which provide access to private data), the efficiency of
these functions is of critical concern. As you probably know, each time a function is
called, a significant amount of overhead is generated by the calling and return
mechanism. Typically, arguments are pushed onto the stack and various registers are
saved when a function is called, and then restored when the function returns. The
trouble is that these instructions take time. However, when a function is expanded in
line, none of those operations occur. Although expanding function calls in line can

308

C++: The Complete Reference

Notice that in the definition of myclass(), the parameters i and j are used to give initial
values to a and b.

The program illustrates the most common way to specify arguments when you
declare an object that uses a parameterized constructor function. Specifically, this
statement

myclass ob(3, 4);

causes an object called ob to be created and passes the arguments 3 and 4 to the i and j
parameters of myclass(). You may also pass arguments using this type of declaration
statement:

myclass ob = myclass(3, 4);

However, the first method is the one generally used, and this is the approach t‘i—i\(
by most of the examples in this book. Actually, there is a small techni re
between the two types of declarations that relates to copy con\xeor
constructors are discussed in Chapter 14.) &

Here is another example that uses a ga rﬁt@ structor j&r:ctlon. It creates a

class that stores 1nformat10n abou m

\%ﬁ" aAY o W

P(uéﬂmespa ﬁ

constintIN =1;
const int CHECKED_OUT = 0;

class book {
char author[40];
char title[40];
int status;
public:
book(char *n, char *t, int s);
int get_status() {return status;}
void set_status(int s) {status = s;}
void show();

h

book::book(char *n, char *t, int s)

{

Chapter 13: Arrays, Pointers, References, and the Dynamic Allocation Operators

p = ob; // get start of array
for(i=0; i<3; i++) {
cout << p->get_i() << "\n";
p++; // point to next object

}

return O;

You can assign the address of a public member of an object to a pointer and then
access that member by using the pointer. For example, this is a valid C++ program that
displays the number 1 on the screen:

#include <iostream>

using namespace std; O UK
.

class cl { 5 \e .C

NOte
|)\e\l\" om
‘?VW page >

int *p
p = &ob.i; // get address of ob.i
cout << *p; // access ob.i via p

return O;

}

Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant
that i is a member of ob in this situation.

___| Type Checking C++ Pointers

There is one important thing to understand about pointers in C++: You may assign one
pointer to another only if the two pointer types are compatible. For example, given:

333

352 C++: The Complete Reference

Of course, the type of the initializer must be compatible with the type of data for which
memory is being allocated.
This program gives the allocated integer an initial value of 87:

#include <iostream>
#include <new>
using namespace std;

int main()

{
int *p;

try {

p = new int (87); // initialize to 87
} catch (bad_alloc xa) {

cout << "Allocation Failure\n"; UK

return 1, .

} Sa\e -C

cout << "At"<<p<<"" e
cout << "is the valu?(?*ém NO‘ /X—O A&

ol
qrei®0age 2

Allocating Arrays

You can allocate arrays using new by using this general form:
p_var = new array_type [sizel;

Here, size specifies the number of elements in the array.
To free an array, use this form of delete:

delete [] p_var;

Here, the [] informs delete that an array is being released.
For example, the next program allocates a 10-element integer array.

356

C++: The Complete Reference

} catch (bad_alloc xa) {
cout << "Allocation Failure\n";
return 1,

}
p->get_bal(n, s);

cout << s << "s balance is: " << n;
cout << "\n";

delete p;

return O;

The parameters to the object's constructor function are specified a@@ ty}o\K

name, just as in other sorts of initializations.

You can allocate arrays of objects, but there 1 L o array allocated by
new can have an initializer, you must m e class o ains constructor
functions, one will be parameter the C, 11 not find a
matching constructor w, t to alloca e arfaWahd will not compile your
program

@M}!he precedmg %&n array of balance objects is allocated,

m p ameterl@s g‘g lled

#include <iostream>
#include <new>
#include <cstring>
using namespace std;

class balance {
double cur_bal;
char name[80];
public:
balance(double n, char *s) {
cur_bal = n;
strcpy(name, s);
}
balance() {} // parameterless constructor
~balance() {
cout << "Destructing ";

358

C++: The Complete Reference

The output from this program is shown here.

Ralph Wilson's balance is: 12387.9
A. C. Conners's balance is: 144

I. M. Overdrawn's balance is: -11.23
Destructing I. M. Overdrawn
Destructing A. C. Conners
Destructing Ralph Wilson

One reason that you need to use the delete [] form when deleting an array of

dynamically allocated objects is so that the destructor function can be called for each
object in the array.

The nothrow Alternative

In Standard C++ it is possible to have new return null instead of throwing an })

exception when an allocation failure occurs. This form of new is mos whtefl you
are compiling older code with a modern C++ compiler. It i when you are
replacing calls to malloc() with new. (This is co atmg C code to C++.)

This form of new is shown here:

p_ varnew(r{ﬁo«ﬁv,@m N O_‘ ’LOAA—

\Qomter vari :xn—othrow form of new works like the
Vers1on o s ago Since it returns null on failure, it can be

'dropped into" ol Tc out having to add exception handling. However, for
new code, exceptions provide a better alternative. To use the nothrow option, you
must include the header <new>.

The following program shows how to use the new(nothrow) alternative.

/l Demonstrate nothrow version of new.
#include <iostream>

#include <new>

using namespace std;

int main()

{
int *p, i;

p = new(nothrow) int[32]; // use nothrow option
if('p) {

cout << "Allocation failure.\n";

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 363

The next program overloads myfunc() using a different number of parameters:

#include <iostream>
using namespace std;

int myfunc(int i); // these differ in number of parameters
int myfunc(int i, int j);

int main()

{

cout << myfunc(10) << " "; // calls myfunc(int i)
cout << myfunc(4, 5); // calls myfunc(int i, int)

return O;

} K
int myfunc(int i) u

{ ca\e cO:

| return i; NO"e
intmyfunc(inti,\iri{i -‘(Om

P‘jé\“ep 20° 39

As mentioned, the key point about function overloading is that the functions must
differ in regard to the types and /or number of parameters. Two functions differing
only in their return types cannot be overloaded. For example, this is an invalid attempt
to overload myfunc():

int myfunc(int i); // Error: differing return types are
float myfunc(int i); // insufficient when overloading.

Sometimes, two function declarations will appear to differ, when in fact they do not.
For example, consider the following declarations.

void f(int *p);
void f(int p[]); // error, *p is same as p[]

Remember, to the compiler *p is the same as pl]. Therefore, although the two
prototypes appear to differ in the types of their parameter, in actuality they do not.

374

C++: The Complete Reference

Default Function Arguments

C++ allows a function to assign a parameter a default value when no argument
corresponding to that parameter is specified in a call to that function. The default value
is specified in a manner syntactically similar to a variable initialization. For example,
this declares myfunc() as taking one double argument with a default value of 0.0:

void myfunc(double d = 0.0)

{
...

}

Now, myfunc() can be called one of two ways, as the following examples show:

myfunc(198.234); // pass an explicit value

myfunc(); /I let function use default O uK

The first call passes the value 198.234 to d. The second g X-neic’ally gives d the
default value zero.
Q in

One reason that default argu ++ hey provide
another method for the & age gre %ﬂ\@ o handle the
widest Varlety of situl %Y e fre ains more parameters than
are requir Wst common uﬁé“ n the default arguments apply, you

mv y the arg earungful to the exact situation, not all those
edded by the m @ ”For example, many of the C++ I/0O functions make
use of default ar o just this reason.

A simple 111ustrat10n of how useful a default function argument can be is shown by
the clrscr() function in the following program. The clrscr() function clears the screen
by outputting a series of linefeeds (not the most efficient way, but sufficient for this
example). Because a very common video mode displays 25 lines of text, the default
argument of 25 is provided. However, because some terminals can display more or less

than 25 lines (often depending upon what type of video mode is used), you can
override the default argument by specifying one explicitly.

#include <iostream>
using namespace std;

void clrscr(int size=25);
int main()

{

register int i;

Chapter 14: Function Overloading, Copy Constructors, and Default Arguments 375

for(i=0; i<30; i++) cout << i << endl;
cin.get();
clrscr(); // clears 25 lines

for(i=0; i<30; i++) cout << i << endl;
cin.get();

clrscr(10); // clears 10 lines

return O;

}

void clrscr(int size)
{
for(; size; size--) cout << endl;
) o I\

As this program illustrates, when the default éﬁ %te to the situation,
no argument need be specified when cl 1 weve t111 possible to

override the default and give siz ffe e ue whe
A default argument std asa ﬂa Dﬁg ctlon to reuse a
previous arg o iljudtrate this u alled iputs() is developed here
@ ed amount. To begin, here is a version of

that ﬂa\ ents a string 1&
?‘é hat d? efault argument:

v0|d iputs(char *str, int indent)
if(indent < 0) indent = 0;
for(; indent; indent--) cout << " *;

cout << str << "\n";

}

This version of iputs() is called with the string to output as the first argument and the
amount to indent as the second. Although there is nothing wrong with writing iputs() this
way, you can improve its usability by providing a default argument for the indent
parameter that tells iputs() to indent to the previously specified level. It is quite common
to display a block of text with each line indented the same amount. In this situation,
instead of having to supply the same indent argument over and over, you can give

386

C++: The Complete Reference

overload most operators so that they perform special operations relative to

classes that you create. For example, a class that maintains a stack might
overload + to perform a push operation and - - to perform a pop. When an operator is
overloaded, none of its original meanings are lost. Instead, the type of objects it can be
applied to is expanded.

The ability to overload operators is one of C++'s most powerful features. It allows
the full integration of new class types into the programming environment. After
overloading the appropriate operators, you can use objects in expressions in just the
same way that you use C++'s built-in data types. Operator overloading also forms the
basis of C++'s approach to I/0O.

You overload operators by creating operator functions. An operator function defines
the operations that the overloaded operator will perform relative to the
class upon which it will work. An operator function is created using the keyword
operator. Operator functions can be either members or nonmembers of a class. K

C losely related to function overloading is operator overloading. In C++, you can

Nonmember operator functions are almost always friend functions of the class
however. The way operator functions are written differs between mep
nonmember functions. Therefore, each will be examined se @, p g mg with

member operator functions. O"es

0N
— crestng g tﬁgg ol

P (7’(9 ype class- n@ &g arg-list)

/ / operations

}

Often, operator functions return an object of the class they operate on, but ret-type can
be any valid type. The # is a placeholder. When you create an operator function,
substitute the operator for the #. For example, if you are overloading the / operator, use
operator/. When you are overloading a unary operator, arg-list will be empty. When
you are overloading binary operators, arg-list will contain one parameter. (The reasons
for this seemingly unusual situation will be made clear in a moment.)

Here is a simple first example of operator overloading. This program creates a class
called loc, which stores longitude and latitude values. It overloads the + operator
relative to this class. Examine this program carefully, paying special attention to the
definition of operator+():

392 C++: The Complete Reference

// Postfix increment
type operator++(int x) {
/ / body of postfix operator

}

/ / Prefix decrement
type operator——() {
// body of prefix operator

/ / Postfix decrement
type operator— —(int x) {
/ / body of postfix operator

| K
i You should be careful when working with older C++ progra where t »
Note
and decrement operators are concerned. In older Uerswns tposszble

to specify separate prefix and postfix verszons o + or ——. The prefix

form was used for both. l
Overloadmg th Bi% lOA

You ca eSl of C++'s sho&a d"«aperators, such as +=, —=, and the like. For
function

? gﬁ@ lative to loc:

loc loc::operator+=(loc op2)

{
longitude = op2.longitude + longitude;
latitude = op2.latitude + latitude;

return *this;

}

When overloading one of these operators, keep in mind that you are simply
combining an assignment with another type of operation.

Operator Overloading Restrictions

There are some restrictions that apply to operator overloading. You cannot alter the
precedence of an operator. You cannot change the number of operands that an operator
takes. (You can choose to ignore an operand, however.) Except for the function call

Chapter 15: Operator Overloading 399

loc() {}

loc(int Ig, int It) {
longitude =Ig;
latitude = It;

}

void show() {
cout << longitude <<
cout << latitude << "\n",

}

friend loc operator+(loc opl, int op2);
friend loc operator+(int op1, loc op2);

h
Il + is overloaded for loc + int. C
loc operator+(loc opl, int op2) \e .

(So
loc temp; NO‘e A—l

5 '°“g:§\|$”§'€;@o;£§2 of 30

urn temp;
}
Il +is overloadej forint + Ioc

loc operator+(int op1, loc op2)

{

loc temp;

o V¥

temp.longitude = opl + op2.longitude;
temp.latitude = opl + op2.latitude;

return temp;

}
int main()
{
loc 0b1(10, 20), ob2(5, 30), ob3(7, 14);

ob1.show();

Chapter 15:

cout << "Allocation error for p1.\n";
return 1;;

}

try {
p2 = new loc (-10, -20);

} catch (bad_alloc xa) {
cout << "Allocation error for p2.\n";
return 1;;

}

try {
f = new float; // uses overloaded new, too

} catch (bad_alloc xa) {
cout << "Allocation error for f.\n";
return 1;;

}

*f=10.10F;
cout << *f << "\n";

P(ggim\i\'

delete p2;
delete f;

(O

return O;

}

Operator Overloading

Run this program to prove to yourself that the built-in new and delete operators

have indeed been overloaded.

Overloading new and delete for Arrays

If you want to be able to allocate arrays of objects using your own allocation system,
you will need to overload new and delete a second time. To allocate and free arrays,

you must use these forms of new and delete.

405

Chapter 15: Operator Overloading 413

cout << ob[1]; // displays 2
cout << " "

ob[1] = 25; // [] appears on left
cout << ob[1]; // displays 25

0b[3] = 44; /] generates runtime error, 3 out-of-range

return O;

In this program, when the statement

ob[3] = 44; O UK

executes, the boundary error is intercepted by operator pr gram is
terminated before any damage can be don (I some sort of
e oujs f

error-handling function would be called

cond1t1on the
program would not hav%to t@n t) " l A
Ove rloa(x? Aﬁ O
m overlo?-\ n call operator, you are not, per se, creating a new
way

to call a func you are creating an operator function that can be passed

an arbitrary numbér of parameters. Let's begin with an example. Given the overloaded
operator function declaration

double operator()(int a, float f, char *s);

and an object O of its class, then the statement
0(10, 23.34, "hi");

translates into this call to the operator() function.
O.operator()(10, 23.34, "hi");

In general, when you overload the () operator, you define the parameters that you
want to pass to that function. When you use the () operator in your program, the

422 C++: The Complete Reference

public:
derived(int x) { k=x; }
void showk() { cout << k << "\n"; }

kh

int main()

{
derived ob(3);

ob.set(1, 2); // error, can't access set()
ob.show(); // error, can't access show()

return O;

| When a base class’ access specifier is private, public and protected m ;\)K

base become private members of the derived class. This Te stzll

accessible by members of the derived class but lﬁﬁ parts of your
program that are not members of eth ed class

| InheWaﬁs pro Q&m ers
l&e eyword is % to provide greater flexibility in the

1n ritance mech member of a class is declared as protected, that
member is not accgmbé ggother, nonmember elements of the program. With one
important exception, access to a protected member is the same as access to a private
member—it can be accessed only by other members of its class. The sole exception to
this is when a protected member is inherited. In this case, a protected member differs
substantially from a private one.

As explained in the preceding section, a private member of a base class is not
accessible by other parts of your program, including any derived class. However,
protected members behave differently. If the base class is inherited as public, then the
base class' protected members become protected members of the derived class and are,
therefore, accessible by the derived class. By using protected, you can create class
members that are private to their class but that can still be inherited and accessed by a
derived class. Here is an example:

#include <iostream>
using namespace std;

class base {

Chapter 16: Inheritance

protected:

inti, j; // private to base, but accessible by derived
public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i<<""<<j<<"\n";}

h

class derived : public base {
int k;

public:
// derived may access base's i and j
void setk() { k=i*j; }

void showk() { cout << k <<"\n"; }

3

i{nt main() \e CO -UK
derived ob; N tes
o iﬁl‘i(f),/é‘.ii% eriiy

P { @;ﬁwko P age AB

return O;

}

In this example, because base is inherited by derived as public and because i and j
are declared as protected, derived's function setk() may access them. If i and j had
been declared as private by base, then derived would not have access to them, and the
program would not compile.

When a derived class is used as a base class for another derived class, any protected
member of the initial base class that is inherited (as public) by the first derived class
may also be inherited as protected again by a second derived class. For example, this
program is correct, and derived2 does indeed have access to i and j.

#include <iostream>
using namespace std;

class base {

423

438

C++: The Complete Reference

P

public:
intj, k;
void seti(int x) {i=x; }
int geti() { return i; }

3

/I Inherit base as private.
class derived: private base {
public:
[* The next three statements override
base's inheritance as private and restore j,
seti(), and geti() to public access. */
base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public

I/ base::i; I/ illegal, you cannot elevate access C
\e .

eS%
OO‘ 'X—O AA—

o V¥

int a; // public
3

N
int main() -‘ Om
W@Qaﬂg M l

ob.j = 20; // legal because j is made public in derived
/lob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived
ob.seti(10);

cout << ob.geti() << " " << o0b.j<<"" << 0b.3;

return O;

Access declarations are supported in C++ to accommodate those situations in

which most of an inherited class is intended to be made private, but a few members are
to retain their public or protected status.

440

S
e pad

C++: The Complete Reference

derived3 ob;

ob.i = 10; // this is ambiguous, which i???
ob.j = 20;
ob.k = 30;

/I i ambiguous here, too
ob.sum = ob.i + ob.j + ob.k;

/l also ambiguous, which i?
cout << ob.i<<"";

cout<<ob.j<<""<<obk<<""
cout << ob.sum;

return O; K
} \e CO ‘u

As the comments in the program 1nd1ca de iv, 1nher1t base.
However, derived3 inherits bot r1ved at there are two
copies of base present 1?‘ pe der1ve6.ﬁh n an express1on like

e AT3

hich i is bemg referr e one in derived1 or the one in derived2? Because there
are two copies of base present in object ob, there are two ob.is! As you can see, the
statement is inherently ambiguous.
There are two ways to remedy the preceding program. The first is to apply the
scope resolution operator to i and manually select one i. For example, this version of
the program does compile and run as expected:

/I This program uses explicit scope resolution to select i.
#include <iostream>
using namespace std;

class base {
public:
inti;

h

/I derivedl inherits base.

442

C++: The Complete Reference

being included in derived3? The answer, as you probably have guessed, is yes. This
solution is achieved using virtual base classes.

When two or more objects are derived from a common base class, you can prevent
multiple copies of the base class from being present in an object derived from those
objects by declaring the base class as virtual when it is inherited. You accomplish this
by preceding the base class' name with the keyword virtual when it is inherited. For
example, here is another version of the example program in which derived3 contains
only one copy of base:

I/l This program uses virtual base classes.
#include <iostream>
using namespace std;

class base {

public: K
inti;

b \e CO ‘u

/I derived1 inherits base as virtual. O‘_esa ’

class derived1 : virtual public base { N
public:

int j; Om
B ntra .,

public:

int k;
b

[* derived3 inherits both derivedl and derived2.

This time, there is only one copy of base class. */
class derived3 : public derivedl, public derived2 {
public:

int sum;
3
int main()
{
derived3 ob;

ob.i = 10; // now unambiguous

Chapter 16: Inheritance

ob.j = 20;
ob.k = 30;

/l unambiguous
ob.sum = ob.i + ob.j + ob.k;

/l unambiguous
cout << ob.i<<"";

cout<<obj<<""<<obk<<""
cout << ob.sum;

return O;

As you can see, the keyword virtual precedes the rest of the 1nhe UK
specification. Now that both derived1 and derived2 have i a V1rtual any

multiple inheritance involving them will cause o ﬁ) se to be present.
Therefore, in derived3, there is only on o g ob i= erfectly valid
and unambiguous.

One further pomt to, Even tho d and derived2
specify base b se is st111 pre f efther type. For example, the

follo&ﬂe‘ perfectlyevah

P I/ define a classﬂagdl

derivedl myclass;

myclass.i = 88;
The only difference between a normal base class and a virtual one is what occurs when

an object inherits the base more than once. If virtual base classes are used, then only
one base class is present in the object. Otherwise, multiple copies will be found.

This page intentionally left blank.

446 C++: The Complete Reference

discussed in earlier chapters, compile-time polymorphism is achieved by
overloading functions and operators. Run-time polymorphism is accomplished
by using inheritance and virtual functions, and these are the topics of this chapter.

Polymorphism is supported by C++ both at compile time and at run time. As

| Virtual Functions

A virtual function is a member function that is declared within a base class and
redefined by a derived class. To create a virtual function, precede the function's
declaration in the base class with the keyword virtual. When a class containing a
virtual function is inherited, the derived class redefines the virtual function to fit its
own needs. In essence, virtual functions implement the "one interface, multiple
methods" philosophy that underlies polymorphism. The virtual function within the
base class defines the form of the interface to that function. Each redefinition of the
virtual function by a derived class implements its operation as it relates specifica
the derived class. That is, the redefinition creates a specific method.

When accessed "normally," virtual functions behave just li y (@Qpe of class
member function. However, what makes virtual fu t1 fand capable of

supporting run-time polymorphism is n accegsed via a pointer.
As discussed in Chapter 13, a base- @ e use 5&_0 an object of any
ointer p

class derived from that Cj ﬁo et object that
contains a v1rtua b& % determ si f that function to call based

h1
upon th ointed to by t qﬂ this determination is made at run
e dlfferent ted to, different versions of the virtual
Ktl N are exec g- effect apphes to base-class references.
To begin, exa ort example:

#include <iostream>
using namespace std;

class base {
public:
virtual void vfunc() {
cout << "This is base's vfunc().\n";
}
h

class derived1l : public base {
public:
void vfunc() {
cout << "This is derivedl's vfunc().\n";

}

Chapter 17: Virtual Functions and Polymorphism 453

public:
/I vfunc() not overridden by derived2, base's is used

b

int main()

{
base *p, b;
derivedl di;
derived2 d2;

// point to base
p = &b;
p->vfunc(); // access base's vfunc()

// point to derivedl
p = &d1; u
p->vfunc(); // access derivedl's vfunc() \ e CO .

.

// point to derived2 tesa'

p = &d2;

p->vfunc(); // use beiiesv m NOo" ILOA"L

Pfeu ‘egage

The program pPoduces this output:

This is base's vfunc().
This is derivedl's vfunc().
This is base's vfunc().

Because derived2 does not override vfunc(), the function defined by base is used
when vfunc() is referenced relative to objects of type derived2.

The preceding program illustrates a special case of a more general rule. Because
inheritance is hierarchical in C++, it makes sense that virtual functions are also
hierarchical. This means that when a derived class fails to override a virtual function,
the first redefinition found in reverse order of derivation is used. For example, in the
following program, derived?2 is derived from derivedl, which is derived from base.
However, derived2 does not override vfunc(). This means that, relative to derived?2,

C++: The Complete Reference

protected:
int val;
public:
void setval(int i) { val = i; }

I/l show() is a pure virtual function
virtual void show() = O;

k

class hextype : public number {
public:
void show() {
cout << hex << val <<"\n";
}
h

class dectype : public number {
public:
void show() {
cout << val <<"\n";

Y / "(Om

‘;w:\ewblicnumbere A_gg O‘

void show() {P a'g

cout << oct << val << "\n";

}
k

int main()

{
dectype d;

hextype h;
octtype o;

d.setval(20);
d.show(); // displays 20 - decimal

h.setval(20);

h.show(); // displays 14 - hexadecimal

P

Chapter 17: Virtual Functions and Polymorphism

public:

L

f_to_c(double i) : convert(i) { }
void compute() {

val2 = (vall-32) / 1.8;
}

int main()

{

}

convert *p; // pointer to base class

|_to_g Igob(4);
f_to_c fcob(70);

/I use virtual function mechanism to convert

p = &lgob; o o O UK

cout << p->getinit() << " liters is "; .

p->compute(); a\e -C
cout << p->getconv() << " gallons\n"; //1_to é"es

(F:)o_ut&iios; etinif() %(@mlt is' lo A'l
. >come conv() << 'UA%Z
return O; P a

The preceding program creates two derived classes from convert, called 1_to_g and
f_to_c. These classes perform the conversions of liters to gallons and Fahrenheit to
Celsius, respectively. Each derived class overrides compute() in its own way to
perform the desired conversion. However, even though the actual conversion (that is,
method) differs between 1_to_g and f_to_c, the interface remains constant.

One of the benefits of derived classes and virtual functions is that handling a new
case is a very easy matter. For example, assuming the preceding program, you can add
a conversion from feet to meters by including this class:

/I Feet to meters
class f_to_m : public convert {
public:

f_to_m(double i) : convert(i) { }

459

G

(e"\"e\N A\ A9 A oﬁ
% es

461

Chapter 18: Templates 471

A Generic Sort

Sorting is exactly the type of operation for which generic functions were designed.
Within wide latitude, a sorting algorithm is the same no matter what type of data is
being sorted. The following program illustrates this by creating a generic bubble sort.
While the bubble sort is a rather poor sorting algorithm, its operation is clear and
uncluttered and it makes an easy-to-understand example. The bubble() function will
sort any type of array. It is called with a pointer to the first element in the array and the
number of elements in the array.

/I A Generic bubble sort.
#include <iostream>
using namespace std;

template <class X> void bubble(
X *items, // pointer to array to be sorted K
int count) // number of items in array O ‘u
{ \e _C
register int a, b; esa,
WO T AL
for(a=1; a<count; a l
for(b=c IW &)‘Q A O‘
\, é > jtems[b
P (e /I ex% gé

t=it
items[®-1] = items|b];
items[b] = t;
}
}
int main()
{

intiarray[7] = {7, 5, 4, 3, 9, 8, 6};
double darray[5] = {4.3, 2.5, -0.9, 100.2, 3.0};

inti;

cout << "Here is unsorted integer array: ";
for(i=0; i<7; i++)

480

C++: The Complete Reference

register int i;
for(i=0; i<SIZE; i++) a[i] = i;
}
AType &operator[](int i);
L

/I Provide range checking for atype.
template <class AType> AType &atype<AType>::operator[](int i)
{
if(i<0 || i> SIZE-1) {
cout << "\nIndex value of ";
cout << i <<"is out-of-bounds.\n";
exit(1);
}

return a[i];
) \)\4
int main() a\e CO :

(‘_35
atype<int> intob; // integer array N l
atype<double> doubleob{jm” y " IX—OA
int i; ‘\e\N -‘ 6&3 O
P(ut <<"Inte
for(i=0; i<Sl ?
for(i=0; i<SIZE; i++) cout << |ntob[|] <<’

cout << \n";
cout << "Double array: ";
for(i=0; i<SIZE; i++) doubleob[i] = (double) i/3;

for(i=0; i<SIZE; i++) cout << doubleob[i] << " "
cout << \n";

intob[12] = 100; // generates runtime error

return O;

This program implements a generic safe-array type and then demonstrates its use
by creating an array of ints and an array of doubles. You should try creating other
types of arrays. As this example shows, part of the power of generic classes is that they

482

C++: The Complete Reference

atype<int, 10> intob; I/l integer array of size 10
atype<double, 15> doubleob; // double array of size 15

inti;

cout << "Integer array: ";

for(i=0; i<10; i++) intobl[i] = i;

for(i=0; i<10; i++) cout << intob[i] << " "
cout << \n';

cout << "Double array: ";

for(i=0; i<15; i++) doubleob]i] = (double) i/3;
for(i=0; i<15; i++) cout << doubleob[i] << " *;
cout << \n';

intob[12] = 100; // generates runtime error

O-
return O; a\e -C
) NO"GS
Look carefully at th @mlﬁcatmn fo Q Ac size is declared as
an int. Thls,p is d within cla e the size of the array a. Even
thou \s@ ted as a Varlaban hedource code, its value is known at compile
llows

e size of the array. size is also used in the bounds

it et
eh ckmg within tlé 1() function. Within main(), notice how the integer and

floating-point arrays are created. The second parameter specifies the size of each array.

Non-type parameters are restricted to integers, pointers, or references. Other types,
such as float, are not allowed. The arguments that you pass to a non-type parameter
must consist of either an integer constant, or a pointer or reference to a global function
or object. Thus, non-type parameters should themselves be thought of as constants,
since their values cannot be changed. For example, inside operator[1(), the following
statement is not allowed.

size = 10; // Error

Since non-type parameters are treated as constants, they can be used to set the
dimension of an array, which is a significant, practical benefit.

As the safe-array example illustrates, the use of non-type parameters greatly
expands the utility of template classes. Although the information contained in the
non-type argument must be known at compile-time, this restriction is mild compared
with the power offered by non-type parameters.

Chapter 19: Exception Handling

The following program shows how to restrict the types of exceptions that can be
thrown from a function.

/I Restricting function throw types.
#include <iostream>
using namespace std;

/l This function can only throw ints, chars, and doubles.
void Xhandler(int test) throw(int, char, double)

{
if(test==0) throw test; // throw int
if(test==1) throw 'a’; // throw char
if(test==2) throw 123.23; // throw double
}

i{nt main() " - \e CO ‘UK
o tesa |

Xhandler(0); // also, try@s‘vﬂ han%er(

CatCh(XNht an inte 63
Are. pade
catch(char C)P

cout << "Caught char\n";
}
catch(double d) {
cout << "Caught double\n";

}

cout << "end";

return O;

In this program, the function Xhandler() may only throw integer, character, and
double exceptions. If it attempts to throw any other type of exception, an abnormal
program termination will occur. (That is, unexpected() will be called.) To see an
example of this, remove int from the list and retry the program.

It is important to understand that a function can be restricted only in what types of
exceptions it throws back to the try block that called it. That is, a try block within a

503

504 C++: The Complete Reference

function may throw any type of exception so long as it is caught within that function.
The restriction applies only when throwing an exception outside of the function.
The following change to Xhandler() prevents it from throwing any exceptions.

/I This function can throw NO exceptions!
void Xhandler(int test) throw()
{
/* The following statements no longer work. Instead,
they will cause an abnormal program termination. */
if(test==0) throw test;
if(test==1) throw 'a’;
if(test==2) throw 123.23;
}

| At the time of this writing, Microsoft’s Visual C++ does not support the throw()
— clause for functions. u

a\e €O
Rethrowing an Exception

If you wish to rethrow an expression fr ceptlon you may do so
by calling throw, by itself, wit s c xceptlon to be
passed on to an outer t &ch ely n for doing so is to
allow multi ss to ample, perhaps one exception
harny &E e aspect %3n nd a second handler copes with another.
Px on ca m within a catch block (or from any function

d from w1thu?, When you rethrow an exception, it will not be recaught
by the same catch statement. It will propagate outward to the next catch statement. The
following program illustrates rethrowing an exception, in this case a char * exception.

/I Example of "rethrowing" an exception.
#include <iostream>
using namespace std;

void Xhandler()

{
try {
throw "hello"; // throw a char *
}
catch(const char *) { // catch a char *
cout << "Caught char * inside Xhandler\n";
throw ; // rethrow char * out of function

Chapter 20: The C++ 1/0 System Basics 513

| c++ Streams

Like the C-based I/O system, the C++ 1/O system operates through streams. Streams
were discussed in detail in Chapter 9; that discussion will not be repeated here.
However, to summarize: A stream is a logical device that either produces or consumes
information. A stream is linked to a physical device by the I/O system. All streams
behave in the same way even though the actual physical devices they are connected to
may differ substantially. Because all streams behave the same, the same I/O functions
can operate on virtually any type of physical device. For example, you can use the
same function that writes to a file to write to the printer or to the screen. The advantage
to this approach is that you need learn only one I/O system.

| The C++ Stream Classes

As mentioned, Standard C++ provides support for its I/O system in <iostream>. IK
this header, a rather complicated set of class hierarchies is defined that suggor
operations. The I/O classes begin with a system of template clas ihe
Chapter 18, a template class defines the form of a class a 'spec1fymg the
data upon which it will operate. Once a te g en defined, specific
instances of it can be created Asit relateﬁ 3 1 rar C++ creates two

specializations of the I elqsse one for another for
wide characters Thi only t asses since they are by far
the most c t th same te oth

system is re ated but different template class
P 1es The f om the low-level I/O class called basic_streambuf.
Th1s class supphe ow-level input and output operations, and provides the

underlying support for the entlre C++1/0 system. Unless you are doing advanced I/O
programming, you will not need to use basic_streambuf directly. The class hierarchy
that you will most commonly be working with is derived from basic_ios. This is a
high-level I/O class that provides formatting, error checking, and status information
related to stream I/O. (A base class for basic_ios is called ios_base, which defines
several nontemplate traits used by basic_ios.) basic_ios is used as a base for several
derived classes, including basic_istream, basic_ostream, and basic_iostream. These
classes are used to create streams capable of input, output, and input/output,
respectively.

As explained, the I/O library creates two specializations of the template class
hierarchies just described: one for 8-bit characters and one for wide characters. Here is
a list of the mapping of template class names to their character and wide-character
versions.

Chapter 20: The C++ 1/0 System Basics 515

Standard C++ also defines these four additional streams: win, wout, werr, and
wlog. These are wide-character versions of the standard streams. Wide characters are
of type wchar_t and are generally 16-bit quantities. Wide characters are used to hold
the large character sets associated with some human languages.

___ | Formatted 1/0

The C++1/0 system allows you to format I/O operations. For example, you can set a
field width, specify a number base, or determine how many digits after the decimal
point will be displayed. There are two related but conceptually different ways that
you can format data. First, you can directly access members of the ios class.
Specifically, you can set various format status flags defined inside the ios class or

call various ios member functions. Second, you can use special functions called
manipulators that can be included as part of an I/O expression.

We will begin the discussion of formatted I/O by using the ios member furﬂ%

and flags. a\e cO

Formatting Using the ios Membe @
that nt

Each stream has associated w1th it a set e way
information is formattejﬁ‘ d lates a bi called fmtflags
la

in which the followi ﬁned echga alues are defined within
ios base ned earh r i0s.)

P (%stﬁeld % boolalpha dec

fixed floatfield hex internal
left oct right scientific
showbase showpoint showpos skipws
unitbuf uppercase

These values are used to set or clear the format flags. If you are using an older
compiler, it may not define the fmtflags enumeration type. In this case, the format flags
will be encoded into a long integer.

When the skipws flag is set, leading white-space characters (spaces, tabs, and
newlines) are discarded when performing input on a stream. When skipws is cleared,
white-space characters are not discarded.

When the left flag is set, output is left justified. When right is set, output is right
justified. When the internal flag is set, a numeric value is padded to fill a field by
inserting spaces between any sign or base character. If none of these flags are set,
output is right justified by default.

516

C++: The Complete Reference

By default, numeric values are output in decimal. However, it is possible to change
the number base. Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal, set
the dec flag.

Setting showbase causes the base of numeric values to be shown. For example, if
the conversion base is hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when a
hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these
characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.

Setting showpoint causes a decimal point and trailing zeros to be displayed for all
floating-point output—whether needed or not.

By setting the scientific flag, floating-point numeric values are displayed using
scientific notation. When fixed is set, floating-point values are displayed using normal
notation. When neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operatlon ¥

When boolalpha is set, Booleans can be input or output using the
and false.

Since it is common to refer to the oct, dec, an Zan be collect1ve1y

referred to as basefield. Slrmlarly, the 1 @ nitérnal fi an be referred to
as adjustfield. Finally, the sc1en elds ca\}ﬁ— as floatfield.

Setting t 'xﬁla

15 shown he

?x se the setf(greo Aunctlon is a member of ios. Its most common

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags
specified by flags. For example, to turn on the showpos flag, you can use this statement:

stream.setf(ios::showpos);

Here, stream is the stream you wish to affect. Notice the use of ios:: to qualify showpos.
Since showpos is an enumerated constant defined by the ios class, it must be qualified

by ios when it is used.
The following program displays the value 100 with the showpos and showpoint

flags turned on.

524

C++: The Complete Reference

There are overloaded forms of width(), precision(), and fill() that obtain but do
not change the current setting. These forms are shown here:

char fill();
streamsize width();
streamsize precision();

Using Manipulators to Format 1/0

The second way you can alter the format parameters of a stream is through the use of
special functions called manipulators that can be included in an I/O expression. The
standard manipulators are shown in Table 20-1. As you can see by examining the table,
many of the I/O manipulators parallel member functions of the ios class. Many of the
manipulators were added recently to C++ and will not be supported by older

compilers. K
cOoV

Manipulator Purpose \,65 np tput
DR @A

boolalpha Q lapha ﬂ utput
dec "(urns rﬁj Input/ Output
% ine character ~ Output

P ag flush the stream.

ends Output a null. Output
fixed Turns on fixed flag. Output
flush Flush a stream. Output
hex Turns on hex flag. Input/Output
internal Turns on internal flag. Output
left Turns on left flag. Output
nobooalpha Turns off boolalpha flag. Input/Output
noshowbase Turns off showbase flag. Output
noshowpoint Turns off showpoint flag. Output
noshowpos Turns off showpos flag. Output

Table 20-1. The C++ Manipulators

532 C++: The Complete Reference

int main()

{
phonebook a("Ted", 111, 555, 1234);

phonebook b("Alice", 312, 555, 5768);
phonebook c("Tom", 212, 555, 9991);

cout<<a<<b<<c;

return O;

When you define the body of an inserter function, remember to keep it as general as
possible. For example, the inserter shown in the preceding example can be used with
any stream because the body of the function directs its output to stream, which is
stream that invoked the inserter. While it would not be wrong to have wrltten V

stream << o.name << ""; \e C

()"’e
s om NO"108%
V}&ve the effect
oLe

as

cout << O nam

- 5ng cout as the output stream. The original
ion will work eam, including those linked to disk files. Although in
some situations, especially where special output devices are involved, you will want to
hard-code the output stream, in most cases you will not. In general, the more flexible
your inserters are, the more valuable they are.

| The inserter for the phonebook class works fine unless the value of num is
: something like 0034, in which case the preceding zeroes will not be displayed. To fix
this, you can either make num into a string or you can set the fill character to zero

and use the width() format function to generate the leading zeroes. The solution is
left to the reader as an exercise.

Before moving on to extractors, let's look at one more example of an inserter
function. An inserter need not be limited to handling only text. An inserter can be used
to output data in any form that makes sense. For example, an inserter for some class
that is part of a CAD system may output plotter instructions. Another inserter might
generate graphics images. An inserter for a Windows-based program could display a
dialog box. To sample the flavor of outputting things other than text, examine the
following program, which draws boxes on the screen. (Because C++ does not define a

Chapter 20:

The C++ 1/0 System Basics

graphics library, the program uses characters to draw a box, but feel free to substitute
graphics if your system supports them.)

P

#include <iostream>

using namespace std;

class box {
intx,y;
public:

box(int i, int j) { x=i; y=j; }

friend ostream &operator<<(ostream &stream, box 0);

h

// Output a box.

ostream &operator<<(ostream &stream, box 0)

{

register int i, j;

for(i=0; i<o.x; i++)
stream << "*'";

stream << "\n";

\%\Nﬂ {

O i<
n‘(|::O P
else stre

stream << "\n";

}

for(i=0; i<o.x; i++)
stream << "*";
stream << "\n";

return stream,

}

int main()

{

\
\‘('\
o 500

am<< s

box a(14, 6), b(30, 7), c(40, 5);

ores%

of 10

a\e.C
oML

o V¥

533

540 C++: The Complete Reference

using namespace std;

/I A simple input manipulator.
istream &getpass(istream &stream)

{

cout << \a'; // sound bell
cout << "Enter password: ";

return stream,

}

int main()

{
char pw[80];

do { U\(
cin >> getpass >> pw; O .
. . ": \e _C

} while (strcmp(pw, "password"));

cout << "Logon complete\n"; Notes A&—
return O; -‘(Om O“ 3—0
cenieW o 513
P Remember tha?l@g that your manipulator return stream. If it does not, your

manipulator cannot be used in a series of input or output operations.

C++: The Complete Reference

If open() fails, the stream will evaluate to false when used in a Boolean expression.
Therefore, before using a file, you should test to make sure that the open operation
succeeded. You can do so by using a statement like this:

if(lmystream) {
cout << "Cannot open file.\n";
/I handle error

Although it is entirely proper to open a file by using the open() function, most of
the time you will not do so because the ifstream, ofstream, and fstream classes have
constructor functions that automatically open the file. The constructor functions have
the same parameters and defaults as the open() function. Therefore, you will most

commonly see a file opened as shown here:
O A8\

ifstream mystream("myfile"); // open file for input

G

As stated, if for some reason the file cannot b ge of the associated
stream variable will evaluate to false. T %‘) ou use a onstructor
function to open the file or an ex w conflrm that the
file has actually been o z C§g the value o e?ﬁs

eda f11e by using the

You can,also t ou ha ﬂg
is openu@ hich is a me ‘L? ream, 1fstream and ofstream. It has this

P o 20>

bool is_open();

It returns true if the stream is linked to an open file and false otherwise. For example,
the following checks if mystream is currently open:

if(lmystream.is_open()) {
cout << "File is not open.\n";

...

To close a file, use the member function close(). For example, to close the file linked
to a stream called mystream, use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

546 C++: The Complete Reference

}

char item[20];
float cost;

in >> jtem >> cost;
cout << item << " " << cost << "\n";
in >> item >> cost;
cout << item << " " << cost << "\n";
in >> jtem >> cost;
cout << item << " " << cost << "\n";

in.close();
return O;

| uk
In a way, reading and writing files by using >> and :E 1ng.‘mg—based

functions fprintf() and fscanf() functions. All i 1r1 d in the file in the

same format as it would be dlsplayed orpth! @l

Following is another exam m is prog ’x_ngs entered at
the keyboard and write I:ré *The progra m the user enters an
exclamation p prog

ra me of the output file on the
owm@“{f\ %T

<.ostr§zage

#include <fstream>
using namespace std;

int main(int argc, char *argv[])
{
if(argc!=2) {
cout << "Usage: output <filename>\n";
return 1,

}

ofstream out(argv[1]); // output, normal file

if(fout) {
cout << "Cannot open output file.\n";
return 1,

556

C++: The Complete Reference

ifstream in(argv[1], ios::in | ios::binary);

if(fin) {
cout << "Cannot open input file.\n";
return 1,

}

register int i, j;
int count = 0;
char c[16];

cout.setf(ios::uppercase);
while(lin.eof()) {
for(i=0; i<16 && lin.eof(); i++) {
in.get(c[i]);
}
if(i<16) i--; // get rid of eof

for(j=0; j<i; j++)

C
sa\e-

cout << setw(3) << hex << (int) cNOte ’L
for(; j<16; j++) c Py l A

o% <<
|f(|spr|n ﬁg
else co

cout << endl;
count++;

if(count==16) {
count = 0;

cout << "Press ENTER to continue: ";

cin.get();
cout << endl;

}
}

in.close();

return O;

ol
¢ ‘589

562

C++: The Complete Reference

fstream inout(argv[1], ios::in | ios::out | ios::binary);

if(finout) {
cout << "Cannot open input file.\n";
return 1,

}

long e, i, j;
char c1, c2;
e = atol(argv[2]);

for(i=0, j=e; i<j; i++, j--) {

inout.seekg(i, ios::beg);
inout.get(cl);

inout.seekg(j, ios::beg);

inout.get(c2); U\(
O-

inout.seekp(i, ios::beg); 5 \e -C

inout.put(c2);

inout.seekp(j, ios::beg); Note
inout.put(cl); -‘ Om

‘?‘QN pa@e

To use the program, specify the name of the file that you want to reverse, followed
by the number of characters to reverse. For example, to reverse the first 10 characters of
a file called TEST, use this command line:

reverse test 10
If the file had contained this:
This is a test.
it will contain the following after the program executes:

a si sihTtest.

Chapter 21: C++ File 1/0 565

else if(i & ios::failbit)

cout << "Non-Fatal 1/0O error\n";
else if(i & ios::badbit)

cout << "Fatal I/O error\n";

This program will always report one "error." After the while loop ends, the final
call to checkstatus() reports, as expected, that an EOF has been encountered. You
might find the checkstatus() function useful in programs that you write.

The other way that you can determine if an error has occurred is by using one or
more of these functions:

bool bad();

bool eof();

bool fail(); \)K

bool good(); .

cO

The bad() function returns true if badbit i 1s sde nction was discussed
earlier. The fail() returns true if fallblt i () functi (xl—lrns true if there
are no errors. Otherwise_it re E

Once an error has,o c&lﬁ y need.fo mh ed € your program
continues. T @ clear as this prototype:
P (V@ﬁlzar(lost?ﬁaggodblt)

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags as
you desire.

___| customized 1/0 and Files

In Chapter 20 you learned how to overload the insertion and extraction operators
relative to your own classes. In that chapter, only console I/O was performed, but
because all C++ streams are the same, you can use the same overloaded inserter or
extractor function to perform I/O on the console or a file with no changes whatsoever.
As an example, the following program reworks the phone book example in Chapter 20
so that it stores a list on disk. The program is very simple: It allows you to add names
to the list or to display the list on the screen. It uses custom inserters and extractors to
input and output the telephone numbers. You might find it interesting to enhance the
program so that it will find a specific number or delete unwanted numbers.

568 C++: The Complete Reference

break;
case '3"

pb.close();

return O;

Notice that the overloaded << operator can be used to write to a disk file or to the
screen without any changes. This is one of the most important and useful features of
C++'s approach to I/0O.

3
coY
NO‘esa\e\,
W o ol X’OA

‘?‘e\"\ep 20 6O

Chapter 22: Run-Time Type ID and the Casting Operators 571

nothing to do with inheritance or class hierarchies.) The name() function returns a
pointer to the name of the type.
Here is a simple example that uses typeid.

/I A simple example that uses typeid.
#include <iostream>

#include <typeinfo>

using namespace std;

class myclassl {
...

h

class myclass?2 {

i .. \)\4
int main() a\e CO :
Co \\\OXQS

float f; m

char *p;

£ 10
mycla55g\l\| -‘ 0 O
P (%’g« ThePe ag« typeid().name();

cout << endl;

cout << "The type of f is: " << typeid(f).name();
cout << endl;

cout << "The type of p is: " << typeid(p).name();
cout << endl;

cout << "The type of obl is: " << typeid(obl).name();
cout << endl;

cout << "The type of ob2 is: " << typeid(ob2).name();
cout << "\n\n";

if(typeid(i) == typeid(j))
cout << "The types of i and j are the same\n";

if(typeid(i) != typeid(f))
cout << "The types of i and f are not the same\n";

Chapter 22: Run-Time Type ID and the Casting Operators 581

dp = dynamic_cast<Derived *> (bp); // cast to derived pointer OK
if(dp) cout << "Cast OK";

Here, the cast from the base pointer bp to the derived pointer dp works because bp is
actually pointing to a Derived object. Thus, this fragment displays Cast OK. But in the
next fragment, the cast fails because bp is pointing to a Base object and it is illegal to
cast a base object into a derived object.

bp = &b_ob; // base pointer points to Base object
dp = dynamic_cast<Derived *> (bp); // error
if(!dp) cout << "Cast Fails";

Because the cast fails, this fragment displays Cast Fails.
The following program demonstrates the various situations that dynamic_casl‘w

handle. \e ‘CO .

/l Demonstrate dynamic_cast.
#include <iostream>

td; "es
e ﬁ o NOO < 'X—OAA—

class Base {
public:

P (a I\)%() { cout <@@ B

class Derived : public Base {
public:
void f() { cout << "Inside Derived\n"; }

h

int main()

{
Base *bp, b_ob;
Derived *dp, d_ob;

dp = dynamic_cast<Derived *> (&d_ob);

if(dp) {
cout << "Cast from Derived * to Derived * OK.\n";

dp->f();
} else

588 C++: The Complete Reference

a pointer to a derived object.

Can't cast from Num<double>* to Num<int>*,
These are two different types.

A key point illustrated by this example is that it is not possible to use dynamic_cast
to cast a pointer to one type of template instantiation into a pointer to another type of
instance. Remember, the precise type of an object of a template class is determined by
the type of data used to create an instance of the template. Thus, Num<double> and
Numc<int> are two different types.

const_cast

The const_cast operator is used to explicitly override const and/or volatile in a cast.
The target type must be the same as the source type except for the alteration of it st
or volatile attributes. The most common use of const_cast is to remov (G-n

general form of const_cast is shown here. 6

const_cast<type> (expr) Otes l
Here, type specifies the * e cast, anéj&! 1%gpressmn being cast into

the new type.

é{{]’ ﬂﬂgram demon % t_cast.
P /I Demonstrate %t_asg

#include <iostream>
using namespace std;

void sgrval(const int *val)

{
int *p;

/I cast away const-ness.
p = const_cast<int *> (val);

*p = *val * *val; // now, modify object through v
}

int main()

{

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics

Anything defined within a namespace statement is within the scope of that namespace.

Here is an example of a namespace. It localizes the names used to implement a
simple countdown counter class. In the namespace are defined the counter class, which
implements the counter, and the variables upperbound and lowerbound, which
contain the upper and lower bounds that apply to all counters.

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {
int count;
public:
counter(int n) {
if(n <= upperbound) count = n;

else count = upperbound; \)K
a\e O

QAY

}

void reset(int n) { tes
if(n <= upperbound) count = n; NO

oM A0
P(e\'m‘;ﬂ@ 620 ol

Here, upperbound, lowerbound, and the class counter are part of the scope defined by
the CounterNameSpace namespace.

Inside a namespace, identifiers declared within that namespace can be referred to
directly, without any namespace qualification. For example, within
CounterNameSpace, the run() function can refer directly to lowerbound in the
statement

if(count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution
operator to refer to objects declared within a namespace from outside that namespace.

595

596 C++: The Complete Reference

For example, to assign the value 10 to upperbound from code outside
CounterNameSpace, you must use this statement:

CounterNameSpace::upperbound = 10;

Or to declare an object of type counter from outside CounterNameSpace, you will use
a statement like this:

CounterNameSpace::counter ob;

In general, to access a member of a namespace from outside its namespace, precede the
member's name with the name of the namespace followed by the scope resolution
operator.

Here is a program that demonstrates the use of CounterNameSpace.

/l Demonstrate a namespace.

#include <iostream> \e _CO :
S

using namespace std; te
namespace CounterNameSpace(-(‘\ NO
int upperbound; .‘(O

int lower \

P (@a\gc}unterp age 62

int count;
public:
counter(int n) {
if(n <= upperbound) count = n;
else count = upperbound;

}

void reset(int n) {
if(n <= upperbound) count = n;

}

int run() {
if(count > lowerbound) return count--;
else return lowerbound;

602

Pﬁ%ﬂ?s%g 0e

C++: The Complete Reference

cout << NS::i * NS::j << "\n";

// use NS namespace
using namespace NS;

cout <<i*j;

return O;

This program produces the following output:

100
100

Here, NS is split into two pieces. However, the contents of ea ce@:@l V&fhm
the same namespace, that is, NS.

A namespace must be declared outsi &l@ hlS means that you
cannot declare namespaces that are locaﬁ tion, le There is,
however, one exception: a na cant bé nested 1t @ nsider
this program: { 6 36 O

namespace NS1 {
inti;
namespace NS2 {// a nested namespace
int j;
}
}

int main()

{
NS1:i=19;
/I NS2::j = 10; Error, NS2 is not in view
NS1::NS2::j = 10; // this is right

cout << NS1:i<<""<< NS1:NS2:j<<"\n";

/l use NS1

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 605

cout << "Enter a number: ";

cin >> val;

cout << "This is your number: ";
cout << hex << val;

return O;

Here, cin, cout, and hex may be used directly, but the rest of the std namespace has not
been brought into view.

As explained, the original C++ library was defined in the global namespace. If you
will be converting older C++ programs, then you will need to either include a using
namespace std statement or qualify each reference to a library member with std::. This
is especially important if you are replacing old .H header files with the new-style
headers. Remember, the old .H headers put their contents into the global nam ¥
the new-style headers put their contents into the std narnespacee C

___| creating Conversion Fg&@’ﬁﬁss A&}
ression involving

In some situations, you ob]ect of
other types of datanS m t&ﬂverlo g g ns can provide the means
of doin @ r, in other ca nt is a simple type conversion from
@ﬂ)‘ the targe these cases, C++ allows you to create
uXC converszon @ version function converts your class into a type
compatible with t st of the expression. The general format of a type
conversion functlon is

operator type() { return value; }

Here, type is the target type that you are converting your class to, and value is the value
of the class after conversion. Conversion functions return data of type type, and no
other return type specifier is allowed. Also, no parameters may be included. A
conversion function must be a member of the class for which it is defined. Conversion
functions are inherited and they may be virtual.

The following illustration of a conversion function uses the stack class first
developed in Chapter 11. Suppose that you want to be able to use objects of type stack
within an integer expression. Further, suppose that the value of a stack object used in
an integer expression is the number of values currently on the stack. (You might want

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 607

tos--;
return stck[tos];

}

int main()

{
stack stck;
inti, j;

for(i=0; i<20; i++) stck.push(i);
j = stck; // convert to integer
cout << j << " items on stack.\n";

cout << SIZE - stck << " spaces open.\n";

} return O; \e CO‘

s
This program displays this o (SW NO l A—l
20 nems‘irm'\' A O‘

P As the progra Q when a stack object is used in an integer expression,
such as j = stck, the conversion function is applied to the object. In this specific case,
the conversion function returns the value 20. Also, when stck is subtracted from SIZE,
the conversion function is also called.

Here is another example of a conversion function. This program creates a class
called pwr() that stores and computes the outcome of some number raised to some
power. It stores the result as a double. By supplying a conversion function to type
double and returning the result, you can use objects of type pwr in expressions
involving other double values.

#include <iostream>
using namespace std;

class pwr {
double b;
inte;
double val;

610

‘?‘%}!“’ page

C++: The Complete Reference

This program won't compile.
*/
#include <iostream>
using namespace std;

class Demo {
inti;
public:
int geti() const {
return i; // ok

}

void seti(int x) const {
i =x; /l error!

}

3 UK
int main() \e _CO :

{ Demo ob; O‘es

This program will not compile because seti() is declared as const. This means that it is
not allowed to modify the invoking object. Since it attempts to change i, the program is
in error. In contrast, since geti() does not attempt to modify i, it is perfectly acceptable.

Sometimes there will be one or more members of a class that you want a const
function to be able to modify even though you don't want the function to be able to
modify any of its other members. You can accomplish this through the use of mutable.
It overrides constness. That is, a mutable member can be modified by a const member
function. For example:

/l Demonstrate mutable.
#include <iostream>
using namespace std;

class Demo {

612

C++: The Complete Reference

Explicit Constructors

As explained in Chapter 12, any time you have a constructor that requires only one
argument, you can use either ob(x) or ob = x to initialize an object. The reason for this is
that whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class. But there
may be times when you do not want this automatic conversion to take place. For this
purpose, C++ defines the keyword explicit. To understand its effects, consider the
following program.

#include <iostream>
using namespace std;

class myclass {
int a;

pu?r:i)ftztlass(int x){a=x;} CO -uK
int geta() { return a; } \e .

}z so
|nt main() m NOXe OAA_

myclass é &xancany (@/ﬁ%to @ﬁss(}'

P (@\L ob. geﬁ age

return O;

}

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). The statement

myclass ob = 4; // automatically converted into myclass(4)

is automatically converted into a call to the myclass constructor with 4 being the
argument. That is, the preceding statement is handled by the compiler as if it were
written like this:

myclass ob(4);

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 613

If you do not want this implicit conversion to be made, you can prevent it by using
explicit. The explicit specifier applies only to constructors. A constructor specified as
explicit will only be used when an initialization uses the normal constructor syntax. It
will not perform any automatic conversion. For example, by declaring the myclass
constructor as explicit, the automatic conversion will not be supplied. Here is
myclass() declared as explicit.

#include <iostream>
using namespace std;

class myclass {
int a;
public:
explicit myclass(int x) {a =x; }

int geta() { return a; }
b \4
cO)
Now, only constructors of the form 5 \e .

myclass ob(4); NO"e
will be allowed st"“lQhke A6 O‘

prediyge ©

will be invalid.

___| Using the asm Keyword

While C++ is a comprehensive and powerful programming language, there are a few
highly specialized situations that it cannot handle. (For example, there is no C++
statement that disables interrupts.) To accommodate special situations, C++ provides a
"trap door" that allows you to drop into assembly code at any time, bypassing the C++
compiler entirely. This "trap door" is the asm statement. Using asm, you can embed
assembly language directly into your C++ program. This assembly code is compiled
without any modification, and it becomes part of your program's code at the point at
which the asm statement occurs.

The general form of the asm keyword is shown here:

asm ("op-code");

614 C++: The Complete Reference

where op-code is the assembly language instruction that will be embedded in your
program. However, several compilers also allow the following forms of asm:

asm instruction ;
asm instruction newline
asm {

instruction sequence

}

Here, instruction is any valid assembly language instruction. Because of the
implementation-specific nature of asm, you must check the documentation that
came with your compiler for details.

At the time of this writing, Microsoft's Visual C++ uses _ _asm for embedding
assembly code. It is otherwise similar to asm.

Here is a simple (and fairly "safe") example that uses the asm keyword: K

#include <iostream> \e CO .
.

using namespace std;
sa
|nt main() O"e

sk m‘g N ﬁlob‘l
R pag®

When run under DOS, this program generates an INT 5 instruction, which invokes the
print-screen function.

| A thorough working knowledge of assembly language programming is required for
- using the asm statement. If you are not proficient with assembly language, it is best

to avoid using asm because very nasty errors may result.

| Linkage Specification
In C++ you can specify how a function is linked into your program. By default,
functions are linked as C++ functions. However, by using a linkage specification, you can
cause a function to be linked for a different type of language. The general form of a
linkage specifier is

extern "language" function-prototype

Chapter 23: Namespaces, Conversion Functions, and Other Advanced Topics 619

Il reading 0x75 42.73 OK
ins >> hex >>i;

ins >> f;

ins >> str;

cout<< hex <<i<<""<<f<<"" << str;

return O;

If you want only part of a string to be used for input, use this form of the istrstream
constructor:

istrstream istr(const char *buf, streamsize size);

Here, only the first size elements of the array pomted to by bufgw hi&éring
need not be null terminated, since it is the value of size t \ e size of
the string. &e%
Streams linked to memory behave jul ked t Vlces For
a text array can
ed, ins will be false.

example, the following progr ns a s
be read. When th{i:qi %tf @ ame a e)
(V &% shows ho %btents of any
P array that ¢ r&w

#include <|ostre
#include <strstream>
using namespace std;

int main()

{
char s[] ="10.23 this is a test <<>><<?\n";
istrstream ins(s);

char ch;

/* This will read and display the contents
of any text array. */

ins.unsetf(ios::skipws); // don't skip spaces
while (ins) { // false when end of array is reached

624

C++: The Complete Reference

In C, it is not an error to declare a global variable several times, even though this is
bad programming practice. In C++, it is an error.

In C, an identifier will have at least 31 significant characters. In C++, all characters
are significant. However, from a practical point of view, extremely long identifiers are
unwieldy and seldom needed.

In C, although it is unusual, you can call main() from within your program. This is
not allowed by C++.

In C, you cannot take the address of a register variable. In C++, this is allowed.

In G, if no type specifier is present in some types of declaration statements, the type
int is assumed. This "default-to-int" rule no longer applies to C++. (Future versions of
C are also expected to drop the "default-to-int" rule.)

626

Py

C++: The Complete Reference

feature added to C++ in recent years: the standard template library (STL). The

inclusion of the STL was one of the major efforts that took place during the
standardization of C++. It provides general-purpose, templatized classes and functions
that implement many popular and commonly used algorithms and data structures,
including, for example, support for vectors, lists, queues, and stacks. It also defines
various routines that access them. Because the STL is constructed from template
classes, the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++'s most

sophisticated features. To understand and use the STL, you must have a complete
understanding of the C++ language, including pointers, references, and templates.
Frankly, the template syntax that describes the STL can seem quite intimidating—
although it looks more complicated than it actually is. While there is nothing in this
chapter that is any more difficult than the material in the rest of this book, don't be
surprised or dismayed if you find the STL confusing at first. Just be patient, study hﬁ

This chapter explores what is considered by many to be the most important new

examples, and don't let the unfamiliar syntax override the STL's basic s1mphc1

The purpose of this chapter is to present an overview of the STL, i
design philosophy, organization, constituents, and the pro @\ ques
needed to use it. Because the STL is a large librar E? to discuss all of its
features here. However, a complete refe n e @L provideghin Part Four.

This chapter also describes o 1m or n s: string. The
string class defines a st hat allow 1t character strings
es: usm strmg class is closely related

much as you W da
to theé\, \(é

page
| An Overview of the STL

Although the standard template library is large and its syntax can be intimidating, it is
actually quite easy to use once you understand how it is constructed and what
elements it employs. Therefore, before looking at any code examples, an overview of
the STL is warranted.

At the core of the standard template library are three foundational items: containers,
algorithms, and iterators. These items work in conjunction with one another to provide
off-the-shelf solutions to a variety of programming problems.

Containers

Containers are objects that hold other objects, and there are several different types. For
example, the vector class defines a dynamic array, deque creates a double-ended
queue, and list provides a linear list. These containers are called sequence containers
because in STL terminology, a sequence is a linear list. In addition to the basic

628

C++: The Complete Reference

Term Represents

Bilter Bidirectional iterator
Forlter Forward iterator

Inlter Input iterator

Outlter Output iterator
RandlIter Random access iterator

Other STL Elements

In addition to containers, algorithms, and iterators, the STL relies upon several other
standard components for support. Chief among these are allocators, predicates,
comparison functions, and function objects.

Each container has defined for it an allocator. Allocators manage memory allo %‘1
for a container. The default allocator is an object of class allocator, but yoyrsan Yeki
your own allocators if needed by specialized applicatlons Fo t ué default
allocator is sufficient.

Several of the algorithms and container e of fupction called a
predicate. There are two Var1at1ons 0 @t ry and unary predicate

takes one argument, w te has tw Tﬁkm return true/false
results. But the pregi s that ma theg‘J eor false are defined by
you Fo BNS d apter w predicate function is required, it will be

type Un nary predicate is required, the type BinPred
i b sed In a the arguments are always in the order of first,second.
e

For both unary a dlcates, the arguments will contain values of the type of
objects being stored by the container.

Some algorithms and classes use a special type of binary predicate that compares
two elements. Comparison functions return true if their first argument is less than their
second. Comparison functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard
library includes the <utility> and <functional> headers, which provide support for the
STL. For example, the template class pair, which can hold a pair of values, is defined in
<utility>. We will make use of pair later in this chapter.

The templates in <functional> help you construct objects that define operator().
These are called function objects and they may be used in place of function pointers in
many places. There are several predefined function objects declared within
<functional>. They are shown here:

plus minus multiplies divides modulus
negate equal_to not_equal_to greater greater_equal

less less_equal logical_and logical_or logical_not

Chapter 24: Introducing the Standard Template Library 635
return O;

The output of this program is shown here:

Size =10
Current Contents:
abcdefghij

Expanding vector

Size now = 20

Current contents:
abcdefghijklmnopqgrst

Modified Contents: O uK

ABCDEFGHIJKLMNOPQRST C

Let's look at this program carefully ai (K‘@\ ector called v is created
with an initial capacity of 10. That is,_ v i 10 This is confirmed
by calling the size() me be these 1 el@m alized to the
characters a thro h i %ﬂ ents of v ice that the standard
array subs is empl @% ore elements are added to the end

eXi _back(cduses v to grow in order to accommodate
@1 e ements @ hows, its size after these additions is 20. Finally, the
values of v's elem ed usmg standard subscripting notation.

There is one other point of interest in this program. Notice that the loops that
display the contents of v use as their target value v.size(). One of the advantages that

vectors have over arrays is that it is possible to find the current size of a vector. As you
can imagine, this can be quite useful in a variety of situations.

Accessing a Vector Through an Iterator

As you know, arrays and pointers are tightly linked in C++. An array can be accessed
either through subscripting or through a pointer. The parallel to this in the STL is the
link between vectors and iterators. You can access the members of a vector using
subscripting or through the use of an iterator. The following example shows how.

/I Access the elements of a vector through an iterator.
#include <iostream>

#include <vector>

#include <cctype>

Chapter 24: Introducing the Standard Template Library 657

stored are determined automatically by the compiler rather than being explicitly
specified by you.

The following program illustrates the basics of using a map. It stores key/value
pairs that show the mapping between the uppercase letters and their ASCII character
codes. Thus, the key is a character and the value is an integer. The key/value pairs
stored are

A 65
B 66
C 67

and so on. Once the pairs have been stored, you are prompted for a key (i.e., a letter
between A and Z), and the ASCII code for that letter is displayed.

/I A simple map demonstration.

#include <iostream> K
#include <map> O -u
using names F?’:\CE std; e ‘C
g p Sa'\
i{nt main() Om NO‘e lo A&_
Srew I 690 O
P(put pairs inI +)?ag

for(i=0; i<26;
m.insert(pair<char, int>(A'+i, 65+i));

}

char ch;
cout << "Enter key: ";
cin >> ch;

map<char, int>::iterator p;

// find value given key
p = m.find(ch);
if(p '= m.end())
cout << "lts ASCII value is " << p->second;
else
cout << "Key not in map.\n";

668 C++: The Complete Reference

Input sequence:

The STL is power programming.
Result after removing spaces:
TheSTLispowerprogramming.

Input sequence:
The STL is power programming.

Result after replacing spaces with colons:

The:STL:is:power:programming.

Reversing a Sequence

An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class Bilter> void reverse(Bilter start, Bilter end);

The reverse() algorithm reverses the order of the range specified by s@@ »K

The following program demonstrates reverse().

/I Demonstrate reverse.
#include <iostream>
#include <vector>

£¥O
#.ncmde«aa\!\}
g™ oage

{

vector<int>v;
inti;

for(i=0; i<10; i++) v.push_back(i);

cout << "Initial: ";

for(i=0; i<v.size(); i++) cout << v[i] <<""

cout << endl;
reverse(v.begin(), v.end());

cout << "Reversed: ";

for(i=0; i<v.size(); i++) cout << V[i] << " *:

return O;

om N

orese"”
100>

QAY

Chapter 24: Introducing the Standard Template Library 677

Here, binfunc_obj is a binary function object. bind1st() returns a unary function object
that has binfunc_obj's left-hand operand bound to value. bind2nd() returns a unary
function object that has binfunc_obj's right-hand operand bound to value. The bind2nd()
binder is by far the most commonly used. In either case, the outcome of a binder is a
unary function object that is bound to the value specified.

To demonstrate the use of a binder, we will use the remove_if() algorithm. It
removes elements from a sequence based upon the outcome of a predicate. It has
this prototype:

template <class Forlter, class UnPred>
Forlter remove_if(Forlter start, Forlter end, UnPred func);

The algorithm removes elements from the sequence defined by start and end if the
unary predicate defined by func is true. The algorithm returns a pointer to the new end
of the sequence which reflects the deletion of the elements.

The following program removes all values from a sequence that are greatergt K
the value 8. Since the predicate required by remove_if() is u Q‘ ﬁ
use the greater() function object as-is because greater() i t. Instead, we
must bind the value 8 to the second argmnﬁlt of the b1nd2nd() binder,

as shown in the program. 0 A’L
I Demonstrate bi % O " l

#lnclgii !,
P (ﬁude <functi age
#include <algori
using namespace std;

int main()

{

list<int> Ist;
list<int>::iterator p, endp;

inti;

for(i=1; i < 20; i++) Ist.push_back(i);
cout << "Original sequence:\n";

p = Ist.begin();

while(p = Ist.end()) {

cout << *p <<
p++;

684

C++: The Complete Reference

string &assign(const string &strob, size_type start, size_type num);
string &assign(const char *str, size_type num);

In the first form, num characters from strob beginning at the index specified by start will
be assigned to the invoking object. In the second form, the first num characters of the
null-terminated string str are assigned to the invoking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the = to assign one
entire string to another. You will need to use the assign() function only when
assigning a partial string.

You can append part of one string to another using the append() member function.
Two of its forms are shown here:

string &append(const string &strob, size_type start, size_type num);
string &append(const char *str, size_type num);

Here, num characters from strob beginning at the index specified by start @ QK
appended to the invoking object. In the second form, the first chdra of
null-terminated string str are appended to the 1nvok1n% \ eh Case, a reference

to the invoking object is returned. Of coursg, i ﬁe 0 use the + to append
one entire string to another. You will ne% appe 6 NC on only when
n

appending a partial stri
You can insert qQr e% @r cters wﬁ

sert() and replace().

The pr ost com own here
g &msert const string &strob);
string &insert pe€Start, const string &strob,

51ze_type insStart, size_type numy;
string &replace(size_type start, size_type num, const string &strob);
string &replace(size_type start, size_type orgNum, const string &strob,
size_type replaceStart, size_type replaceNum);

The first form of insert() inserts strob into the invoking string at the index specified
by start. The second form of insert() function inserts num characters from strob
beginning at insStart into the invoking string at the index specified by start.

Beginning at start, the first form of replace() replaces num characters from the
invoking string, with strob. The second form replaces orgNum characters, beginning
at start, in the invoking string with the replaceNum characters from the string specified
by strob beginning at replaceStart. In both cases, a reference to the invoking object
is returned.

You can remove characters from a string using erase(). One of its forms is
shown here:

688

C++: The Complete Reference

Match found at O
Remaining string is:
Quick of Mind, Strong of Body, Pure of Heart

Match found at 15
Remaining string is:
Strong of Body, Pure of Heart

Match found at 31
Remaining string is:
Pure of Heart

Match found at 36

Remaining string is:
of Heart

Comparing Strings \ C
To compare the entire contents of one string ' @a‘you will normally use

the overloaded relational operators desc{iRadh ‘ owe U want to compare
a portion of one string tg ano@ w1 1 ed toyge t t@ ember

function, shown here; "

P vrebdp\@me type s EZ:IyZﬂum const string &strob) const;

Here, num charactdys in stro , beginning at start, will be compared against the invoking
string. If the invoking string is less than strob, compare() will return less than zero. If
the invoking string is greater than strob, it will return greater than zero. If strob is equal
to the invoking string, compare() will return zero.

Obtaining a Null-Terminated String

Although string objects are useful in their own right, there will be times when you will
need to obtain a null-terminated character-array version of the string. For example, you
might use a string object to construct a filename. However, when opening a file, you
will need to specify a pointer to a standard, null-terminated string. To solve this
problem, the member function c_str() is provided. Its prototype is shown here:

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in
the invoking string object. The null-terminated string must not be altered. It is also not
guaranteed to be valid after any other operations have taken place on the string object.

Chapter 24: Introducing the Standard Template Library

Strings Are Containers

The string class meets all of the basic requirements necessary to be a container. Thus, it
supports the common container functions, such as begin(), end(), and size(). It also
supports iterators. Therefore, a string object can also be manipulated by the STL
algorithms. Here is a simple example:

/l Strings as containers.
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;

int main()

{ string str1("Strings handling is easy in C++"); K
string::iterator p; O ‘u
inti; \e _C

0reS? oAl

of ¥

Il use size()

for(i=0; i<strl.size(); i++) N
cout << strl]i]; m

cout<g<e -‘(

SN 22
A pé’t};zz’r@d@ge T

while(p = strl
cout << *p++;
cout << endl;

/I use the count() algorithm
i = count(strl.begin(), strl.end(), 'i');
cout << '"There are " << i<<"i'sin strl\n";

Il use transform() to upper case the string
transform(strl.begin(), strl.end(), strl.begin(),
toupper);
p = strl.begin();
while(p != strl.end())
cout << *p++;
cout << endl;

689

696

C++: The Complete Reference

Standard C and Standard C++. While you will usually want to use C++'s

object-oriented I/O system for new code, there is no fundamental reason that you
cannot use the C I/O functions in a C++ program when you deem it appropriate. The
functions in this chapter were first specified by the ANSI C standard, and they are
commonly referred to collectively as the ANSI C I/O system.

The header associated with the C-based I/0 functions is called <cstdio>. (A C
program must use the header file stdio.h.) This header defines several macros and
types used by the file system. The most important type is FILE, which is used to
declare a file pointer. Two other types are size_t and fpos_t. The size_t type (usually
some form of unsigned integer) defines an object that is capable of holding the size of
the largest file allowed by the operating environment. The fpos_t type defines an object
that can hold all information needed to uniquely specify every position within a file.
The most commonly used macro defined by the headers is EOF, which is the value that

This chapter describes the C-based I/O functions. These functions are defined by

indicates end-of-file.
Many of the I/O functions set the built-in global integer variable errno wh K
error occurs. Your program can check this variable when an error occmf@
enta

more information about the error. The values that errno m l@re tion

dependent.
For an overview of the C-based I/O @%aﬁers 8 a@ in Part One.

s eral wzde chara _t) functions were added, and they are

| This chapter descr rict r-based I/O zon se re the functions
‘ that we@ Iy r rStan n are by far, the most widely

P (@r descrg in C

clearerr

#include <cstdio>
void clearerr(FILE * stream);

The clearerr() function resets (i.e., sets to zero) the error flag associated with the
stream pointed to by stream. The end-of-file indicator is also reset.

The error flags for each stream are initially set to zero by a successful call to fopen().
Once an error has occurred, the flags stay set until an explicit call to either clearerr() or
rewind() is made.

File errors can occur for a wide variety of reasons, many of which are system
dependent. The exact nature of the error can be determined by calling perror(), which
displays what error has occurred (see perror()).

Related functions are feof(), ferror(), and perror().

Chapter 25: The C-Based 1/0 Functions

fclose

#include <cstdio>
int fclose(FILE * stream);

The fclose() function closes the file associated with stream and flushes its buffer.
After an fclose(), stream is no longer connected with the file, and any automatically
allocated buffers are deallocated.

If fclose() is successful, zero is returned; otherwise EOF is returned. Trying to close
a file that has already been closed is an error. Removing the storage media before
closing a file will also generate an error, as will lack of sufficient free disk space.

Related functions are fopen(), freopen(), and fflush().

feof \4
- coV
?:]lncelt(;de <cst*d|o> e Sa\e .
t feof(FILE t); 0‘6

The feof() function &Xl@ fHle*position ingdj E&Qf&&rAmi:é—if the end of the

file assoc1ated W as bee Q o value is returned if the file
051t at end of-file; zezo :s ; ned otherwise.
§ e end en eached, subsequent read operations will return

E until either r?n lled or the file position indicator is moved using fseek().

The feof() function is particularly useful when working with binary files because
the end-of-file marker is also a valid binary integer. Explicit calls must be made to
feof() rather than simply testing the return value of getc(), for example, to determine
when the end of a binary file has been reached.

Related functions are clearerr(), ferror(), perror(), putc(), and getc().

ferror

#include <cstdio>
int ferror(FILE * stream);

The ferror() function checks for a file error on the given stream. A return value of
zero indicates that no error has occurred, while a nonzero value means an error.

The error flags associated with stream will stay set until either the file is closed, or
rewind() or clearerr() is called.

697

Chapter 25: The C-Based 1/0 Functions

The freopen() function associates an existing stream with a different file. The new
file's name is pointed to by fname, the access mode is pointed to by mode, and the
stream to be reassigned is pointed to by stream. The string mode uses the same format as
fopen(); a complete discussion is found in the fopen() description.

When called, freopen() first tries to close a file that may currently be associated
with stream. However, if the attempt to close the file fails, the freopen() function still
continues to open the other file.

The freopen() function returns a pointer to stream on success and a null pointer
otherwise.

The main use of freopen() is to redirect the system defined files stdin, stdout, and
stderr to some other file.

Related functions are fopen() and fclose().

fscanf

#include <cstdio>

int fscanf(FILE * stream , const char * format \e C

The fscanf() function works exa XQA () fu An& pt that it reads
the information from th ﬂg&m b stream ee scanf()
for detalls %S ®

he fscay 1on returns t f uments actually assigned values.
s not incl ds A return value of EOF means that a
ccurred b 51gnment was made.
f

Related functl () and fprintf().

o V¥

fseek

#include <cstdio>
int fseek(FILE * stream , long offset ,int origin);

The fseek() function sets the file position indicator associated with stream
according to the values of offset and origin. Its purpose is to support random-access I/O
operations. The offset is the number of bytes from origin to seek to. The values for origin
must be one of these macros (defined in <cstdio>):

703

Chapter 25: The C-Based 1/0 Functions 705

The ftell() function returns -1 when an error occurs. If the stream is incapable of
random seeks—if it is a modem, for instance—the return value is undefined.
Related functions are fseek() and fgetpos().

fwrite

#include <cstdio>
size_t fwrite(const void * buf , size_t size ,
size t count ,FILE* stream);

The fwrite() function writes count number of objects, each object being size bytes in
length, to the stream pointed to by stream from the character array pointed to by buf.
The file position indicator is advanced by the number of characters written.

The fwrite() function returns the number of items actually written, which, if
function is successful, will equal the number requested. If fewer items aresgritten
are requested, an error has occurred. For text streams, variou ac r Iations
may take place but will have no effect upon the return g@lé

Related functions are fread(), fscanf(“ ’L

getc _‘
e 3% O
P(e‘btc(F]\L:E* P,a@e 1

The getc() function returns the next character from the input stream and
increments the file position indicator. The character is read as an unsigned char that
is converted to an integer.

If the end of the file is reached, getc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for the
end-of-file character. If getc() encounters an error, EOF is also returned. If working
with binary files, you must use ferror() to check for file errors.

The functions getc() and fgetc() are identical, and in most implementations getc()
is simply defined as the macro shown here.

#define getc(fp) fgetc(fp)

This causes the fgetc() function to be substituted for the getc() macro.
Related functions are fputc(), fgetc(), putc(), and fopen().

Chapter 25: The C-Based 1/0 Functions

remove

#include <cstdio>
int remove(const char * fname);

The remove() function erases the file specified by frname. It returns zero if the file
was successfully deleted and nonzero if an error occurred.
A related function is rename().

rename

#include <cstdio>
int rename(const char * oldfname , const char * newfname); K

newfname. The newfname must not match an ex1s
The rename() function returns Zero §

has oo cton @A
re \J\€3 4&? ‘IZXZX ()‘
Pte pade

#include <cstdio
void rewind(FILE * stream);

The rename() function changes the name of the file é Qg;ame to
nonzer

The rewind() function moves the file position indicator to the start of the specified
stream. It also clears the end-of-file and error flags associated with stream. It has no
return value.

A related function is fseek().

scanf

#include <cstdio>
int scanf(const char * format , ..);

711

714

C++: The Complete Reference

scanf("%20s", address);

If the input stream were greater than 20 characters, a subsequent call to input would
begin where this call left off. Input for a field may terminate before the maximum field
length is reached if a white space is encountered. In this case, scanf() moves on to the
next field.

Although spaces, tabs, and newlines are used as field separators, when reading a
single character, these are read like any other character. For example, with an input
stream of x y,

scanf("%c%c%c", &a, &b, &c);

will return with the character x in a, a space in b and the character y in c. QK
Beware: Any other characters in the control string—including spa‘ﬁ Sq

newlines—will be used to match and discard characters frg réam. Any

character that matches is discarded. For exampl {@% fream 10t20,

scanf("%dt%d", &x, &y % NO _‘ ILO Acl
will @ﬂnﬁﬁ@\md 20 into é q Alarded because of the t in the

; 'Another featu?(1s called a scanset. A scanset defines a set of characters

that will be read by scanf() and assigned to the corresponding character array. A
scanset is defined by putting the characters you want to scan for inside square brackets.
The beginning square bracket must be prefixed by a percent sign. For example, this
scanset tells scanf() to read only the characters A, B, and C:

%[ABC]

When a scanset is used, scanf() continues to read characters and put them into
the corresponding character array until a character that is not in the scanset is
encountered. The corresponding variable must be a pointer to a character array. Upon
return from scanf(), the array will contain a null-terminated string comprised of the
characters read.

You can specify an inverted set if the first character in the set is a A. When the A is
present, it instructs scanf() to accept any character that is not defined by the scanset.

You can specify a range using a hyphen. For example, this tells scanf() to accept
the characters A through Z.

720

C++: The Complete Reference

handling functions. The string functions operate on null-terminated arrays of
characters and require the header <cstring>. The character functions use the
header <cctype>. C programs must use the header files string.h and ctype.h.

Because C/C++ has no bounds checking on array operations, it is the programmer's
responsibility to prevent an array overflow. Neglecting to do so may cause your
program to crash.

In C/C++, a printable character is one that can be displayed on a terminal. These are
usually the characters between a space (0x20) and tilde (OxFE). Control characters have
values between (0) and (0x1F) as well as DEL (0x7F).

For historical reasons, the parameters to the character functions are integers, but
only the low-order byte is used; the character functions automatically convert their
arguments to unsigned char. However, you are free to call these functions with
character arguments because characters are automatically elevated to integers at the

The standard function library has a rich and varied set of string and character

time of the call.
The header <cstring> defines the size_t type, which is essentially the same UK
unsigned.

This chapter describes only those functions that operate EaCGS type char.
These are the functions originally defmed by Sta nd they are by far

the most widely used and supported tlons perate on
characters of type wchar_t are d . ter 31

isalnum\,\e\l\l (ge,lB?) O

; (#lnclude <cctpr

int isalnum(int ch);

The isalnum() function returns nonzero if its argument is either a letter of the
alphabet or a digit. If the character is not alphanumeric, zero is returned.

Related functions are isalpha(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
and isspace().

isalpha

#include <cctype>
int isalpha(int ch);

The isalpha() function returns nonzero if ch is a letter of the alphabet; otherwise
zero is returned. What constitutes a letter of the alphabet may vary from language to
language. For English, these are the upper- and lowercase letters A through Z.

728 C++: The Complete Reference

The strlen() function returns the length of the null-terminated string pointed to
by str. The null terminator is not counted.
Related functions are memcpy(), strchr(), stremp(), and strnecmp().

strncat

#include <cstring>
char *strncat(char * strl , const char * str2 | size_t count);

The strncat() function concatenates not more than count characters of the string
pointed to by str2 to the string pointed to by str1 and terminates str1 with a null. The null
terminator originally ending str1 is overwritten by the first character of str2. The string
str2 is untouched by the operation. If the strings overlap, the behavior is undefined.

The strncat() function returns strl. K
Remember that no bounds checking takes place, so it is the program
responsibility to ensure that str1 is large enough to hold both §s énts and
also those of str2. 5 é

Related functions are strcat(), strnch&

strncmp _‘ O‘.SI\G’X_ O ’LOA')S—

e "a T3 O\Cs
P rncmp(convag tr1 , const char * str2 | size_t count);

The strnemp() function lexicographically compares not more than count characters
from the two null-terminated strings and returns an integer based on the outcome, as
shown here:

Value Meaning

Less than zero strl is less than str2.
Zero strl is equal to str2.
Greater than zero strl is greater than str2.

If there are less than count characters in either string, the comparison ends when the
first null is encountered.
Related functions are stremp(), strnchr(), and strncpy ().

730 C++: The Complete Reference

strspn

#include <cstring>
size_t strspn(const char * strl , const char * str2);

The strspn() function returns the length of the initial substring of the string pointed
to by strl that is made up of only those characters contained in the string pointed to by
str2. Stated differently, strspn() returns the index of the first character in the string
pointed to by strl that does not match any of the characters in the string pointed to
by str2.

Related functions are strpbrk(), strrchr(), strstr(), and strtok().

strstr \(
#include <cstring> CO -
char *strstr(const char * strl , const char * é \e

The strstr() function retU@mﬂm first oc &strmg pointed to
hr(), st ﬁ

by str1 of the strlng ponﬁ{ %271t returns fno match is found.
re

Related-f{ ’T%@rp , strspn(), strtok(), and strrchr().
stiebk eN P age

#include <cstring>
char *strtok(char * strl , const char * str2);

The strtok() function returns a pointer to the next token in the string pointed to by
strl. The characters making up the string pointed to by str2 are the delimiters that
determine the token. A null pointer is returned when there is no token to return.

To tokenize a string, the first call to strtok() must have str1 point to the string being
tokenized. Subsequent calls must use a null pointer for str1. In this way, the entire
string can be reduced to its tokens.

It is possible to use a different set of delimiters for each call to strtok().

Related functions are strchr(), strespn(), strpbrk(), strrchr(), and strspn().

738 C++: The Complete Reference

double frexp(double num int * exp);
long double frexp(long double num int * exp);

The frexp() function decomposes the number num into a mantissa in the range 0.5
to less than 1, and an integer exponent such that num = mantissa * 2°. The mantissa is

returned by the function, and the exponent is stored at the variable pointed to by exp.
A related function is 1dexp().

Idexp

#include <cmath>

float Idexp(float num int exp);
double Idexp(double num int exp);

long double Idexp(long double num, int exp); UK
e
The 1dexp() returns the value of num * 2% 1f overfga& E_VAL

is returned.

Related functions are frexp(‘a'r?\mN)O 0 A&

log ,
p(#%de age 11 A0

float log(float
double Iog(double num;
long double log(long double num;

The log() function returns the natural logarithm for num. A domain error occurs if
num is negative, and a range error occurs if the argument is zero.
A related function is log10().

logl0

#include <cmath>

float log10(float num;

double log10(double num;

long double log10(long double num;

Chapter 28: Time, Date, and Localization Functions 749

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

LC_ALL refers to all localization categories. LC_COLLATE affects the operation of the
strcoll() function. LC_CTYPE alters the way the character functions work.
LC_MONETARY determines the monetary format. LC_NUMERIC changes the
decimal-point character for formatted input/output functions. Finally, LC_TIME
determines the behavior of the strftime() function.

The setlocale() function returns a pointer to a string associated with the type
parameter.

Related functions are localeconv(), time(), strcoll(), and strftime().

strftime \e C
#include <ctime> Q eS
size_t stritime(char * Xsize , ¢ @A’L fmt
t/meb-‘ 9&_
\Jt‘na) fun% th ad date information, along with other

rmiation, into r ed to by str according to the format commands found
in the string pointey and using the broken-down time time. A maximum of
maxsize characters will be placed into str.

The strftime() function works a little like sprintf() in that it recognizes a set of
format commands that begin with the percent sign (%) and places its formatted output
into a string. The format commands are used to specify the exact way various time and
date information is represented in str. Any other characters found in the format string
are placed into str unchanged. The time and date displayed are in local time. The
format commands are shown in the table below. Notice that many of the commands
are case sensitive.

The strftime() function returns the number of characters placed in the string
pointed to by str or zero if an error occurs.

Command Replaced By

Yoa Abbreviated weekday name

%A Full weekday name

Chapter 29: The Dynamic Allocation Functions

calloc()). Using an invalid pointer in the call most likely will destroy the memory
management mechanism and cause a system crash.
Related functions are calloc(), malloc(), and realloc().

malloc

#include <cstdlib>
void *malloc(size_t size);

The malloc() function returns a pointer to the first byte of a region of memory of
size size that has been allocated from the heap. If there is insufficient memory in the
heap to satisfy the request, malloc() returns a null pointer. It is always important to
verify that the return value is not null before attempting to use it. Attempting to use a

null pointer will usually result in a system crash. u
cO-
a\C-

Related functions are free(), realloc(), and calloc().

realloc tes
#include <cstdlib> S‘-\ N IX—O A&—
void *realloc(v0|d * " LQ ze ge)O"
P T@ﬂlloc() £ P@ sl size of the previously allocated memory pointed
to

Dy ptr to that s ze. The value of size may be greater or less than the
original. A pointer %o the memory block is returned because it may be necessary for
realloc() to move the block in order to increase its size. If this occurs, the contents of
the old block are copied into the new block—no information is lost.

If ptr is null, realloc() simply allocates size bytes of memory and returns a pointer
to it. If size is zero, the memory pointed to by ptr is freed.

If there is not enough free memory in the heap to allocate size bytes, a null pointer is
returned, and the original block is left unchanged.

Related functions are free(), malloc(), and calloc().

755

758

akor{ GV\eP 20C

C++: The Complete Reference

commonly used services. They include a number of conversions, variable-length

argument processing, sorting and searching, and random number generation.
Many of the functions covered here require the use of the header <cstdlib>. (A C
program must use the header file stdlib.h.) In this header are defined div_t and 1div_t,
which are the types of values returned by div() and 1div(), respectively. Also defined
is the type size_t, which is the unsigned value returned by sizeof. The following
macros are defined:

The standard function library defines several utility functions that provide various

Macro Meaning

NULL A null pointer.

RAND_MAX The maximum value that can be returned by the rand()
function.

EXIT_FAILURE The value returned to the calling process if progr K
termination is unsuccessful. ﬂ

EXIT_SUCCESS The value returned to the callj \@ss program
termination is succet é

If a function requiresa di h acﬁwan <cs, llhx—@A:ll‘bn description
will discuss it. \N ? l O

#include <cstdlib>
void abort(void);

The abort() function causes immediate abnormal termination of a program.
Generally, no files are flushed. In environments that support it, abort() will return an
implementation-defined value to the calling process (usually the operating system)
indicating failure.

Related functions are exit() and atexit().

abs

#include <cstdlib>
int abs(int num;
long abs(long num;

double abs(double num;

Chapter 30: Utility Functions

size_t num size_t size ,
int (* compare)(const void *, const void *));

The bsearch() function performs a binary search on the sorted array pointed to by
buf and returns a pointer to the first member that matches the key pointed to by key.
The number of elements in the array is specified by num, and the size (in bytes) of each

element is described by size.
The function pointed to by compare is used to compare an element of the array with
the key. The form of the compare function must be as follows:

int func_name(const void *arg1, const void *arg2);
It must return values as described in the following table:
Comparison Value Returned O UK
.
argl is less than arg2 Less than éea.\
Argl is equal to arg2 @
Argl is greater than arg2 m N reat 11 CA&—
The array n’xE\Nte'd‘n ascend,\a(@Antae lowest address containing the
é m array d @ e key, a null pointer is returned.
A related func (a's

div
#include <cstdlib>
div_t div(int numerator , int denominator);
Idiv_t div(long numerator ,long denominator),

The int version of div() function returns the quotient and the remainder of the
operation numerator / denominator in a structure of type div_t. The long version of div()
returns the quotient and remainder in a structure of type ldiv_t. The long version of
div() provides the same capabilities as the 1div() function.

The structure type div_t will have at least these two fields:

int quot; /* quotient */
int rem; /* remainder */

761

764 C++: The Complete Reference

The mblen() function returns the length (in bytes) of a multibyte character pointed
to by str. Only the first size number of characters are examined. It returns -1 on error.

If str is null, then mblen() returns non-zero if multibyte characters have
state-dependent encodings. If they do not, zero is returned.

Related functions are mbtowc() and wctomb().

mbstowcs

#include <cstdlib>
size_t mbstowcs(wchar_t * out , const char * in , size_t size);

The mbstowcs() function converts the multibyte string pointed to by in into a wide
character string and puts that result in the array pointed to by out. Only size number of

bytes will be stored in out. K
The mbstowcs() function returns the number of multibyte characters t ﬂ

converted. If an error occurs, the function returns 1.
Related functions are wcestombs(), mbtowc() 5 \e

mbtowc m N AA’
#includ tﬁﬁh‘ q 1 i ,'Sze’tx size);
previ e _

The mbtowc() Pnctlon converts the multibyte character in the array pointed to by
in into its wide character equivalent and puts that result in the object pointed to by out.
Only size number of characters will be examined.

This function returns the number of bytes that are put into out. -1 is returned if an
error occurs. If in is null, then mbtowc() returns non-zero if multibyte characters have
state dependencies. If they do not, zero is returned.

Related functions are mblen(), wctomb().

qsort

#include <cstdlib>
void gsort(void * buf , size t num size_t size ,
int(* compare) (const void *, const void *));

Chapter 31: The Wide-Character Functions

Function char Equivalent
int iswalnum(wint_t ch) isalnum()
int iswalpha(wint_t ch) isalphal()
int iswentrl(wint_t ch) isentrl()
int iswdigit(wint_t ch) isdigit()
int iswgraph(wint_t ch) isgraph()
int iswlower(wint_t ch) islower()
int iswprint(wint_t ch) isprint()
int iswpunct(wint_t c) ispunct()
int iswspace(wint_t ch) isspace()
int iswupper(wint_t ch) isupper() O ‘UK
int iswxdigit(wint_t ch) isxdigit() \e _C
wint_t tolower(wint_t ch) wsa
wint_t toupper(wint_t ch) m Nﬁpper() 0 A&_
id -Character%@ [unctions
c
7

have. The value in attr_ob used to determine if ch is a character that has that property. If
it is, iswctype() returns nonzero. Otherwise, it returns zero. The following property
strings are defined for all execution environments.

alnum alpha cntrl digit
graph lower print punct
space upper xdigit

The following program demonstrates the wctype() and iswctype() functions.

#include <iostream>
#include <cwctype>
using namespace std;

int main()

773

Chapter 31: The Wide-Character Functions 779

___| Multibyte /Wide-Character Conversion
Functions

The Standard C++ function library supplies various functions that support conversions
between multibyte and wide characters. These functions, shown in Table 31-6, use the
header <cwchar>. Many of them are restartable versions of the normal multibyte
functions. The restartable version utilizes the state information passed to it in a
parameter of type mbstate_t. If this parameter is null, the function will provide its own
mbstate_t object.

Function Desctription

win_t btowc(int ch) Converts ch into its wide-character
equivalent and returns the result

Returns WEOF on err (Q[c iskh®t
a one-byte, miylig te‘:é er.
size_t mbrlen(const char *str, size_t num, i
mbstate_t *state) Nome by statg. Returns a positive
m valug t 1@&6 length of the
-‘(O @ E& character. Zero is

rhed if the next character is null.

) (e\,\e\N e 8l2 A negative value is returned if an

V €rror occurs.
size_t mbrtow&wc@: ut, Restartable version of mbtowc() as
const char *in, size_t num, described by state. Returns a positive
mbstate_t *state) value that indicates the length of the

next multibyte character. Zero is
returned if the next character is null.
A negative value is returned if an
error occurs. If an error occurs, the
macro EILSEQ is assigned to errno.

int mbsinit(const mbstate_t *state) Returns true if state represents an
initial conversion state.
size_t mbsrtowcs(wchar_t *out, Restartable version of mbstowcs() as
const char **in, described by state. Also, mbsrtowcs()
size_t num, differs from mbstowcs() in that in is
mbstate_t state) an indirect pointer to the source

array. If an error occurs, the macro
EILSEQ is assigned to errno.

Table 31-6. Wide-Character/Multibyte Conversion Functions

C++: The Complete Reference

Manipulator

hex

internal

left
noboolalpha
noshowbase
noshowpoint
noshowpos
noskipws
nounitbuf
nouppercase
oct

resetiosflags (fmtflags f)

Purpose

Turns on hex flag.

Turns on internal flag.
Turns on left flag.

Turns off boolalpha flag.

Turns off showbase flag.

Turns off showpoint flag.

Turns off showpos flag.
Turns off skipws flag.
Turns off unitbuf flag.
Turns off uppercase flag.
Turns on oct flag.

Turn off the ﬂag

Input/Output
Input/Output
Output
Output
Input/Output
Output
Output
Output

Input

Output

Output v\(
u
a\e Input/Output

specifi
right Z&, httlag. A&utput
sc1er1t1f1c "(OW e ﬁagl Output
w ilm‘ base to base. Input/Output
P (glﬂ(lﬂt ch) a;et the fill character to ch. Output
setiosflags(fm®lags f) Turn on the flags specified in f. Input/output
setprecision (int p) Set the number of digits of Output
precision.
setw(int w) Set the field width to w. Output
showbase Turns on showbase flag. Output
showpoint Turns on showpoint flag. Output
showpos Turns on showpos flag. Output
skipws Turns on skipws flag. Input
unitbuf Turns on unitbuf flag. Output
uppercase Turns on uppercase flag. Output
ws Skip leading white space. Input

To use a manipulator that takes a parameter, you must include <iomanip>.

Chapter 32: The Standard C++ 1/0 Classes

Related functions are precision() and width().
flags

#include <iostream>
fmtflags flags() const;
fmtflags flags(fmtflags f);

The flags() function is a member of ios (inherited from ios_base).

The first form of flags() simply returns the current format flags settings of the
associated stream.

The second form of flags() sets all format flags associated with a stream as
specified by f. When you use this version, the bit pattern found in fis copied into the
format flags associated with the stream. This version also returns the previous se t%.

Related functions are unsetf() and setf(). O \5

.

flush

-

P {}[@Ns}() funationis ® 5 ber0f ostream.
he flush() fu? QANTSEs the buffer connected to the associated output

stream to be physically written to the device. The function returns a reference to its
associated stream.
Related functions are put() and write().

#include <iostream> m
ostream &flush{l\l "(O

fstream, ifstream, and ofstream

#include <fstream>

fstream();
explicit fstream(const char * filename
ios::openmode mode = ios:in | ios::out);
ifstream();
explicit ifstream(const char * filename , ios::openmode mode=ios::in);
ofstream();
explicit ofstream(const char * filename |

ios::openmode mode=ios::out | ios::trunc);

793

Chapter 32: The Standard C++ 1/0 Classes

The rdstate() function is a member of ios.

The rdstate() function returns the status of the associated stream. The C++ I/0
system maintains status information about the outcome of each 1/O operation relative
to each active stream. The current state of a stream is held in an object of type iostate,
in which the following flags are defined:

Name Meaning

goodbit No errors occurred.

eofbit End-of-file is encountered.

failbit A nonfatal I/O error has occurred.
badbit A fatal I/O error has occurred.

These flags are enumerated inside ios (via ios_base). \(’(
rdstate() returns goodbit when no error has occurred; otherwise, an u
been set. ﬁ

Related functions are eof(), good(), bad(), clear() a\errd ail().

read “ Om N _‘ ’LOAA—
(eﬂ& ey V> 32 oy
P pag

The read() funétion is a member of istream.

The read() function reads num bytes from the associated input stream and puts
them in the buffer pointed to by buf. If the end of the file is reached before num
characters have been read, read() simply stops, sets failbit, and the buffer contains
as many characters as were available. (See gcount().) read() returns a reference

to the stream.
Related functions are gcount(), readsome(), get(), getline(), and write().

readsome

#include <iostream>
streamsize readsome(char * buf , streamsize num;

The readsome() function is a member of istream.
The readsome() function reads num bytes from the associated input stream and
puts them in the buffer pointed to by buf. If the stream contains less than num

799

802

str

C++: The Complete Reference

#include <sstream>
string str() const;
void str(string & S)

The str() function is a member of stringstream, istringstream, and ostringstream.
The first form of the str() function returns a string object that contains the current

contents of the string-based stream.

The second form frees the string currently contained in the string stream and

substitutes the string referred to by s.

Related functions are get() and put().

stringstream, istringstream, ostringstream u\(

#include <sstream>

\e CO .
explicit stringstream(ios::openmode ceﬁa'los out)
explicit stringstream(const strlng & ﬁ

(mod &@AY}
explicit istrings real (idﬁ5 p 6 ’OI
St

0S::openmode mode=ios::in);

mode=ios::out);

pr|C|t (cortst string 3
tream(ios::0 de% modezlos :out);
Pf ct ostrlngst?a@ , ios::openmode

The stringstream(), istringstream(), and ostringstream() functions are the

constructors of the stringstream, istringstream, and ostringstream classes,
respectively. These construct streams that are tied to strings.

The versions of stringstream(), istringstream(), and ostringstream() that specify

only the openmode parameter create empty streams. The versions that take a string
parameter initialize the string stream.

Here is an example that demonstrates the use of a string stream.

// Demonstrate string streams.
#include <iostream>

#include <sstream>

using namespace std;

This page intentionally left blank.

Chapter 33: The STL Container Classes

explicit multimap(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

multimap(const multimap<Key, T, Comp, Allocator> &ob);

template <class Inlter> multimap(Inlter start, Inlter end,
const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty multimap. The second form constructs a multimap
that contains the same elements as ob. The third form constructs a multimap that
contains the elements in the range specified by start and end. The function specified by
cmpfn, if present, determines the ordering of the multimap.

The following comparison operators are defined by multimap:

==, <, <=, 1=, >,>= u\k
.

The member functions contained by multima a gn *the descriptions,
key_type is the type of the key, T is the Vﬁ& pe repre;s—ts pair<Key, T>.

Member .‘ Om CSQ";)QD

1tera\1]§a@ turns an iterator to the first element
P e 1n§ i se in the multimap.
void clear(); § g Removes all elements from the

multimap.

size_type count(const key_type &k) const; Returns the number of times k occurs
in the multimap.

bool empty() const; Returns true if the invoking multimap
is empty and false otherwise.

iterator end(); Returns an iterator to the end of the

const_iterator end() const; list.

pair<iterator, iterator> Returns a pair of iterators that point
equal_range(const key_type &k); to the first and last elements in the

pair<const_iterator, const_iterator> multimap that contain the specified
equal_range(const key_type &k) const; key.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end); Removes the elements in the range

start to end.

821

828

C++: The Complete Reference

The member functions contained by set are shown here.

Member Description

iterator begin(); Returns an iterator to the first

const_iterator begin() const; element in the set.

void clear(); Removes all elements from the set.

size_type count(const key_type &k) const; Returns the number of times k occurs
in the set.

bool empty() const; Returns true if the invoking set is
empty and false otherwise.

const_iterator end() const; Returns an iterator to the end of

iterator end(); the set.

pair<iterator, iterator> Returns a pair of iterators thaﬂK

equal_range(const key_type &k) const; to the first and last e ;’ e set

void erase(iterator start, iter. Remo in the range

that contqa.
void erase(iterator i); elem pomted to by i.
d)N &:s
size_ty %\Péns;iey type 6 éﬁoves from the set elements that
\i\ have keys with the value k. The

P (e ag number of elements removed is
P returned.

iterator find(const key_type &k) const; Returns an iterator to the specified
key. If the key is not found, then an
iterator to the end of the set is

returned.
allocator_type get_allocator() const; Returns set's allocator.
iterator insert(iterator i, Inserts val at or after the element
const value_type &uval); specified by i. Duplicate elements are

not inserted. An iterator to the
element is returned.

template <class Inlter> Inserts a range of elements. Duplicate
void insert(Inlter start, Inlter end); elements are not inserted.

Chapter 34: The STL Algorithms

fill and fill_n

template <class Forlter, class T>

void fill(Forlter start , Forlter end, const T & val);
template <class Forlter, class Size, class T>
void fill_n(Forlter start ,Size numconstT & val);

The fill() and fill_n() algorithms fill a range with the value specified by val. For
fill() the range is specified by start and end. For fill_n(), the range begins at start and
runs for num elements.

find

template <class Inlter, class T> K
Initer find(Inlter start , Inlter end, constT & val) O u
.

The find() algorithm searches the range start to e spec1f1ed by val. It
returns an iterator to the first occurrenc to en

d e value is not in
the sequence. " l A
P (e@plate <clas ?@%@mherb
Fwdlterl find startl , Forlterl endl,

find_end '\e

Forlter2 start? , Forlter2 end2);
template <class Forlterl, class Forlter2, class BinPred>
Fwdlterl find_end(Forlterl startl , Forlterl endl,

Forlter2 start? , Forlter2 end2, BinPred pf);

The find_end() algorithm finds the last iterator of the subsequence defined by
start2 and end2 within the range start1 and end1. If the sequence is found, an iterator to
the last element in the sequence is returned. Otherwise, the iterator end1 is returned.

The second form allows you to specify a binary predicate that determines when
elements match.

find_first_of

template <class Forlterl, class Forlter2>
Fwdlterl find_first_of(Forlterl startl , Forlterl endl,

839

854 C++: The Complete Reference

swap_ranges

template <class Forlterl, class Forlter2>
Forlter2 swap_ranges(Forlterl startl , Forlterl end1,
Forlter2 start2);

The swap_ranges() algorithm exchanges elements in the range specified by start1
and endl with elements in the sequence beginning at start2. It returns a pointer to the
end of the sequence specified by start2.

transform

template <class Inlter, class Outlter, class Func>

Outlter transform(Initer start , Inlter end, K
Outlter result , Func unaryfunc) O u
.

template <class Inlterl, class Inlter2, class Outlter, class Func>
Outlter transform(Initerl startl , Inlterl

Inlter2 te esult
e RO 5@0 AL
The transf g&‘wgpphes% tlo &ra ge of elements and stores the
i

outco e first form is specified by start and end. The function

1s spegifie s function receives the value of an element in
arameter and?\ n 1ts transformation.

In the second fdrm, the transformation is applied using a binary operator function
that receives the value of an element from the sequence to be transformed in its first
parameter and an element from the second sequence as its second parameter.

Both versions return an iterator to the end of the resulting sequence.

unique and unique_copy

template <class Forlter>

Forlter unique(Forlter start , Forlter end);
template <class Forlter, class BinPred>

Forlter unique(Forlter start , Forlter end, BinPred pfn);
template <class Forlter, class Outlter>

Outlter unique_copy(Forlter start , Forlter end, Outlter result);
template <class Forlter, class Oultlter, class BinPred>

Outlter unique_copy(Forlter start , Forlter end, Outlter result

BinPred pfn);

W f1O° b of 39

\e 90
\ STholtérators, Allocators, and

Function Objects

pref’

857

864

C++: The Complete Reference

reverse_iterator

The reverse_iterator class supports reverse iterator operations. A reverse iterator
operates the opposite of a normal iterator. For example, ++ causes a reverse iterator to
back up. Its template definition is shown here:

template <class Iter> class reverse_iterator:
public iterator<iterator_traits<Iter>::iterator_category,
iterator_traits<Iter>::value_type,
iterator_traits<Iter>::difference_type,
iterator_traits<Iter>:pointer,
iterator_traits<Iter>:reference>

Here, Iter is either a random-access iterator or a bidirectional iterator. reverse_iterator
has the following constructors:

reverse_iterator();

explicit reverse_iterator(lter itr); \e C

Here, itr is an iterator that specifies the i t&s
If Iter is a random-access iter, me lowin ﬁ available -, +,
++, - =%, <, >, <=, >— @m and[]. If 8& ctional iterator, then
only —>, ++,—— \N are avail 1
éﬂ t¥rator class defm%agat ted member called current, which is an
he ¢

urr
P he function b@(ﬁg%ﬁned by reverse_iterator. Its prototype is shown here:

Iter base() const;

It returns an iterator to the current location.

istream_iterator

The istream_iterator class supports input iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType, class Attr = char_traits<CharType>,
class Dist = ptrdiff_t> class istream_iterator:
public iterator<input_iterator_tag, T, Dist, const T *, const T &>

Here, T is the type of data being transferred, and CharType is the character type (char
or wchar_t) that the stream is operating upon. Dist is a type capable of holding the
difference between two addresses. istream_iterator has the following constructors:

Chapter 35: STL Iterators, Allocators, and Function Objects 867

/l Use ostream_iterator
#include <iostream>
#include <iterator>
using namespace std;

int main()

{

ostream_iterator<char> out_it(cout);

*out_it = 'X';
out_it++;
*out_it ="Y";
out_it++;
*out_jt=""

char str[] = "C++ Iterators are powerful.\n"; K
char *p = str; u

while(*p) *out_it++ = *p++;

ostream_iterator<double> ou mleN

*out_double_it =18

out_dguble sz) 00
Q& e page 0

The output from this program is shown here:

XY C++ lterators are powerful.
187.23-102.7

ostreambuf iterator

The ostreambuf_iterator class supports character output iterator operations on a
stream. Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void>

882

C++: The Complete Reference

Member

int compare(size_type indx, size_type len,
const string &str,
size_type indx2,
size_type len2) const;

int compare(const CharType *str) const;

const CharType *str,

size_ty m
>(€\’ \e Eﬁ
pagd©

int compare(size_type indx, size typelﬁ

cohst

o012 @

size_type copy(CharType *str,
size_type len,
size_type indx = 0) const;

const CharType *data() const;

bool empty() const;

Description

Compares a substring of str to a
substring within the invoking string.
The substring in the invoking string
begins at indx and is len characters
long. The substring in str begins at
indx2 and is len2 characters long. It
returns one of the following:

Less than zero if *this < str

Zero if *this == str

Greater than zero if *this > str

Compares str to the invoking string.
It returns one of the following:
Less than zero if *this < str K
Zero if *this == str

1s > str

Greater tﬁ@ .
a substging of str to a

trmg invoking string.
invoking string
n x and is len characters
g The substring in str begins at
zero and is len2 characters long. It
returns one of the following:
Less than zero if *this < str
Zero if *this == str
Greater than zero if *this > str

Beginning at indx, copies len
characters from the invoking string
into the character array pointed to
by str. Returns the number of
characters copied.

Returns a pointer to the first
character in the invoking string.

Returns true if the invoking string is
empty and false otherwise.

Table 36-1.

The String Member Functions (continued)

Chapter 36: The String Class

Member

iterator end();
const_iterator end() const;

iterator erase(iterator i);

string &erase(size_type indx =0,
size_type len = npos);

size_type find(const string &str,

size z,p‘e fm st§;‘e m%;e_ str,
(S P 20°

size_type find(const CharType *str,
size_type indx,
size_type len) const;

size_type find(CharType ch,

iterator erase(iterator start, iterator end);

size_type indx = 0) const;

N

L840 @

size_type indx = 0) const;

Description

Returns an iterator to the end of
the string.

Removes character pointed to by i.
Returns an iterator to the character
after the one removed.

Removes characters in the range start
to end. Returns an iterator to the
character after the last character
removed.

Beginning at indx, removes len
characters from the invoking Smﬁ

Returns *this.

Returns the

ccur in the 1nv0k1ng
earch beglns at index
. Npos AA ed if no match is
}Ee index of the first

occurrence of str within the invoking
string. The search begins at index
indx. npos is returned if no match is
found.

Returns the index of the first
occurrence of the first len characters
of str within the invoking string. The
search begins at index indx. npos is
returned if no match is found.

Returns the index of the first
occurrence of ch within the invoking
string. The search begins at index
indx. npos is returned if no match

is found.

Table 36-1.

The String Member Functions (continued)

883

888

C++: The Complete Reference

Member

string &replace(size_type indx,
size_type len,
const string &str);

string &replace(size_type indx1,
size_type lenl,
const string &str,
size_type indx2,
size_type len2);

string &replace(size_type indx,
size_type len,

const CharType *str);

string &replace(size_type indx1,
size_type lenl,
const CharType *str,
size_type len2);

string &replace(51ze
e &pe len2, 2&_
\, \ CharTy 9
itrmg &replac@ a@
iterator start,

const string &str);

string &replace(iterator start,
iterator start,

const CharType *str);

string &replace(iterator start,
iterator end,
const CharType *str,
size_type len);

string &replace(iterator start,

interator end, size_type len,

CharType ch);

Description

Replaces up to len characters in the
invoking string, beginning at indx
with the string in str. Returns *this.

Replaces up to lenl characters in the
invoking string beginning at indx1
with the len2 characters from the
string in str that begin at indx2.
Returns *this.

Replaces up to len characters in the
invoking string, beginning at indx
with the string in str. Returns *this.

Replaces up to lenl character%
invoking string beg

with the [(% m the
m‘? egins at znde
{ *this.
1 A‘n’)ﬂharacters in the
Q% ing beginning at indx
ith len2 characters specified by ch.
Returns *this.

Replaces the range specified by start
and end with str. Returns *this.

Replaces the range specified by start
and end with str. Returns *this.

Replaces the range specified by start
and end with the first len characters
from str. Returns *this.

Replaces the range specified by start
and end with the len characters
specified by ch. Returns *this.

Table 36-1.

The String Member Functions (continued)

Chapter 37:

The Numeric Classes

v

Function

template <class T>
complex<T>

polar(const T &v, const T &theta=0);

template <class T>
complex<T>
pow/(const complex<T> &b, int e);

template <class T>
complex<T>
pow(const complex<T> &b,
const T &e);

template <class T>
complex<T>
pow(const complex<T> &b,
const complex<T> &e);

template <class T>
complex<T>
pow(const T &b

cons
templa %}Jﬁ

complex

‘emplate <clas

template <class T>
complex<T>
sinh(const complex<T> &ob);

template <class T>
complex<T>
sqrt(const complex<T> &ob);

template <class T>
complex<T>
tan(const complex<T> &ob);

template <class T>
complex<T>
tanh(const complex<T> &ob);

C
No{@@a\e
@@b)g?ﬁ

complex<T> gn(const complex<T> &ob);

Description

Returns a complex number that has
the magnitude specified by v and a
phase angle of theta.

Returns b®.

Returns b€,

Returns b€.

of L 0N

turns the real component of ob.
Returns the sine of ob.

Returns the hyperbolic sine of ob.
Returns the square root of ob.
Returns the tangent of ob.

Returns the hyperbolic tangent of ob.

Table 37-1.

Functions Defined for complex (continued)

897

900

C++: The Complete Reference

Function

valarray<T>
&operator=(const indirect_array<T> &ob);

valarray<T> operator+() const;
valarray<T> operator—() const;

valarray<T> operator~() const;

valarray<T> operator!() const;

valarray<T> &opera_‘T zﬁnst
)(gtra T @e 9
y<T> &?pa‘ &) const;

valarray<T> &operator/=(const T &v) const;

valarray<T> &operator*=(const T &v) const;

valarray<T> &operator%=(const T &v) const;

Description

Assigns a subset. Returns a
reference to the invoking array.

Unary plus applied to each
element in the invoking array.
Returns the resulting array.

Unary minus applied to each
element in the invoking array.
Returns the resulting array.

Unary bitwise NOT applied to
each element in the invoking
array. Returns the resulting
array.

Unary 1 ere
e 1nvok1ng
turns the resulting
array A
Q eath element in the

nV ing array. Returns a
reference to the invoking array.

Subtracts v from each element
in the invoking array. Returns a
reference to the invoking array.

Divides each element in the
invoking array by v. Returns a
reference to the invoking array.

Multiplies each element in the
invoking array by v. Returns a
reference to the invoking array.

Assigns each element in the
invoking array the remainder of
a division by v. Returns a
reference to the invoking array.

Table 37-2. The Member Functions of valarray (continued)

902 C++: The Complete Reference

Function Description

valarray<T> The elements in the invoking
&operator%=(const valarray<T> &ob) const; array are divided by their
corresponding elements in ob
and the remainder is stored.
Returns a reference to the
invoking array.

valarray<T> The XOR operator is applied
&operator=(const valarray<T> &ob) const; to corresponding elements in
ob and the invoking array.
Returns a reference to the
invoking array.

valarray<T> The AND operator is appli %
&operator&=(const valarray<T> &ob) const; to corresponding el i
and the \ém ayhay. Returns
the invoking

valarray<T> is applied

&Ope‘rator\ﬁ)nivlcl‘)m &obé)nsbﬁo % ondmg elements in ob

e 1nvokmg array.
3 Returns a reference to the

\\E
BeC . pag®

valarray<T> Elements in the invoking array
&operator<<=(const valarray<T> &ob) const; are left-shifted by the number
of places specified in the
corresponding elements in ob.
Returns a reference to the
invoking array.

valarray<T> Elements in invoking array are
&operator>>=(const valarray<T> &ob) const; right-shifted by the number of
places specified in the
corresponding elements in ob.
Returns a reference to the
invoking array.

Table 37-2. The Member Functions of valarray (continued)

916 C++: The Complete Reference

interval[0] = 2; interval[1] = 3;
cout << "Contents of v: ";
for(i=0; i<12; i++)

cout << V[ij <<,
cout << endl;
result = v[gslice(0,len,interval)];
cout << "Contents of result: ";
for(i=0; i<result.size(); i++)

cout << result[i] << " ";

return O;

The output is shown here: a\e ‘CO ’
Contents of v: 012345678910 11 NO‘GS /L
Contents of result: 0 3 '6‘ 25 6W\ /X—OA

The Hel @Nes Q A
P}f ic classese se“helper" classes, which your program will never
instantiate directl@i , gslice_array, indirect_array, and mask_array.

___| The Numeric Algorithms

The header <numeric> defines four numeric algorithms that can be used to process the
contents of containers. Each is examined here.

accumulate

The accumulate() algorithm computes a summation of all of the elements within a
specified range and returns the result. Its prototypes are shown here:

template <class Inlter, class T> T accumulate(Inlter start, Inlter end, T v);
template <class Inlter, class T, class BinFunc>
T accumulate(Inlter start, Inlter end, T v, BinFunc func);

Here, T is the type of values being operated upon. The first version computes the sum
of all elements in the range start to end. The second version applies func to the running

Chapter 38: Exception Handling and Miscellaneous Classes 927

As you can see, it returns a pair object consisting of values of the types specified by
Ktype and Vtype. The advantage of make_pair() is that the types of the objects being
stored are determined automatically by the compiler rather than being explicitly
specified by you.

The pair class and the make_pair() function require the header <utility>.

| Localization

Standard C++ provides an extensive localization class library. These classes allow an
application to set or obtain information about the geopolitical environment in which it
is executing. Thus, it defines such things as the format of currency, time and date, and
collation order. It also provides for character classification. The localization library uses
the header <locale>. It operates through a series of classes that define facets (bits of
information associated with a locale). All facets are derived from the class facet, which
is a nested class inside the locale class.

Frankly, the localization library is extraordinarily large and compl u
of its features is beyond the scope of this book. While most 1'hot make
direct use of the localization library, if you are 1nvolve éf i‘atlon of

a ures.

internationalized programs, you will waﬁ) l

| Other W 6‘{5
@I\ her classa@ andard C++ library that may be of

Class Description

type_info Used in conjunction with the typeid operator and
fully described in Chapter 22. Uses the header
<typeinfo>.

numeric_limts Encapsulates various numeric limits. Uses the

header <limits>.

raw_storage_iterator Encapsulates allocation of uninitialized memory.
Uses the header <memory>.

o

Chapter 39: Integrating New Classes: A Custom String Class

StrType(char *str);
StrType(const StrType &0); // copy constructor

~StrType() { delete [] p; }

friend ostream &operator<<(ostream &stream, StrType &0);
friend istream &operator>>(istream &stream, StrType &0);

StrType operator=(StrType &0); // assign a StrType object
StrType operator=(char *s); // assign a quoted string

StrType operator+(StrType &0); // concatenate a StrType object
StrType operator+(char *s); // concatenate a quoted string
friend StrType operator+(char *s, StrType &0); /* concatenate
a quoted string with a StrType object */ K
StrType operator-(StrType &0); // subtract a substring O -u

StrType operator-(char *s); // subtract a quoted substrin éa\e C
/I relational operations between StrTyﬁ(

int operator::(StrTy e&o m tr&mp(p, 0.p); 0

int operator! (StrT r srcmiE

int op &) {retur

e{ (trType &o 0.p) > 0 }
operator< turn strcmp(p 0.p)<=0;}

int operator> { return stremp(p, 0.p) >=0; }

I/ operations between StrType objects and quoted strings
int operator==(char *s) { return !strcmp(p, s); }

int operator!=(char *s) { return strcmp(p, s); }

int operator<(char *s) { return strcmp(p, s) < 0; }

int operator>(char *s) { return strcmp(p, s) > 0; }

int operator<=(char *s) { return strcmp(p, s) <=0; }

int operator>=(char *s) { return strcmp(p, s) >=0; }

int strsize() { return strlen(p); } // return size of string
void makestr(char *s) { strcpy(s, p); } // make quoted string

operator char *() { return p; } // conversion to char *

933

936 C++: The Complete Reference

return stream,;

}

/I Input a string.
istream &operator>>(istream &stream, StrType &0)

{
char t[255]; // arbitrary size - change if necessary
int len;

stream.getline(t, 255);
len = strlen(t) + 1;

if(len > o.size) {
delete [] 0.p;

try {
0.p = new char[len]; UK

) e ca\e CO:

exit(1);

i).sizezlen; _‘ Om NO"G l A‘l

of
vve\%\g ag® 963

As you can see, output is very simple. However, notice that the parameter o is
passed by reference. Since StrType objects may be quite large, passing one by reference
is more efficient than passing one by value. For this reason, all StrType parameters are
passed by reference. (Any function you create that takes StrType parameters should
probably do the same.)

Inputting a string proves to be a little more difficult than outputting one. First, the
string is read using the getline() function. The length of the largest string that can be
input is limited to 254 plus the null terminator. As the comments indicate, you can
change this if you like. Characters are read until a newline is encountered. Once the
string has been read, if the size of the new string exceeds that of the one currently held
by o, that memory is released and a larger amount is allocated. The new string is then
copied into it.

942 C++: The Complete Reference

char *s1;
inti, j;
sl=p;

for(i=0; *s1; i++) {

if(*s1!=*substr) { // if not first letter of substring
temp.p[i] = *s1; // then copy into temp
S1++;

}

else {
for(j=0; substr[j]==s1][j] && substr[j]; j++) ;
if('substr[j]) { // is substring, so remove it

sl +=j;

}

else {// is not substring, continue copying UK
temp.p[i] = *s1; CO .
S1++; \e .

} S

} O‘e
i‘3m|0-|0[i]='\<;|\| -‘(Om N

i)
‘?‘Je\'\ pao® 2

These function® work by copying the contents of the left-hand operand into temp,
removing any occurrences of the substring specified by the right-hand operand during
the process. The resulting StrType object is returned. Understand that neither operand
is modified by the process.

The StrType class allows substring subtractions like these:

StrType x('l like C++"), y("like");
StrType z;

z =x-y; Il zwill contain "l C++"
z = x - "C++"; // z will contain "l like "
/l multiple occurrences are removed

z ="ABCDABCD";
x =z -"A"; /I x contains "BCDBCD"

948 C++: The Complete Reference

}

0.size = len;
}
strepy(o.p, t);
return stream;

}

I/l Assign a StrType object to a StrType object.
StrType StrType::operator=(StrType &0)

{
StrType temp(0.p);

if(0.size > size) {

delete [] p; // free old memory

try {
p = new char[o.size];

} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1);

i

e \'\" (O%S
X efcpy(temp ;vlage

return temp;

}

/I Assign a quoted string to a StrType object.
StrType StrType::operator=(char *s)
{
int len = strlen(s) + 1;
if(size < len) {
delete [] p;
try {
p = new char[len];
} catch (bad_alloc xa) {
cout << "Allocation error\n";
exit(1);
}

size =len;

9%}

ores%

a\e.C

o V¥

[

WO gal
e 0900 of 0%
prep I\nﬂﬁi&?—@riented

Expression Parser

959

964 C++: The Complete Reference

| The Parser Class

The expression parser is built upon the parser class. The first version of parser is
shown here. Subsequent versions of the parser build upon it.

class parser {
char *exp_ptr; // points to the expression
char token[80]; // holds current token
char tok_type; // holds token's type

void eval_exp2(double &result);
void eval_exp3(double &result);
void eval_exp4(double &result);
void eval_exp5(double &result);
void eval_exp6(double &result);

void atom(double &result); O u\k
.

void get_token();

void serror(int error); \e ‘C

int isdelim(char c);
public: tes
parser(); NO A’L
double eval_exp(ch @m 0
YAl 09T of

P ‘ rser Cl prlvate member variables. The expression to be
uated is con aFD I-terminated string pointed to by exp_ptr. Thus, the
parser evaluates expressions that are contained in standard ASCII strings. For example,
the following strings contain expressions that the parser can evaluate:

"10-5"
"2%33 /(3.1416 * 3.3)"

When the parser begins execution, exp_ptr must point to the first character in the
expression string. As the parser executes, it works its way through the string until the
null-terminator is encountered.

The meaning of the other two member variables, token and tok_type, are described
in the next section.

The entry point to the parser is through eval_exp(), which must be called with a
pointer to the expression to be analyzed. The functions eval_exp2() through
eval_exp6() along with atom() form the recursive-descent parser. They implement an
enhanced set of the expression production rules discussed earlier. In subsequent
versions of the parser, a function called eval_exp1() will also be added.

Chapter 40: An Object-Oriented Expression Parser 979

/I Process an assignment.
void parser::eval_expl(double &result)

{
int slot;
char ttok_type;
char temp_token[80];

if(tok_type==VARIABLE) {
// save old token
strcpy(temp_token, token);
ttok_type = tok_type;

/I compute the index of the variable
slot = toupper(*token) -

get_token(); u\(
if(*token 1="=") { CO .
putback(); // return current token a\ .

/I restore old token - not assignmen
strcpy(token, temp_token); ﬁO‘e Al
tok_type = ttok typeo _‘ 'X—O
els@\a(’L’Z O
e en(); // getn tpaf&c:@p

P(eval

vars[/sﬁ:g:@

return;

}
}

eval_exp2(result);

}

/l Add or subtract two terms.
void parser::eval_exp2(double &result)
{

register char op;

double temp;

eval_exp3(result);
while((op = *token) == '+'|| op == =) {
get_token();

Chapter 40: An Object-Oriented Expression Parser 983

*temp ="\0";
if("*exp_ptr) return; // at end of expression
while(isspace(*exp_ptr)) ++exp_ptr; // skip over white space

if(strchr("+-*/%"=()", *exp_ptr)}{
tok_type = DELIMITER,;
/l advance to next char
*temp++ = *exp_ptr++;

}

else if(isalpha(*exp_ptr)) {
while(lisdelim(*exp_ptr)) *temp++ = *exp_ptr++;
tok_type = VARIABLE;

}
else if(isdigit(*exp_ptr)) { K
while(lisdelim(*exp_ptr)) *temp++ = *exp_ptr++; \ e CO ‘u

tok_type = NUMBER;
}

*temp = \0"; m
) \N X O
d¢ (Em Isdigsade..m.té 1 0)

if(strchr(" +
return 1,
return O;

}

%"=()", ¢) || c==9 || c=="\r" || c==0)

/I Return the value of a variable.
double parser::find_var(char *s)
{
if(lisalpha(*s){
serror(1);
return 0.0;

}

return vars[toupper(*token)-'AT;

988 C++: The Complete Reference

/l Multiply or divide two factors.
template <class PType> void parser<PType>::eval_exp3(PType &result)
{

register char op;

PType temp;

eval_exp4(result);
while((op = *token) =="'|| op =="/" || op == '%") {
get_token();
eval_exp4(temp);
switch(op) {
case ™"
result = result * temp;

break; \(
case /" u
result = result / temp; \e CO .

Cazgrzi:i:— (int) result % (int) temNotesaO Al
W 1Oy of
drevie o 1
Il Process an g‘)@‘

template <cla Type> void parser<PType>::eval_exp4(PType &result)

PType temp, ex;
register int t;

eval_exp5(result);
if(*token==""") {
get_token();
eval_exp4(temp);
ex = result;
if(temp==0.0) {
result = (PType) 1;
return;

}

for(t=(int)temp-1; t>0; --t) result = result * ex;

& (bitwise operator), 42, 43-44
& (pointer operator), 48, 49,
115-116, 141, 262, 349

& (reference param

342 343, i
{ , 467, 485
->, 51,171, 175 17

overloading, 40
->%* (pomter—to-member
operator), 339, 340, 341
* (multiplication operator), 37,
38
* (pointer operator), 48-49,
115-116, 123-124, 349
* (printf() placeholder), 202-203
I,42,43,44
I'l,40,41
[1,51-52, 90, 352, 353, 358
overloading, 409-413
N, 42,43, 44,207
;, 47,271

froft

::(scope resm@t

perator) 50

251 165, 175,

2,293, 346

otp

a’ge (pomter-to-member

operator), 339, 340
1,40, 41
'=, 40,41
=35
==, 40, 41
<, 40,41
<< (left shift), 43, 44-46
<< (output operator), 262-264
overloading, 528-534,
790-791
<=,40,41
-, 37,38

—, 37-39, 391-392, 395-397
() function operator, 138

ove 0 g, 409, 413-415
operator 39,
0, 51

format specifier), 195

% (modulus operator), 37, 38

+,37,38

++, 37-39, 391-392, 395-397

(preprocessor directive), 238

(preprocessor operator),
248-250

(printf() modifier), 202

(preprocessor operator),
248-250

?,47, 63-66

>, 40, 41

>> (right shift), 43, 44-46

>> (input operator), 262,
263-264
overloading, 528, 534-537,

790-791

>=, 40, 41

; (semicolon), 88, 163

/,37,38

995

996

adV&mce(%&
3

C++: The Complete Reference

/**/,250
//,251,262
~,42,43,46-47,284

abort(), 491, 492, 502, 505, 506,
758
abs(), 758-759
Access declarations, 436-439
Access modifiers, 23-25
Access specifiers, 290, 420-427
accumulate() algorithm,
916-917
acos(), 734
Ada, 5
Adaptor(s), 629, 872-874
Address, memory
& operator used to return,
48, 115-116
pointer as, 47, 115
relocatable format, 12
adjacent_difference()
algorithm, 917-918

adjustfield fOI;mat

command line, 144-147

default, 374-380, 382-383

passing arrays as, 92-93, 98,
102, 142-144

passing functions as, 126-129

argv, 123, 144-147
Arithmetic operators, 37-39
precedence of, 39
Array(s)
allocating with new, 352-353
bounds checking on, 5, 91,
369, 412
compacting, 472-474
definition of, 90
generating pointer to, 92
indexing versus pointer
arithmetic, 121
initialization, 105-107
multidimensional, 101-102
of objects, 328-331, 356,
366-368

to functions, passin 95
142-144 {

of pomtw
oipters to access,

adjacent_find() algorlthm, (O 03-104, 12 "
safe @ 3

e, 162

algorithm> heade?
Algorithms, 627, 638 660-670,
836-855
table of STL, 661-663
allocator class, 628, 875-876
member functions, table of,
876
Allocators, 628, 875-876
AND
& bitwise operator, 42, 43-44
&& logical operator, 40, 41
ANSI/ISO C standard, 2, 4
app, 789
append(), 684
argc, 144-145, 147
Arguments, function
call by reference passing
convention, 140-141, 170,
341-345
call by value passing
convention, 139-140

ensmn 90-91
sortmg, 471-472
square brackets as operator
for indexing, 51-52
of strings, 100-101
of structures, 166
within structures, 173
two-dimensional, 96-101
unsized, 106-107
vector as dynamic, 631
Array-based I/0, 615-623
and binary data, 622-623
using dynamic arrays and,
621-622
using ios member functions
with, 616
Arrow operator (->), 51, 171,
175,178, 331
overloading, 409, 415-416
asctime(), 744-745
asin(), 734-735
asm statement, 613-614
Assembly language, 4, 8

A
VOB

using asm to embed, 613-614
C used in place of, 8
assert(), 759
assign(), 683-684
Assignment
functions used in, 149-150,
346-347
multiple, 36-37
object, 324-325
operation for C++ classes,
default, 391
operator, 34-35
pointer, 117, 333-334
shorthand notation for, 56
structure, 165-166
type conversion in, 35-36
atan(), 735
atan2(), 735
ate, 789 UK
atex1t(), 75 .

46 760

d, 18
, 924-926

B language, 4
back_insert_iterator class, 862,
863
Backslash character constants,
33-34
bad(), 565, 791
bad_alloc class, 350, 922
bad_cast, 580, 923
bad_exception class, 508, 922
bad_typeid, 574, 922
badbit, 563, 565, 790, 799
Base class
access control, 420-426
constructors, passing
parameters to, 432-436
definition of, 278, 420
general form for inheriting,
279, 420
inheritance, protected,
426-427
virtual, 439-443
base(), 864

