
16 Inheritance . 419
17 Virtual Functions and Polymorphism 445
18 Templates . 461
19 Exception Handling . 489
20 C++ I/O System Basics . 511
21 C++ File I/O . 541
22 Run-Time Type ID and the Casting Operators 569
23 Namespaces, Conversion Functions,and Other

Advanced Topics . 593
24 Introducing the Standard Template Library 625

Part III The Standard Function Library

25 The C-Based I/O Functions . 695
26 The String and Character Functions 719
27 The Mathematical Functions . 733
28 Time, Date, and Localization Functions 743
29 The Dynamic Allocation Functions 753
30 Utility Functions . 757
31 The Wide-Character Functions . 771

Part IV The Standard C++ Class Library

32 The Standard C++ I/O Classes . 783
33 The STL Container Classes . 807
34 The STL Algorithms . 835
35 STL Iterators, Allocators, and Function Objects 857
36 The String Class . 877
37 The Numeric Classes . 893
38 Exception Handling and Miscellaneous Classes 921

Part V Applying C++

39 Integrating New Classes: A Custom String Class 931
40 An Object-Oriented Expression Parser 959

Index . 995

vi C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 7 of 1041

Contents

Preface . xxix

Part I

The Foundation of C++: The C Subset

1 An Overview of C . 3
The Origins of C . 4
C Is a Middle-Level Language . 4
C Is a Structured Language . 6
C Is a Programmer's Language . 8
The Form of a C Program . 9
The Library and Linking . 10
Separate Compilation . 12
Understanding the .C and .CPP File Extensions 12

2 Expressions . 13
The Five Basic Data Types . 14

vii

Preview from Notesale.co.uk

Page 8 of 1041

Using Virtual Functions . 457
Early vs. Late Binding . 460

18 Templates . 461
Generic Functions . 462

A Function with Two Generic Types 465
Explicitly Overloading a Generic Function 465
Overloading a Function Template . 468
Using Standard Parameters with Template Functions . . . 468
Generic Function Restrictions . 469

Applying Generic Functions . 470
A Generic Sort . 471
Compacting an Array . 472

Generic Classes . 474
An Example with Two Generic Data Types 478
Applying Template Classes: A Generic Array Class 479
Using Non-Type Arguments with Generic Classes 481
Using Default Arguments with Template Classes 483
Explicit Class Specializations . 485

The typename and export Keywords . 486
The Power of Templates . 487

19 Exception Handling . 489
Exception Handling Fundamentals . 490

Catching Class Types . 496
Using Multiple catch Statements . 497

Handling Derived-Class Exceptions . 499
Exception Handling Options . 500

Catching All Exceptions . 500
Restricting Exceptions . 502
Rethrowing an Exception . 504

Understanding terminate() and unexpected() 505
Setting the Terminate and Unexpected Handlers 506

The uncaught_exception() Function . 507
The exception and bad_exception Classes . 508
Applying Exception Handling . 508

20 The C++ I/O System Basics . 511
Old vs. Modern C++ I/O . 512
C++ Streams . 513
The C++ Stream Classes . 513

C++'s Predefined Streams . 514
Formatted I/O . 515

xvi C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 17 of 1041

perror . 706
printf . 707
putc . 710
putchar . 710
puts . 710
remove . 711
rename . 711
rewind . 711
scanf . 711
setbuf . 715
setvbuf . 715
sprintf . 716
sscanf . 716
tmpfile . 716
tmpnam . 717
ungetc . 717
vprintf, vfprintf, and vsprintf . 718

26 The String and Character Functions 719
isalnum . 720
isalpha . 720
iscntrl . 721
isdigit . 721
isgraph . 721
islower . 721
isprint . 722
ispunct . 722
isspace . 722
isupper . 723
isxdigit . 723
memchr . 723
memcmp . 723
memcpy . 724
memmove . 724
memset . 725
strcat . 725
strchr . 725
strcmp . 726
strcoll . 726
strcpy . 727
strcspn . 727
strerror . 727
strlen . 727

xx C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 21 of 1041

put . 798
putback . 798
rdstate . 798
read . 799
readsome . 799
seekg and seekp . 800
setf . 801
setstate . 801
str . 802
stringstream, istringstream, ostringstream 802
sync_with_stdio . 803
tellg and tellp . 804
unsetf . 804
width . 804
write . 805

33 The STL Container Classes . 807
The Container Classes . 808

bitset . 810
deque . 812
list . 815
map . 818
multimap . 820
multiset . 823
queue . 825
priority_queue . 826
set . 827
stack . 829
vector . 830

34 The STL Algorithms . 835
adjacent_find . 836
binary_search . 836
copy . 837
copy_backward . 837
count . 837
count_if . 838
equal . 838
equal_range . 838
fill and fill_n . 839
find . 839
find_end . 839
find_first_of . 839

xxiv C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 25 of 1041

Preface

This is the third edition of C++: The Complete Reference. In the years that have transpired
since the second edition, C++ has undergone many changes. Perhaps the most important
is that it is now a standardized language. In November of 1997, the ANSI/ISO
committee charged with the task of standardizing C++, passed out of committee an
International Standard for C++. This event marked the end of a very long, and at
times contentious, process. As a member of the ANSI/ISO C++ committee, I watched
the progress of the emerging standard, following each debate and argument. Near the
end, there was a world-wide, daily dialogue, conducted via e-mail, in which the pros
and cons of this or that issue were put forth, and finally resolved. While the process
was longer and more exhausting than anyone at first envisioned, the result was worth
the trouble. We now have a standard for what is, without question, the most important
programming language in the world.

During standardization, several new features were added to C++. Some are
relatively small. Others, like the STL (Standard Template Library) have ramifications
that will affect the course of programming for years to come. The net effect of the
additions was that the scope and range of the language were greatly expanded. For
example, because of the addition of the numerics library, C++ can be more conveniently
used for numeric processing. Of course, the information contained in this edition

xxix

Preview from Notesale.co.uk

Page 30 of 1041

support object-oriented programming (OOP). However, the C-like aspects of
C++ were never abandoned, and the ANSI/ISO C standard is a base document for
the International Standard for C++. Thus, an understanding of C++ implies an
understanding of C.

In a book such as this Complete Reference, dividing the C++ language into two
pieces—the C foundation and the C++-specific features—achieves three major benefits:

1. The dividing line between C and C++ is clearly delineated.

2. Readers already familiar with C can easily find the C++-specific information.

3. It provides a convenient place in which to discuss those features of C++ that
relate mostly to the C subset.

Understanding the dividing line between C and C++ is important because both are
widely used languages and it is very likely that you will be called upon to write or
maintain both C and C++ code. When working on C code, you need to know where C
ends and C++ begins. Many C++ programmers will, from time to time, be required to
write code that is limited to the "C subset." This will be especially true for embedded
systems programming and the maintenance of existing applications. Knowing the
difference between C and C++ is simply part of being a top-notch professional C++
programmer.

A clear understanding of C is also valuable when converting C code into C++. To
do this in a professional manner, a solid knowledge of C is required. For example,
without a thorough understanding of the C I/O system, it is not possible to efficiently
convert an I/O-intensive C program into C++.

Many readers already know C. Covering the C-like features of C++ in their own
section makes it easier for the experienced C programmer to quickly and easily find
information about C++ without having to wade through reams of information that he
or she already knows. Of course, throughout Part One, any minor differences between
C and C++ are noted. Also, separating the C foundation from the more advanced,
object-oriented features of C++ makes it possible to tightly focus on those advanced
features because all of the basics will have already been discussed.

Although C++ contains the entire C language, not all of the features provided by
the C language are commonly used when writing "C++-style" programs. For example,
the C I/O system is still available to the C++ programmer even though C++ defines its
own, object-oriented version. The preprocessor is another example. The preprocessor is
very important to C, but less so to C++. Discussing several of the "C-only" features in
Part One prevents them from cluttering up the remainder of the book.

The C subset described in Part One constitutes the core of C++ and the foundation
upon which C++'s object-oriented features are built. All the features described here
are part of C++ and available for your use.

Part One of this book is adapted from my book C: The Complete Reference
(Osborne/McGraw-Hill). If you are particularly interested in C, you will find this
book helpful.

2 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Remember

Preview from Notesale.co.uk

Page 35 of 1041

■ Compilers

■ File utilities

■ Performance enhancers

■ Real-time executives

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die
out. Such has not been the case. First, not all programs require the application of the
object-oriented programming features provided by C++. For example, applications
such as embedded systems are still typically programmed in C. Second, much of the
world still runs on C code, and those programs will continue to be enhanced and
maintained. While C's greatest legacy is as the foundation for C++, it will continue to
be a vibrant, widely used language for many years to come.

The Form of a C Program
Table 1-2 lists the 32 keywords that, combined with the formal C syntax, form the C
programming language. Of these, 27 were defined by the original version of C. These
five were added by the ANSI C committee: enum, const, signed, void, and volatile.
All are, of course, part of the C++ language.

C h a p t e r 1 : A n O v e r v i e w o f C 9

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 1-2. The 32 Keywords Defined by Standard C

Preview from Notesale.co.uk

Page 42 of 1041

You can apply the modifiers signed, short, long, and unsigned to integer base
types. You can apply unsigned and signed to characters. You may also apply long to
double. Table 2-1 shows all valid data type combinations, along with their minimal
ranges and approximate bit widths. (These values also apply to a typical C++
implementation.) Remember, the table shows the minimum range that these types will
have as specified by Standard C/C++, not their typical range. For example, on
computers that use two's complement arithmetic (which is nearly all), an integer will
have a range of at least 32,767 to –32,768.

The use of signed on integers is allowed, but redundant because the default integer
declaration assumes a signed number. The most important use of signed is to modify
char in implementations in which char is unsigned by default.

The difference between signed and unsigned integers is in the way that the high-
order bit of the integer is interpreted. If you specify a signed integer, the compiler
generates code that assumes that the high-order bit of an integer is to be used as a sign
flag. If the sign flag is 0, the number is positive; if it is 1, the number is negative.

In general, negative numbers are represented using the two's complement approach,
which reverses all bits in the number (except the sign flag), adds 1 to this number, and
sets the sign flag to 1.

Signed integers are important for a great many algorithms, but they only have half
the absolute magnitude of their unsigned relatives. For example, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If the high-order bit were set to 1, the number would be interpreted as −1. However,
if you declare this to be an unsigned int, the number becomes 65,535 when the high-
order bit is set to 1.

Identifier Names
In C/C++, the names of variables, functions, labels, and various other user-defined
objects are called identifiers. These identifiers can vary from one to several characters.
The first character must be a letter or an underscore, and subsequent characters must
be either letters, digits, or underscores. Here are some correct and incorrect identifier
names:

Correct Incorrect

Count 1count

test23 hi!there

high_balance high...balance

16 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 49 of 1041

In C, identifiers may be of any length. However, not all characters will necessarily
be significant. If the identifier will be involved in an external link process, then at
least the first six characters will be significant. These identifiers, called external names,
include function names and global variables that are shared between files. If the
identifier is not used in an external link process, then at least the first 31 characters
will be significant. This type of identifier is called an internal name and includes the
names of local variables, for example. In C++, there is no limit to the length of an
identifier, and at least the first 1,024 characters are significant. This difference may
be important if you are converting a program from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count, Count,
and COUNT are three separate identifiers.

An identifier cannot be the same as a C or C++ keyword, and should not have the
same name as functions that are in the C or C++ library.

Variables
As you probably know, a variable is a named location in memory that is used to hold a
value that may be modified by the program. All variables must be declared before they
can be used. The general form of a declaration is

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of
one or more identifier names separated by commas. Here are some declarations:

int i,j,l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, in C/C++ the name of a variable has nothing to do with its type.

Where Variables Are Declared
Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables
Variables that are declared inside a function are called local variables. In some C/C++
literature, these variables are referred to as automatic variables. This book uses the more

C h a p t e r 2 : E x p r e s s i o n s 17

Preview from Notesale.co.uk

Page 50 of 1041

void sp_to_dash(const char *str)

{
while(*str) {

if(*str== ' ') printf("%c", '-');
else printf("%c", *str);
str++;

}

}

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

/* This is wrong. */

void sp_to_dash(const char *str)
{

while(*str) {
if(*str==' ') *str = '-'; /* can't do this; str is const */

printf("%c", *str);
str++;

}

}

Many functions in the standard library use const in their parameter declarations.
For example, the strlen() function has this prototype:

size_t strlen(const char *str);

Specifying str as const ensures that strlen() will not modify the string pointed to by str.
In general, when a standard library function has no need to modify an object pointed to
by a calling argument, it is declared as const.

You can also use const to verify that your program does not modify a variable.
Remember, a variable of type const can be modified by something outside your
program. For example, a hardware device may set its value. However, by declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

volatile
The modifier volatile tells the compiler that a variable's value may be changed in ways
not explicitly specified by the program. For example, a global variable's address may
be passed to the operating system's clock routine and used to hold the real time of the

24 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 57 of 1041

the outcome of a relational or logical operation is true or false. But since this
automatically converts into 1 or 0, the distinction between C and C++ on this issue is
mostly academic.

Table 2-5 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1's and 0's.

p q p && q p || q !p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Both the relational and logical operators are lower in precedence than the
arithmetic operators. That is, an expression like 10 > 1+12 is evaluated as if it were
written 10 > (1+12). Of course, the result is false.

You can combine several operations together into one expression, as shown here:

10>5 && !(10<9) || 3<=4

40 C + + : T h e C o m p l e t e R e f e r e n c e

Relational Operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

= = Equal

!= Not equal

Logical Operators

Operator Action

&& AND

|| OR

! NOT

Table 2-5. Relational and Logical Operators

Preview from Notesale.co.uk

Page 73 of 1041

!0 && 0 || 0

is false. However, when you add parentheses to the same expression, as shown here,
the result is true:

!(0 && 0) || 0

Remember, all relational and logical expressions produce either a true or false
result. Therefore, the following program fragment is not only correct, but will print
the number 1.

int x;

x = 100;

printf("%d", x>10);

Bitwise Operators
Unlike many other languages, C/C++ supports a full complement of bitwise
operators. Since C was designed to take the place of assembly language for most
programming tasks, it needed to be able to support many operations that can be done
in assembler, including operations on bits. Bitwise operation refers to testing, setting, or
shifting the actual bits in a byte or word, which correspond to the char and int data
types and variants. You cannot use bitwise operations on float, double, long double,
void, bool, or other, more complex types. Table 2-6 lists the operators that apply to
bitwise operations. These operations are applied to the individual bits of the
operands.

42 C + + : T h e C o m p l e t e R e f e r e n c e

Operator Action

& AND

| OR

^ Exclusive OR (XOR)

~ One's complement (NOT)

Table 2-6. Bitwise Operators

Preview from Notesale.co.uk

Page 75 of 1041

C/C++ defines (using typedef) a special type called size_t, which corresponds
loosely to an unsigned integer. Technically, the value returned by sizeof is of type
size_t. For all practical purposes, however, you can think of it (and use it) as if it were
an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the
built-in data types. For example, imagine a database program that needs to store six
integer values per record. If you want to port the database program to a variety of
computers, you must not assume the size of an integer, but must determine its actual
length using sizeof. This being the case, you could use the following routine to write a
record to a disk file:

/* Write 6 integers to a disk file. */

void put_rec(int rec[6], FILE *fp)
{

int len;

len = fwrite(rec, sizeof(int)*6, 1, fp);
if(len != 1) printf("Write Error");

}

Coded as shown, put_rec() compiles and runs correctly in any environment, including
those that use 16- and 32-bit integers.

One final point: sizeof is evaluated at compile time, and the value it produces is
treated as a constant within your program.

The Comma Operator
The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
becomes the value of the total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.

Essentially, the comma causes a sequence of operations. When you use it on the
right side of an assignment statement, the value assigned is the value of the last
expression of the comma-separated list.

The comma operator has somewhat the same meaning as the word "and" in normal
English as used in the phrase "do this and this and this."

50 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 83 of 1041

to true and any zero value converts to false, there is no practical difference between C
and C++ on this point.

Selection Statements
C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.

if
The general form of the if statement is

if (expression) statement;
else statement;

where a statement may consist of a single statement, a block of statements, or nothing
(in the case of empty statements). The else clause is optional.

If expression evaluates to true (anything other than 0), the statement or block that
forms the target of if is executed; otherwise, the statement or block that is the target of
else will be executed, if it exists. Remember, only the code associated with if or the
code associated with else executes, never both.

In C, the conditional statement controlling if must produce a scalar result. A scalar
is either an integer, character, pointer, or floating-point type. In C++, it may also be of
type bool. It is rare to use a floating-point number to control a conditional statement
because this slows execution time considerably. (It takes several instructions to perform
a floating-point operation. It takes relatively few instructions to perform an integer or
character operation.)

The following program contains an example of if. The program plays a very simple
version of the "guess the magic number" game. It prints the message ** Right ** when
the player guesses the magic number. It generates the magic number using the
standard random number generator rand(), which returns an arbitrary number
between 0 and RAND_MAX (which defines an integer value that is 32,767 or larger).
rand() requires the header file stdlib.h. (A C++ program may also use the new-style
header <cstdlib>.)

/* Magic number program #1. */

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int magic; /* magic number */

C h a p t e r 3 : S t a t e m e n t s 59

Preview from Notesale.co.uk

Page 92 of 1041

#include <stdio.h>

#include <stdlib.h>

int main(void)

{
int magic; /* magic number */
int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** ");

printf("%d is the magic number", magic);
}
else if(guess > magic)

printf("Wrong, too high");

else printf("Wrong, too low");

return 0;

}

The ? Alternative
You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;

However, the target of both if and else must be a single expression—not another
statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ? expression is determined as follows: Exp1 is evaluated. If it is true,

Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then
Exp3 is evaluated and its value becomes the value of the expression. For example,
consider

C h a p t e r 3 : S t a t e m e n t s 63

Preview from Notesale.co.uk

Page 96 of 1041

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");
scanf("%d", &guess);

if(guess == magic) {
printf("** Right ** ");
printf("%d is the magic number", magic);

}

else
guess > magic ? printf("High") : printf("Low");

return 0;
}

Here, the ? operator displays the proper message based on the outcome of the test
guess > magic.

The Conditional Expression
Sometimes newcomers to C/C++ are confused by the fact that you can use any valid
expression to control the if or the ? operator. That is, you are not restricted to
expressions involving the relational and logical operators (as is the case in languages
like BASIC or Pascal). The expression must simply evaluate to either a true or false
(zero or nonzero) value. For example, the following program reads two integers from
the keyboard and displays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

/* Divide the first number by the second. */

#include <stdio.h>

int main(void)
{

int a, b;

printf("Enter two numbers: ");
scanf("%d%d", &a, &b);

if(b) printf("%d\n", a/b);
else printf("Cannot divide by zero.\n");

return 0;

}

66 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 99 of 1041

First, ch is initialized to null. As a local variable, its value is not known when
wait_for_char() is executed. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute if the condition is false to begin with.
This feature may eliminate the need to perform a separate conditional test before the
loop. The pad() function provides a good illustration of this. It adds spaces to the end
of a string to fill the string to a predefined length. If the string is already at the desired
length, no spaces are added.

#include <stdio.h>

#include <string.h>

void pad(char *s, int length);

int main(void)

{

char str[80];

strcpy(str, "this is a test");
pad(str, 40);

printf("%d", strlen(str));

return 0;

}

/* Add spaces to the end of a string. */
void pad(char *s, int length)

{
int l;

l = strlen(s); /* find out how long it is */

while(l<length) {
s[l] = ' '; /* insert a space */

l++;

}
s[l]= '\0'; /* strings need to be

terminated in a null */
}

78 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 111 of 1041

matrix[0][i]==matrix[2][i]) return matrix[0][i];

/* test diagonals */
if(matrix[0][0]==matrix[1][1] &&

matrix[1][1]==matrix[2][2])
return matrix[0][0];

if(matrix[0][2]==matrix[1][1] &&

matrix[1][1]==matrix[2][0])

return matrix[0][2];

return ' ';

}

C h a p t e r 4 : A r r a y s a n d N u l l - T e r m i n a t e d S t r i n g s 111

Preview from Notesale.co.uk

Page 144 of 1041

Arrays of Pointers
Pointers may be arrayed like any other data type. The declaration for an int pointer
array of size 10 is

int *x[10];

To assign the address of an integer variable called var to the third element of the
pointer array, write

x[2] = &var;

To find the value of var, write

*x[2]

If you want to pass an array of pointers into a function, you can use the same
method that you use to pass other arrays—simply call the function with the array name
without any indexes. For example, a function that can receive array x looks
like this:

void display_array(int *q[])

{
int t;

for(t=0; t<10; t++)
printf("%d ", *q[t]);

}

Remember, q is not a pointer to integers, but rather a pointer to an array of pointers to
integers. Therefore you need to declare the parameter q as an array of integer pointers,
as just shown. You cannot declare q simply as an integer pointer because that is not
what it is.

Pointer arrays are often used to hold pointers to strings. You can create a function
that outputs an error message given its code number, as shown here:

void syntax_error(int num)

{
static char *err[] = {

"Cannot Open File\n",
"Read Error\n",

122 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 155 of 1041

by other parts of the program. Stated another way, the code and data that are defined
within one function cannot interact with the code or data defined in another function
because the two functions have a different scope.

Variables that are defined within a function are called local variables. A local
variable comes into existence when the function is entered and is destroyed upon
exit. That is, local variables cannot hold their value between function calls. The only
exception to this rule is when the variable is declared with the static storage class
specifier. This causes the compiler to treat the variable as if it were a global variable
for storage purposes, but limits its scope to within the function. (Chapter 2 covers
global and local variables in depth.)

In C (and C++) you cannot define a function within a function. This is why neither
C nor C++ are technically block-structured languages.

Function Arguments
If a function is to use arguments, it must declare variables that accept the values
of the arguments. These variables are called the formal parameters of the function.
They behave like other local variables inside the function and are created upon entry
into the function and destroyed upon exit. As shown in the following function, the
parameter declarations occur after the function name:

/* Return 1 if c is part of string s; 0 otherwise. */

int is_in(char *s, char c)
{

while(*s)

if(*s==c) return 1;
else s++;

return 0;

}

The function is_in() has two parameters: s and c. This function returns 1 if the
character c is part of the string s; otherwise, it returns 0.

As with local variables, you may make assignments to a function's formal
parameters or use them in an expression. Even though these variables perform
the special task of receiving the value of the arguments passed to the function,
you can use them as you do any other local variable.

Call by Value, Call by Reference
In a computer language, there are two ways that arguments can be passed to a
subroutine. The first is known as call by value. This method copies the value of an

C h a p t e r 6 : F u n c t i o n s 139

Preview from Notesale.co.uk

Page 172 of 1041

#include <stdio.h>

char *match(char c, char *s); /* prototype */

int main(void)

{
char s[80], *p, ch;

gets(s);

ch = getchar();

p = match(ch, s);

if(*p) /* there is a match */

printf("%s ", p);
else

printf("No match found.");

return 0;

}

This program reads a string and then a character. If the character is in the string, the
program prints the string from the point of match. Otherwise, it printsNo match found.

Functions of Type void
One of void's uses is to explicitly declare functions that do not return values. This
prevents their use in any expression and helps avert accidental misuse. For example,
the function print_vertical() prints its string argument vertically down the side of
the screen. Since it returns no value, it is declared as void.

void print_vertical(char *str)
{

while(*str)

printf("%c\n", *str++);
}

Here is an example that uses print_vertical().

#include <stdio.h>

void print_vertical(char *str); /* prototype */

152 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 185 of 1041

int main(int argc, char *argv[])

{
if(argc > 1) print_vertical(argv[1]);

return 0;
}

void print_vertical(char *str)

{

while(*str)
printf("%c\n", *str++);

}

One last point: Early versions of C did not define the void keyword. Thus, in
early C programs, functions that did not return values simply defaulted to type int.
Therefore, don't be surprised to see many examples of this in older code.

What Does main() Return?
The main() function returns an integer to the calling process, which is generally the
operating system. Returning a value from main() is the equivalent of calling exit()
with the same value. If main() does not explicitly return a value, the value passed
to the calling process is technically undefined. In practice, most C/C++ compilers
automatically return 0, but do not rely on this if portability is a concern.

Recursion
In C/C++, a function can call itself. A function is said to be recursive if a statement in
the body of the function calls itself. Recursion is the process of defining something in
terms of itself, and is sometimes called circular definition.

A simple example of a recursive function is factr(), which computes the factorial of
an integer. The factorial of a number n is the product of all the whole numbers between
1 and n. For example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative
equivalent are shown here:

/* recursive */
int factr(int n) {

int answer;

if(n==1) return(1);
answer = factr(n-1)*n; /* recursive call */

return(answer);

C h a p t e r 6 : F u n c t i o n s 153

Preview from Notesale.co.uk

Page 186 of 1041

function, but without the overhead associated with a function call. For this reason,
inline code is often used instead of function calls when execution time is critical.

Inline code is faster than a function call for two reasons. First, a CALL instruction
takes time to execute. Second, if there are arguments to pass, these have to be placed
on the stack, which also takes time. For most applications, this very slight increase in
execution time is of no significance. But if it is, remember that each function call uses
time that would be saved if the function's code were placed in line. For example, the
following are two versions of a program that prints the square of the numbers from 1
to 10. The inline version runs faster than the other because the function call adds time.

in line function call

#include <stdio.h> #include <stdio.h>

int sqr(int a);

int main(void) int main(void)

{ {
int x; int x;

for(x=1; x<11; ++x) for(x=1; x<11; ++x)

printf("%d", x*x); printf("%d", sqr(x));

return 0; return 0;
} }

int sqr(int a)

{
return a*a;

}

In C++, the concept of inline functions is expanded and formalized. In fact, inline
functions are an important component of the C++ language.

160 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 193 of 1041

If you only need one structure variable, the structure type name is not needed. That
means that

struct {

char name[30];
char street[40];

char city[20];
char state[3];
unsigned long int zip;

} addr_info;

declares one variable named addr_info as defined by the structure preceding it.
The general form of a structure declaration is

struct struct-type-name {
type member-name;
type member-name;
type member-name;
.
.
.
} structure-variables;

where either struct-type-name or structure-variables may be omitted, but not both.

164 C + + : T h e C o m p l e t e R e f e r e n c e

Figure 7-1. The addr_info structure in memory

Preview from Notesale.co.uk

Page 197 of 1041

{

struct {
int a;

int b;
} x, y;

x.a = 10;

y = x; /* assign one structure to another */

printf("%d", y.a);

return 0;

}

After the assignment, y.a will contain the value 10.

Arrays of Structures
Perhaps the most common usage of structures is in arrays of structures. To declare
an array of structures, you must first define a structure and then declare an array
variable of that type. For example, to declare a 100-element array of structures of
type addr, defined earlier, write

struct addr addr_info[100];

This creates 100 sets of variables that are organized as defined in the structure addr.
To access a specific structure, index the structure name. For example, to print the

ZIP code of structure 3, write

printf("%d", addr_info[2].zip);

Like all array variables, arrays of structures begin indexing at 0.

Passing Structures to Functions
This section discusses passing structures and their members to functions.

166 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 199 of 1041

Passing Structure Members to Functions
When you pass a member of a structure to a function, you are actually passing
the value of that member to the function. Therefore, you are passing a simple
variable (unless, of course, that element is compound, such as an array). For
example, consider this structure:

struct fred

{
char x;

int y;
float z;
char s[10];

} mike;

Here are examples of each member being passed to a function:

func(mike.x); /* passes character value of x */
func2(mike.y); /* passes integer value of y */
func3(mike.z); /* passes float value of z */
func4(mike.s); /* passes address of string s */
func(mike.s[2]); /* passes character value of s[2] */

If you wish to pass the address of an individual structure member, put the & operator
before the structure name. For example, to pass the address of the members of the
structure mike, write

func(&mike.x); /* passes address of character x */

func2(&mike.y); /* passes address of integer y */
func3(&mike.z); /* passes address of float z */
func4(mike.s); /* passes address of string s */

func(&mike.s[2]); /* passes address of character s[2] */

Remember that the & operator precedes the structure name, not the individual
member name. Note also that s already signifies an address, so no & is required.

Passing Entire Structures to Functions
When a structure is used as an argument to a function, the entire structure is passed
using the standard call-by-value method. Of course, this means that any changes

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , E n u m e r a t i o n s , a n d U s e r - D e f i n e d T y p e s 167

Preview from Notesale.co.uk

Page 200 of 1041

places the address of the structure person into the pointer p.
To access the members of a structure using a pointer to that structure, you must

use the −> operator. For example, this references the balance field:

p->balance

The −> is usually called the arrow operator, and consists of the minus sign followed
by a greater-than sign. The arrow is used in place of the dot operator when you are
accessing a structure member through a pointer to the structure.

To see how a structure pointer can be used, examine this simple program, which
prints the hours, minutes, and seconds on your screen using a software timer.

/* Display a software timer. */
#include <stdio.h>

#define DELAY 128000

struct my_time {
int hours;

int minutes;
int seconds;

} ;

void display(struct my_time *t);
void update(struct my_time *t);

void delay(void);

int main(void)
{

struct my_time systime;

systime.hours = 0;
systime.minutes = 0;

systime.seconds = 0;

for(;;) {
update(&systime);

display(&systime);
}

return 0;

}

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , E n u m e r a t i o n s , a n d U s e r - D e f i n e d T y p e s 171

Preview from Notesale.co.uk

Page 204 of 1041

void update(struct my_time *t)

{
t->seconds++;

if(t->seconds==60) {
t->seconds = 0;
t->minutes++;

}

if(t->minutes==60) {
t->minutes = 0;

t->hours++;
}

if(t->hours==24) t->hours = 0;
delay();

}

void display(struct my_time *t)

{
printf("%02d:", t->hours);
printf("%02d:", t->minutes);

printf("%02d\n", t->seconds);
}

void delay(void)

{
long int t;

/* change this as needed */
for(t=1; t<DELAY; ++t) ;

}

The timing of this program is adjusted by changing the definition of DELAY.
As you can see, a global structure called my_time is defined but no variable is

declared. Inside main(), the structure systime is declared and initialized to 00:00:00.
This means that systime is known directly only to the main() function.

The functions update() (which changes the time) and display() (which prints
the time) are passed the address of systime. In both functions, their arguments are
declared as a pointer to a my_time structure.

Inside update() and display(), each member of systime is accessed via a pointer.
Because update() receives a pointer to the systime structure, it can update its value.

172 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 205 of 1041

For example, to set the hours back to 0 when 24:00:00 is reached, update() contains
this line of code:

if(t->hours==24) t->hours = 0;

This tells the compiler to take the address of t (which points to systime in main())
and to reset hours to zero.

Remember, use the dot operator to access structure elements when operating on
the structure itself. When you have a pointer to a structure, use the arrow operator.

Arrays and Structures Within Structures
A member of a structure may be either a simple or compound type. A simple
member is one that is of any of the built-in data types, such as integer or character.
You have already seen one type of compound element: the character arrays used in
addr. Other compound data types include one-dimensional and multidimensional
arrays of the other data types and structures.

A member of a structure that is an array is treated as you might expect from
the earlier examples. For example, consider this structure:

struct x {

int a[10][10]; /* 10 x 10 array of ints */

float b;

} y;

To reference integer 3,7 in a of structure y, write

y.a[3][7]

When a structure is a member of another structure, it is called a nested structure.
For example, the structure address is nested inside emp in this example:

struct emp {

struct addr address; /* nested structure */

float wage;

} worker;

Here, structure emp has been defined as having two members. The first is a structure
of type addr, which contains an employee's address. The other is wage, which holds
the employee's wage. The following code fragment assigns 93456 to the zip element
of address.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , E n u m e r a t i o n s , a n d U s e r - D e f i n e d T y p e s 173

Preview from Notesale.co.uk

Page 206 of 1041

Bit Meaning When Set

0 Change in clear-to-send line

1 Change in data-set-ready

2 Trailing edge detected

3 Change in receive line

4 Clear-to-send

5 Data-set-ready

6 Telephone ringing

7 Received signal

You can represent the information in a status byte using the following bit-field:

struct status_type {

unsigned delta_cts: 1;
unsigned delta_dsr: 1;

unsigned tr_edge: 1;
unsigned delta_rec: 1;
unsigned cts: 1;

unsigned dsr: 1;

unsigned ring: 1;
unsigned rec_line: 1;

} status;

You might use a routine similar to that shown here to enable a program to determine
when it can send or receive data.

status = get_port_status();

if(status.cts) printf("clear to send");

if(status.dsr) printf("data ready");

To assign a value to a bit-field, simply use the form you would use for any other type
of structure element. For example, this code fragment clears the ring field:

status.ring = 0;

As you can see from this example, each bit-field is accessed with the dot operator.
However, if the structure is referenced through a pointer, you must use the −> operator.

C h a p t e r 7 : S t r u c t u r e s , U n i o n s , E n u m e r a t i o n s , a n d U s e r - D e f i n e d T y p e s 175

Preview from Notesale.co.uk

Page 208 of 1041

struct s {

char ch;
int i;

double f;
} s_var;

Here, sizeof(s_var) is at least 13 (8 + 4 + 1). However, the size of s_var might be
greater because the compiler is allowed to pad a structure in order to achieve word
or paragraph alignment. (A paragraph is 16 bytes.) Since the size of a structure may
be greater than the sum of the sizes of its members, you should always use sizeof
when you need to know the size of a structure.

Since sizeof is a compile-time operator, all the information necessary to compute
the size of any variable is known at compile time. This is especially meaningful for
unions, because the size of a union is always equal to the size of its largest member.
For example, consider

union u {
char ch;

int i;

double f;
} u_var;

Here, the sizeof(u_var) is 8. At run time, it does not matter what u_var is actually
holding. All that matters is the size of its largest member, because any union must
be as large as its largest element.

typedef
You can define new data type names by using the keyword typedef. You are not
actually creating a new data type, but rather defining a new name for an existing
type. This process can help make machine-dependent programs more portable. If
you define your own type name for each machine-dependent data type used by your
program, then only the typedef statements have to be changed when compiling for a
new environment. typedef also can aid in self-documenting your code by allowing
descriptive names for the standard data types. The general form of the typedef
statement is

184 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 217 of 1041

Printing Characters
To print an individual character, use %c. This causes its matching argument to be
output, unmodified, to the screen.

To print a string, use %s.

Printing Numbers
You may use either %d or %i to indicate a signed decimal number. These format
specifiers are equivalent; both are supported for historical reasons.

To output an unsigned value, use %u.

The %f format specifier displays numbers in floating point.

196 C + + : T h e C o m p l e t e R e f e r e n c e

Code Format

%i Signed decimal integers

%e Scientific notation (lowercase e)

%E Scientific notation (uppercase E)

%f Decimal floating point

%g Uses %e or %f, whichever is shorter

%G Uses %E or %F, whichever is shorter

%o Unsigned octal

%s String of characters

%u Unsigned decimal integers

%x Unsigned hexadecimal (lowercase letters)

%X Unsigned hexadecimal (uppercase letters)

%p Displays a pointer

%n The associated argument must be a pointer to
an integer. This specifier causes the number of
characters written so far to be put into that integer.

%% Prints a % sign

Table 8-2. printf() Format Specifiers (continued)
Preview from Notesale.co.uk

Page 229 of 1041

#include <stdio.h>

int main(void)
{

int i;

/* display a table of squares and cubes */
for(i=1; i<20; i++)

printf("%8d %8d %8d\n", i, i*i, i*i*i);

return 0;
}

A sample of its output is shown here:

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

11 121 1331
12 144 1728

13 169 2197

14 196 2744
15 225 3375

16 256 4096
17 289 4913
18 324 5832

19 361 6859

The Precision Specifier
The precision specifier follows the minimum field width specifier (if there is one). It
consists of a period followed by an integer. Its exact meaning depends upon the
type of data it is applied to.

When you apply the precision specifier to floating-point data using the %f, %e,
or %E specifiers, it determines the number of decimal places displayed. For example,

200 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 233 of 1041

scanf()
scanf() is the general-purpose console input routine. It can read all the built-in
data types and automatically convert numbers into the proper internal format. It is
much like the reverse of printf(). The prototype for scanf() is

int scanf(const char *control_string, ...);

The scanf() function returns the number of data items successfully assigned a
value. If an error occurs, scanf() returns EOF. The control_string determines how
values are read into the variables pointed to in the argument list.

The control string consists of three classifications of characters:

■ Format specifiers

■ White-space characters

■ Non-white-space characters

Let's take a look at each of these now.

Format Specifiers
The input format specifiers are preceded by a % sign and tell scanf() what type of
data is to be read next. These codes are listed in Table 8-3. The format specifiers are
matched, in order from left to right, with the arguments in the argument list. Let's look
at some examples.

Inputting Numbers
To read an integer, use either the %d or %i specifier. To read a floating-point number
represented in either standard or scientific notation, use %e, %f, or %g.

You can use scanf() to read integers in either octal or hexadecimal form by using
the %o and %x format commands, respectively. The %x may be in either upper- or

C h a p t e r 8 : C - S t y l e C o n s o l e I / O 203

printf("%*.*f", 10, 4, 123.3);

Figure 8-1. How the * is matched to its value

Preview from Notesale.co.uk

Page 236 of 1041

Chapter 9
File I/O

211

C++

Preview from Notesale.co.uk

Page 244 of 1041

This chapter describes the C file system. As explained in Chapter 8, C++ supports
two complete I/O systems: the one inherited from C and the object-oriented
system defined by C++. This chapter covers the C file system. (The C++ file

system is discussed in Part Two.) While most new code will use the C++ file system,
knowledge of the C file system is still important for the reasons given in the preceding
chapter.

C Versus C++ File I/O
There is sometimes confusion over how C's file system relates to C++. First, C++
supports the entire Standard C file system. Thus, if you will be porting older C code
to C++, you will not have to change all of your I/O routines right away. Second, C++
defines its own, object-oriented I/O system, which includes both I/O functions and
I/O operators. The C++ I/O system completely duplicates the functionality of the C
I/O system and renders the C file system redundant. While you will usually want to
use the C++ I/O system, you are free to use the C file system if you like. Of course,
most C++ programmers elect to use the C++ I/O system for reasons that are made
clear in Part Two of this book.

Streams and Files
Before beginning our discussion of the C file system, it is necessary to know the
difference between the terms streams and files. The C I/O system supplies a consistent
interface to the programmer independent of the actual device being accessed. That
is, the C I/O system provides a level of abstraction between the programmer and the
device. This abstraction is called a stream and the actual device is called a file. It is
important to understand how streams and files interact.

The concept of streams and files is also important to the C++ I/O system discussed
in Part Two.

Streams
The C file system is designed to work with a wide variety of devices, including
terminals, disk drives, and tape drives. Even though each device is very different, the
buffered file system transforms each into a logical device called a stream. All streams
behave similarly. Because streams are largely device independent, the same function
that can write to a disk file can also be used to write to another type of device, such as
the console. There are two types of streams: text and binary.

212 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 245 of 1041

If you are new to programming, the separation of streams and files may seem
unnecessary or contrived. Just remember that its main purpose is to provide a
consistent interface. You need only think in terms of streams and use only one file
system to accomplish all I/O operations. The I/O system automatically converts the
raw input or output from each device into an easily managed stream.

File System Basics
The C file system is composed of several interrelated functions. The most common of
these are shown in Table 9-1. They require the header stdio.h. C++ programs may also
use the new-style header <cstdio>.

214 C + + : T h e C o m p l e t e R e f e r e n c e

Name Function

fopen() Opens a file.

fclose() Closes a file.

putc() Writes a character to a file.

fputc() Same as putc().

getc() Reads a character from a file.

fgetc() Same as getc().

fgets() Reads a string from a file.

fputs() Writes a string to a file.

fseek() Seeks to a specified byte in a file.

ftell() Returns the current file position.

fprintf() Is to a file what printf() is to the console.

fscanf() Is to a file what scanf() is to the console.

feof() Returns true if end-of-file is reached.

ferror() Returns true if an error has occurred.

rewind() Resets the file position indicator to the
beginning of the file.

remove() Erases a file.

fflush() Flushes a file.

Table 9-1. Commonly Used C File-System Functions

Preview from Notesale.co.uk

Page 247 of 1041

and fclose(). It reads characters from the keyboard and writes them to a disk file until
the user types a dollar sign. The filename is specified from the command line. For
example, if you call this program KTOD, typing KTOD TEST allows you to enter lines
of text into the file called TEST.

/* KTOD: A key to disk program. */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *fp;

char ch;

if(argc!=2) {
printf("You forgot to enter the filename.\n");

exit(1);
}

if((fp=fopen(argv[1], "w"))==NULL) {
printf("Cannot open file.\n");
exit(1);

}

do {
ch = getchar();
putc(ch, fp);

} while (ch != '$');

fclose(fp);

return 0;

}

The complementary program DTOS reads any text file and displays the contents on
the screen.

/* DTOS: A program that reads files and displays them

on the screen. */

#include <stdio.h>

#include <stdlib.h>

C h a p t e r 9 : F i l e I / O 219

Preview from Notesale.co.uk

Page 252 of 1041

problems, the C file system includes the function feof(), which determines when the
end of the file has been encountered. The feof() function has this prototype:

int feof(FILE *fp);

feof() returns true if the end of the file has been reached; otherwise, it returns 0.
Therefore, the following routine reads a binary file until the end of the file is
encountered:

while(!feof(fp)) ch = getc(fp);

Of course, you can apply this method to text files as well as binary files.
The following program, which copies text or binary files, contains an example of

feof(). The files are opened in binary mode and feof() checks for the end of the file.

/* Copy a file. */
#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[])
{

FILE *in, *out;
char ch;

if(argc!=3) {
printf("You forgot to enter a filename.\n");
exit(1);

}

if((in=fopen(argv[1], "rb"))==NULL) {
printf("Cannot open source file.\n");
exit(1);

}
if((out=fopen(argv[2], "wb")) == NULL) {

printf("Cannot open destination file.\n");

exit(1);
}

/* This code actually copies the file. */
while(!feof(in)) {

ch = getc(in);

C h a p t e r 9 : F i l e I / O 221

Preview from Notesale.co.uk

Page 254 of 1041

The Console I/O Connection
Recall from Chapter 8 that there is little distinction between console I/O and file I/O.
The console I/O functions described in Chapter 8 actually direct their I/O operations to
either stdin or stdout. In essence, the console I/O functions are simply special versions
of their parallel file functions. The reason they exist is as a convenience to you, the
programmer.

As described in the previous section, you can perform console I/O using any of the
file system functions. However, what might surprise you is that you can perform disk
file I/O using console I/O functions, such as printf()! This is because all of the console
I/O functions operate on stdin and stdout. In environments that allow redirection of
I/O, this means that stdin and stdout could refer to a device other than the keyboard
and screen. For example, consider this program:

#include <stdio.h>

int main(void)
{

char str[80];

printf("Enter a string: ");

gets(str);
printf(str);

return 0;

}

Assume that this program is called TEST. If you execute TEST normally, it displays
its prompt on the screen, reads a string from the keyboard, and displays that string on
the display. However, in an environment that supports I/O redirection, either stdin,
stdout, or both could be redirected to a file. For example, in a DOS orWindows
environment, executing TEST like this:

TEST > OUTPUT

causes the output of TEST to be written to a file called OUTPUT. Executing TEST like
this:

TEST < INPUT > OUTPUT

directs stdin to the file called INPUT and sends output to the file called OUTPUT.
When a program terminates, any redirected streams are reset to their default status.

234 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 267 of 1041

You can include various instructions to the compiler in the source code of a
C/C++ program. These are called preprocessor directives, and although not
actually part of the C or C++ language per se, they expand the scope of the

programming environment. This chapter also examines comments.

The Preprocessor
Before beginning, it is important to put the preprocessor in historical perspective.
As it relates to C++, the preprocessor is largely a holdover from C. Moreover, the
C++ preprocessor is virtually identical to the one defined by C. The main difference
between C and C++ in this regard is the degree to which each relies upon the
preprocessor. In C, each preprocessor directive is necessary. In C++, some features
have been rendered redundant by newer and better C++ language elements. In fact,
one of the long-term design goals of C++ is the elimination of the preprocessor
altogether. But for now and well into the foreseeable future, the preprocessor will
still be widely used.

The preprocessor contains the following directives:

#define #elif #else #endif

#error #if #ifdef #ifndef

#include #line #pragma #undef

As you can see, all preprocessor directives begin with a # sign. In addition, each
preprocessing directive must be on its own line. For example,

#include <stdio.h> #include <stdlib.h>

will not work.

#define
The #define directive defines an identifier and a character sequence (i.e., a set of
characters) that will be substituted for the identifier each time it is encountered in the
source file. The identifier is referred to as a macro name and the replacement process as
macro replacement. The general form of the directive is

#define macro-name char-sequence

238 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 271 of 1041

#include
The #include directive instructs the compiler to read another source file in addition to
the one that contains the #include directive. The name of the additional source file
must be enclosed between double quotes or angle brackets. For example,

#include "stdio.h"

#include <stdio.h>

both instruct the compiler to read and compile the header for the C I/O system library
functions.

Include files can have #include directives in them. This is referred to as nested
includes. The number of levels of nesting allowed varies between compilers. However,
Standard C stipulates that at least eight nested inclusions will be available. Standard
C++ recommends that at least 256 levels of nesting be supported.

Whether the filename is enclosed by quotes or by angle brackets determines
how the search for the specified file is conducted. If the filename is enclosed in angle
brackets, the file is searched for in a manner defined by the creator of the compiler.
Often, this means searching some special directory set aside for include files. If the
filename is enclosed in quotes, the file is looked for in another implementation-defined
manner. For many compilers, this means searching the current working directory. If
the file is not found, the search is repeated as if the filename had been enclosed in angle
brackets.

Typically, most programmers use angle brackets to include the standard header
files. The use of quotes is generally reserved for including files specifically related to
the program at hand. However, there is no hard and fast rule that demands this usage.

In addition to files, a C++ program can use the #include directive to include a C++
header. C++ defines a set of standard headers that provide the information necessary
to the various C++ libraries. A header is a standard identifier that might, but need not,
map to a filename. Thus, a header is simply an abstraction that guarantees that the
appropriate information required by your program is included. Various issues
associated with headers are described in Part Two.

Conditional Compilation Directives
There are several directives that allow you to selectively compile portions of your
program's source code. This process is called conditional compilation and is used widely
by commercial software houses that provide and maintain many customized versions
of one program.

242 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 275 of 1041

One reason for using defined is that it allows the existence of a macro name to be
determined by a #elif statement.

#line
The #line directive changes the contents of _ _LINE_ _ and _ _FILE_ _ , which are
predefined identifiers in the compiler. The _ _LINE_ _ identifier contains the line
number of the currently compiled line of code. The _ _FILE_ _ identifier is a string that
contains the name of the source file being compiled. The general form for #line is

#line number "filename"

where number is any positive integer and becomes the new value of _ _LINE_ _ , and
the optional filename is any valid file identifier, which becomes the new value of
_ _FILE_ _. #line is primarily used for debugging and special applications.

For example, the following code specifies that the line count will begin with 100.
The printf() statement displays the number 102 because it is the third line in the
program after the #line 100 statement.

#include <stdio.h>

#line 100 /* reset the line counter */
int main(void) /* line 100 */
{ /* line 101 */

printf("%d\n",__LINE__); /* line 102 */

return 0;
}

#pragma
#pragma is an implementation-defined directive that allows various instructions to
be given to the compiler. For example, a compiler may have an option that supports
program execution tracing. A trace option would then be specified by a #pragma
statement. You must check the compiler's documentation for details and options.

The # and ## Preprocessor Operators
There are two preprocessor operators: # and ##. These operators are used with the
#define statement.

248 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 281 of 1041

worked. Object-oriented methods were created to help programmers break through
these barriers.

Object-oriented programming took the best ideas of structured programming
and combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in
one of two ways: around its code (what is happening) or around its data (who is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as "code acting on data." For
example, a program written in a structured language such as C is defined by its
functions, any of which may operate on any type of data used by the program.

Object-oriented programs work the other way around. They are organized
around data, with the key principle being "data controlling access to code." In an
object-oriented language, you define the data and the routines that are permitted
to act on that data. Thus, a data type defines precisely what sort of operations can
be applied to that data.

To support the principles of object-oriented programming, all OOP languages
have three traits in common: encapsulation, polymorphism, and inheritance. Let's
examine each.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates,
and keeps both safe from outside interference and misuse. In an object-oriented
language, code and data may be combined in such a way that a self-contained "black
box" is created. When code and data are linked together in this fashion, an object is
created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private
code or data is known to and accessible only by another part of the object. That is,
private code or data may not be accessed by a piece of the program that exists outside
the object. When code or data is public, other parts of your program may access it even
though it is defined within an object. Typically, the public parts of an object are used to
provide a controlled interface to the private elements of the object.

For all intents and purposes, an object is a variable of a user-defined type. It may
seem strange that an object that links both code and data can be thought of as a
variable. However, in object-oriented programming, this is precisely the case. Each
time you define a new type of object, you are creating a new data type. Each specific
instance of this data type is a compound variable.

Polymorphism
Object-oriented programming languages support polymorphism, which is characterized
by the phrase "one interface, multiple methods." In simple terms, polymorphism is the
attribute that allows one interface to control access to a general class of actions. The

258 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 291 of 1041

name iostream. The reason is that <iostream> is one of the new-style headers defined
by Standard C++. New-style headers do not use the .h extension.

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a recent addition
to C++. A namespace creates a declarative region in which various program elements
can be placed. Namespaces help in the organization of large programs. The using
statement informs the compiler that you want to use the std namespace. This is the
namespace in which the entire Standard C++ library is declared. By using the std
namespace you simplify access to the standard library. The programs in Part One,
which use only the C subset, don't need a namespace statement because the C library
functions are also available in the default, global namespace.

Since both new-style headers and namespaces are recent additions to C++, you may
encounter older code that does not use them. Also, if you are using an older compiler,
it may not support them. Instructions for using an older compiler are found later in
this chapter.

Now examine the following line.

int main()

Notice that the parameter list in main() is empty. In C++, this indicates that main()
has no parameters. This differs from C. In C, a function that has no parameters must
use void in its parameter list, as shown here:

int main(void)

This was the way main() was declared in the programs in Part One. However, in
C++, the use of void is redundant and unnecessary. As a general rule, in C++ when
a function takes no parameters, its parameter list is simply empty; the use of void is
not required.

The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment

First, the statement

cout << "This is output.\n";

C h a p t e r 1 1 : A n O v e r v i e w o f C + + 261

Note

Preview from Notesale.co.uk

Page 294 of 1041

int main()

{

return 0;

}

This version uses the new-style header and specifies a namespace. Both of these
features were mentioned in passing earlier. Let's look closely at them now.

The New C++ Headers
As you know, when you use a library function in a program, you must include its
header file. This is done using the #include statement. For example, in C, to include the
header file for the I/O functions, you include stdio.h with a statement like this:

#include <stdio.h>

Here, stdio.h is the name of the file used by the I/O functions, and the preceding
statement causes that file to be included in your program. The key point is that this
#include statement includes a file.

When C++ was first invented and for several years after that, it used the same
style of headers as did C. That is, it used header files. In fact, Standard C++ still supports
C-style headers for header files that you create and for backward compatibility.
However, Standard C++ created a new kind of header that is used by the Standard
C++ library. The new-style headers do not specify filenames. Instead, they simply
specify standard identifiers that may be mapped to files by the compiler, although
they need not be. The new-style C++ headers are an abstraction that simply guarantee
that the appropriate prototypes and definitions required by the C++ library have
been declared.

Since the new-style headers are not filenames, they do not have a .h extension. They
consist solely of the header name contained between angle brackets. For example, here
are some of the new-style headers supported by Standard C++.

<iostream> <fstream> <vector> <string>

The new-style headers are included using the #include statement. The only difference
is that the new-style headers do not necessarily represent filenames.

Because C++ includes the entire C function library, it still supports the standard
C-style header files associated with that library. That is, header files such as stdio.h
or ctype.h are still available. However, Standard C++ also defines new-style headers
that you can use in place of these header files. The C++ versions of the C standard
headers simply add a "c" prefix to the filename and drop the .h. For example, the C++
new-style header for math.h is <cmath>. The one for string.h is <cstring>. Although it

268 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 301 of 1041

Working with an Old Compiler
As explained, both namespaces and the new-style headers are fairly recent additions
to the C++ language, added during standardization. While all new C++ compilers
support these features, older compilers may not. When this is the case, your compiler
will report one or more errors when it tries to compile the first two lines of the sample
programs in this book. If this is the case, there is an easy work-around: simply use an
old-style header and delete the namespace statement. That is, just replace

#include <iostream>

using namespace std;

with

#include <iostream.h>

This change transforms a modern program into an old-style one. Since the old-style
header reads all of its contents into the global namespace, there is no need for a
namespace statement.

One other point: for now and for the next few years, you will see many C++
programs that use the old-style headers and do not include a using statement. Your
C++ compiler will be able to compile them just fine. However, for new programs, you
should use the modern style because it is the only style of program that complies with
the C++ Standard. While old-style programs will continue to be supported for many
years, they are technically noncompliant.

Introducing C++ Classes
This section introduces C++'s most important feature: the class. In C++, to create an
object, you first must define its general form by using the keyword class. A class is
similar syntactically to a structure. Here is an example. The following class defines a
type called stack, which will be used to create a stack:

#define SIZE 100

// This creates the class stack.

class stack {

int stck[SIZE];
int tos;

public:

void init();

270 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 303 of 1041

void push(int i);

int pop();

};

A class may contain private as well as public parts. By default, all items defined in
a class are private. For example, the variables stck and tos are private. This means that
they cannot be accessed by any function that is not a member of the class. This is one
way that encapsulation is achieved—access to certain items of data may be tightly
controlled by keeping them private. Although it is not shown in this example, you can
also define private functions, which then may be called only by other members of the
class.

To make parts of a class public (that is, accessible to other parts of your program),
you must declare them after the public keyword. All variables or functions defined
after public can be accessed by all other functions in the program. Essentially, the rest
of your program accesses an object through its public functions. Although you can
have public variables, good practice dictates that you should try to limit their use.
Instead, you should make all data private and control access to it through public
functions. One other point: Notice that the public keyword is followed by a colon.

The functions init(), push(), and pop() are called member functions because they
are part of the class stack. The variables stck and tos are called member variables (or data
members). Remember, an object forms a bond between code and data. Only member
functions have access to the private members of their class. Thus, only init(), push(),
and pop() may access stck and tos.

Once you have defined a class, you can create an object of that type by using the
class name. In essence, the class name becomes a new data type specifier. For example,
this creates an object called mystack of type stack:

stack mystack;

When you declare an object of a class, you are creating an instance of that class. In this
case, mystack is an instance of stack. You may also create objects when the class is
defined by putting their names after the closing curly brace, in exactly the same way as
you would with a structure.

To review: In C++, class creates a new data type that may be used to create objects
of that type. Therefore, an object is an instance of a class in just the same way that some
other variable is an instance of the int data type, for example. Put differently, a class is
a logical abstraction, while an object is real. (That is, an object exists inside the memory
of the computer.)

The general form of a simple class declaration is

class class-name {
private data and functions

C h a p t e r 1 1 : A n O v e r v i e w o f C + + 271

Preview from Notesale.co.uk

Page 304 of 1041

Operator Overloading
Polymorphism is also achieved in C++ through operator overloading. As you know, in
C++, it is possible to use the << and >> operators to perform console I/O operations.
They can perform these extra operations because in the <iostream> header, these
operators are overloaded. When an operator is overloaded, it takes on an additional
meaning relative to a certain class. However, it still retains all of its old meanings.

In general, you can overload most of C++'s operators by defining what they mean
relative to a specific class. For example, think back to the stack class developed earlier
in this chapter. It is possible to overload the + operator relative to objects of type stack
so that it appends the contents of one stack to the contents of another. However, the +
still retains its original meaning relative to other types of data.

Because operator overloading is, in practice, somewhat more complex than function
overloading, examples are deferred until Chapter 14.

Inheritance
As stated earlier in this chapter, inheritance is one of themajor traits of an object-
oriented programming language. In C++, inheritance is supported by allowing one
class to incorporate another class into its declaration. Inheritance allows a hierarchy
of classes to be built, moving frommost general tomost specific. The process involves
first defining a base class, which defines those qualities common to all objects to be
derived from the base. The base class represents themost general description. The
classes derived from the base are usually referred to as derived classes. A derived class
includes all features of the generic base class and then adds qualities specific to the
derived class. To demonstrate how thisworks, the next example creates classes that
categorize different types of buildings.

To begin, the building class is declared, as shown here. It will serve as the base for
two derived classes.

class building {

int rooms;
int floors;

int area;
public:

void set_rooms(int num);

int get_rooms();
void set_floors(int num);

int get_floors();

void set_area(int num);
int get_area();

};

278 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 311 of 1041

Because (for the sake of this example) all buildings have three common
features—one or more rooms, one or more floors, and a total area—the building
class embodies these components into its declaration. The member functions beginning
with set set the values of the private data. The functions starting with
get return those values.

You can now use this broad definition of a building to create derived classes that
describe specific types of buildings. For example, here is a derived class called house:

// house is derived from building

class house : public building {
int bedrooms;

int baths;
public:

void set_bedrooms(int num);
int get_bedrooms();
void set_baths(int num);

int get_baths();

};

Notice how building is inherited. The general form for inheritance is

class derived-class : access base-class {
// body of new class

}

Here, access is optional. However, if present, it must be public, private, or protected.
(These options are further examined in Chapter 12.) For now, all inherited classes
will use public. Using public means that all of the public members of the base class
will become public members of the derived class. Therefore, the public members of the
class building become public members of the derived class house and are available
to the member functions of house just as if they had been declared inside house.
However, house's member functions do not have access to the private elements of
building. This is an important point. Even though house inherits building, it has
access only to the public members of building. In this way, inheritance does not
circumvent the principles of encapsulation necessary to OOP.

A derived class has direct access to both its own members and the public members of
the base class.

Here is a program illustrating inheritance. It creates two derived classes of building
using inheritance; one is house, the other, school.

C h a p t e r 1 1 : A n O v e r v i e w o f C + + 279

Remember

Preview from Notesale.co.uk

Page 312 of 1041

public:

stack(); // constructor
~stack(); // destructor

void push(int i);
int pop();

};

// stack's constructor function

stack::stack()
{

tos = 0;
cout << "Stack Initialized\n";

}

// stack's destructor function
stack::~stack()

{

cout << "Stack Destroyed\n";
}

Notice that, like constructor functions, destructor functions do not have return values.
To see how constructors and destructors work, here is a new version of the stack

program examined earlier in this chapter. Observe that init() is no longer needed.

// Using a constructor and destructor.
#include <iostream>

using namespace std;

#define SIZE 100

// This creates the class stack.

class stack {
int stck[SIZE];

int tos;
public:

stack(); // constructor

~stack(); // destructor
void push(int i);

int pop();

};

// stack's constructor function

stack::stack()

C h a p t e r 1 1 : A n O v e r v i e w o f C + + 285

Preview from Notesale.co.uk

Page 318 of 1041

{

tos = 0;
cout << "Stack Initialized\n";

}

// stack's destructor function
stack::~stack()

{

cout << "Stack Destroyed\n";
}

void stack::push(int i)
{

if(tos==SIZE) {
cout << "Stack is full.\n";
return;

}

stck[tos] = i;
tos++;

}

int stack::pop()
{

if(tos==0) {

cout << "Stack underflow.\n";
return 0;

}
tos--;
return stck[tos];

}

int main()

{

stack a, b; // create two stack objects

a.push(1);

b.push(2);

a.push(3);
b.push(4);

cout << a.pop() << " ";

286 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 319 of 1041

The General Form of a C++ Program
Although individual styles will differ, most C++ programs will have this general form:

#includes
base-class declarations
derived class declarations
nonmember function prototypes
int main()
{

//...
}
nonmember function definitions

In most large projects, all class declarations will be put into a header file and included
with each module. But the general organization of a program remains the same.

The remaining chapters in this section examine in greater detail the features
discussed in this chapter, as well as all other aspects of C++.

288 C + + : T h e C o m p l e t e R e f e r e n c e

public register reinterpret_cast return

short signed sizeof static

static_cast struct switch template

this throw true try

typedef typeid typename union

unsigned using virtual void

volatile wchar_t while

Table 11-1. The C++ keywords (continued)

Preview from Notesale.co.uk

Page 321 of 1041

Chapter 12
Classes and Objects

289

C++

Preview from Notesale.co.uk

Page 322 of 1041

unsigned short u;

unsigned char c[2];
};

void swap_byte::swap()
{

unsigned char t;

t = c[0];

c[0] = c[1];
c[1] = t;

}

void swap_byte::show_word()

{
cout << u;

}

void swap_byte::set_byte(unsigned short i)

{
u = i;

}

int main()
{

swap_byte b;

b.set_byte(49034);
b.swap();

b.show_word();

return 0;

}

Like a structure, a union declaration in C++ defines a special type of class. This
means that the principle of encapsulation is preserved.

There are several restrictions that must be observed when you use C++ unions.
First, a union cannot inherit any other classes of any type. Further, a union cannot be a
base class. A union cannot have virtual member functions. (Virtual functions are
discussed in Chapter 17.) No static variables can be members of a union. A reference
member cannot be used. A union cannot have as a member any object that overloads
the = operator. Finally, no object can be a member of a union if the object has an
explicit constructor or destructor function.

296 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 329 of 1041

Friend Functions
It is possible to grant a nonmember function access to the private members of a class
by using a friend. A friend function has access to all private and protected members
of the class for which it is a friend. To declare a friend function, include its prototype
within the class, preceding it with the keyword friend. Consider this program:

#include <iostream>

using namespace std;

class myclass {

int a, b;
public:

friend int sum(myclass x);

void set_ab(int i, int j);

};

void myclass::set_ab(int i, int j)

{
a = i;

b = j;
}

// Note: sum() is not a member function of any class.

int sum(myclass x)

{
/* Because sum() is a friend of myclass, it can

directly access a and b. */

return x.a + x.b;
}

int main()

{
myclass n;

n.set_ab(3, 4);

cout << sum(n);

return 0;

}

298 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 331 of 1041

precede its definition with the inline keyword. For example, in this program, the
function max() is expanded in line instead of called:

#include <iostream>

using namespace std;

inline int max(int a, int b)

{
return a>b ? a : b;

}

int main()

{
cout << max(10, 20);

cout << " " << max(99, 88);

return 0;

}

As far as the compiler is concerned, the preceding program is equivalent to this one:

#include <iostream>
using namespace std;

int main()
{

cout << (10>20 ? 10 : 20);

cout << " " << (99>88 ? 99 : 88);

return 0;

}

The reason that inline functions are an important addition to C++ is that they allow
you to create very efficient code. Since classes typically require several frequently
executed interface functions (which provide access to private data), the efficiency of
these functions is of critical concern. As you probably know, each time a function is
called, a significant amount of overhead is generated by the calling and return
mechanism. Typically, arguments are pushed onto the stack and various registers are
saved when a function is called, and then restored when the function returns. The
trouble is that these instructions take time. However, when a function is expanded in
line, none of those operations occur. Although expanding function calls in line can

304 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 337 of 1041

Notice that in the definition of myclass(), the parameters i and j are used to give initial
values to a and b.

The program illustrates the most common way to specify arguments when you
declare an object that uses a parameterized constructor function. Specifically, this
statement

myclass ob(3, 4);

causes an object called ob to be created and passes the arguments 3 and 4 to the i and j
parameters of myclass(). You may also pass arguments using this type of declaration
statement:

myclass ob = myclass(3, 4);

However, the first method is the one generally used, and this is the approach taken
by most of the examples in this book. Actually, there is a small technical difference
between the two types of declarations that relates to copy constructors. (Copy
constructors are discussed in Chapter 14.)

Here is another example that uses a parameterized constructor function. It creates a
class that stores information about library books.

#include <iostream>

#include <cstring>
using namespace std;

const int IN = 1;
const int CHECKED_OUT = 0;

class book {

char author[40];

char title[40];
int status;

public:

book(char *n, char *t, int s);
int get_status() {return status;}

void set_status(int s) {status = s;}

void show();
};

book::book(char *n, char *t, int s)
{

308 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 341 of 1041

p = ob; // get start of array

for(i=0; i<3; i++) {
cout << p->get_i() << "\n";

p++; // point to next object
}

return 0;

}

You can assign the address of a public member of an object to a pointer and then
access that member by using the pointer. For example, this is a valid C++ program that
displays the number 1 on the screen:

#include <iostream>

using namespace std;

class cl {

public:
int i;

cl(int j) { i=j; }
};

int main()

{

cl ob(1);
int *p;

p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

}

Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant
that i is a member of ob in this situation.

Type Checking C++ Pointers
There is one important thing to understand about pointers in C++: Youmay assign one
pointer to another only if the two pointer types are compatible. For example, given:

C h a p t e r 1 3 : A r r a y s , P o i n t e r s , R e f e r e n c e s , a n d t h e D y n a m i c A l l o c a t i o n O p e r a t o r s 333

Preview from Notesale.co.uk

Page 366 of 1041

Of course, the type of the initializer must be compatible with the type of data for which
memory is being allocated.

This program gives the allocated integer an initial value of 87:

#include <iostream>

#include <new>
using namespace std;

int main()
{

int *p;

try {

p = new int (87); // initialize to 87
} catch (bad_alloc xa) {

cout << "Allocation Failure\n";
return 1;

}

cout << "At " << p << " ";
cout << "is the value " << *p << "\n";

delete p;

return 0;
}

Allocating Arrays
You can allocate arrays using new by using this general form:

p_var = new array_type [size];

Here, size specifies the number of elements in the array.
To free an array, use this form of delete:

delete [] p_var;

Here, the [] informs delete that an array is being released.
For example, the next program allocates a 10-element integer array.

352 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 385 of 1041

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";
return 1;

}

p->get_bal(n, s);

cout << s << "'s balance is: " << n;

cout << "\n";

delete p;

return 0;

}

The parameters to the object's constructor function are specified after the type
name, just as in other sorts of initializations.

You can allocate arrays of objects, but there is one catch. Since no array allocated by
new can have an initializer, you must make sure that if the class contains constructor
functions, one will be parameterless. If you don't, the C++ compiler will not find a
matching constructor when you attempt to allocate the array and will not compile your
program.

In this version of the preceding program, an array of balance objects is allocated,
and the parameterless constructor is called.

#include <iostream>
#include <new>

#include <cstring>
using namespace std;

class balance {

double cur_bal;
char name[80];

public:
balance(double n, char *s) {

cur_bal = n;

strcpy(name, s);
}

balance() {} // parameterless constructor

~balance() {
cout << "Destructing ";

356 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 389 of 1041

The output from this program is shown here.

Ralph Wilson's balance is: 12387.9

A. C. Conners's balance is: 144
I. M. Overdrawn's balance is: -11.23

Destructing I. M. Overdrawn
Destructing A. C. Conners

Destructing Ralph Wilson

One reason that you need to use the delete [] form when deleting an array of
dynamically allocated objects is so that the destructor function can be called for each
object in the array.

The nothrow Alternative
In Standard C++ it is possible to have new return null instead of throwing an
exception when an allocation failure occurs. This form of new is most useful when you
are compiling older code with a modern C++ compiler. It is also valuable when you are
replacing calls to malloc() with new. (This is common when updating C code to C++.)
This form of new is shown here:

p_var = new(nothrow) type;

Here, p_var is a pointer variable of type. The nothrow form of new works like the
original version of new from years ago. Since it returns null on failure, it can be
"dropped into" older code without having to add exception handling. However, for
new code, exceptions provide a better alternative. To use the nothrow option, you
must include the header <new>.

The following program shows how to use the new(nothrow) alternative.

// Demonstrate nothrow version of new.

#include <iostream>
#include <new>
using namespace std;

int main()
{

int *p, i;

p = new(nothrow) int[32]; // use nothrow option
if(!p) {

cout << "Allocation failure.\n";

358 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 391 of 1041

The next program overloads myfunc() using a different number of parameters:

#include <iostream>

using namespace std;

int myfunc(int i); // these differ in number of parameters

int myfunc(int i, int j);

int main()
{

cout << myfunc(10) << " "; // calls myfunc(int i)

cout << myfunc(4, 5); // calls myfunc(int i, int j)

return 0;

}

int myfunc(int i)

{
return i;

}

int myfunc(int i, int j)

{
return i*j;

}

As mentioned, the key point about function overloading is that the functions must
differ in regard to the types and/or number of parameters. Two functions differing
only in their return types cannot be overloaded. For example, this is an invalid attempt
to overload myfunc():

int myfunc(int i); // Error: differing return types are

float myfunc(int i); // insufficient when overloading.

Sometimes, two function declarations will appear to differ, when in fact they do not.
For example, consider the following declarations.

void f(int *p);

void f(int p[]); // error, *p is same as p[]

Remember, to the compiler *p is the same as p[]. Therefore, although the two
prototypes appear to differ in the types of their parameter, in actuality they do not.

C h a p t e r 1 4 : F u n c t i o n O v e r l o a d i n g , C o p y C o n s t r u c t o r s , a n d D e f a u l t A r g u m e n t s 363

Preview from Notesale.co.uk

Page 396 of 1041

Default Function Arguments
C++ allows a function to assign a parameter a default value when no argument
corresponding to that parameter is specified in a call to that function. The default value
is specified in a manner syntactically similar to a variable initialization. For example,
this declares myfunc() as taking one double argument with a default value of 0.0:

void myfunc(double d = 0.0)

{

// ...

}

Now, myfunc() can be called one of two ways, as the following examples show:

myfunc(198.234); // pass an explicit value

myfunc(); // let function use default

The first call passes the value 198.234 to d. The second call automatically gives d the
default value zero.

One reason that default arguments are included in C++ is because they provide
another method for the programmer to manage greater complexity. To handle the
widest variety of situations, quite frequently a function contains more parameters than
are required for its most common usage. Thus, when the default arguments apply, you
need specify only the arguments that are meaningful to the exact situation, not all those
needed by the most general case. For example, many of the C++ I/O functions make
use of default arguments for just this reason.

A simple illustration of how useful a default function argument can be is shown by
the clrscr() function in the following program. The clrscr() function clears the screen
by outputting a series of linefeeds (not the most efficient way, but sufficient for this
example). Because a very common video mode displays 25 lines of text, the default
argument of 25 is provided. However, because some terminals can display more or less
than 25 lines (often depending upon what type of video mode is used), you can
override the default argument by specifying one explicitly.

#include <iostream>

using namespace std;

void clrscr(int size=25);

int main()

{

register int i;

374 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 407 of 1041

for(i=0; i<30; i++) cout << i << endl;

cin.get();
clrscr(); // clears 25 lines

for(i=0; i<30; i++) cout << i << endl;
cin.get();
clrscr(10); // clears 10 lines

return 0;

}

void clrscr(int size)

{
for(; size; size--) cout << endl;

}

As this program illustrates, when the default value is appropriate to the situation,
no argument need be specified when clrscr() is called. However, it is still possible to
override the default and give size a different value when needed.

A default argument can also be used as a flag telling the function to reuse a
previous argument. To illustrate this usage, a function called iputs() is developed here
that automatically indents a string by a specified amount. To begin, here is a version of
this function that does not use a default argument:

void iputs(char *str, int indent)
{

if(indent < 0) indent = 0;

for(; indent; indent--) cout << " ";

cout << str << "\n";

}

This version of iputs() is called with the string to output as the first argument and the
amount to indent as the second. Although there is nothing wrong with writing iputs() this
way, you can improve its usability by providing a default argument for the indent
parameter that tells iputs() to indent to the previously specified level. It is quite common
to display a block of text with each line indented the same amount. In this situation,
instead of having to supply the same indent argument over and over, you can give

C h a p t e r 1 4 : F u n c t i o n O v e r l o a d i n g , C o p y C o n s t r u c t o r s , a n d D e f a u l t A r g u m e n t s 375

Preview from Notesale.co.uk

Page 408 of 1041

Closely related to function overloading is operator overloading. In C++, you can
overload most operators so that they perform special operations relative to
classes that you create. For example, a class that maintains a stack might

overload + to perform a push operation and – – to perform a pop. When an operator is
overloaded, none of its original meanings are lost. Instead, the type of objects it can be
applied to is expanded.

The ability to overload operators is one of C++'s most powerful features. It allows
the full integration of new class types into the programming environment. After
overloading the appropriate operators, you can use objects in expressions in just the
same way that you use C++'s built-in data types. Operator overloading also forms the
basis of C++'s approach to I/O.

You overload operators by creating operator functions. An operator function defines
the operations that the overloaded operator will perform relative to the
class upon which it will work. An operator function is created using the keyword
operator. Operator functions can be either members or nonmembers of a class.
Nonmember operator functions are almost always friend functions of the class,
however. The way operator functions are written differs between member and
nonmember functions. Therefore, each will be examined separately, beginning with
member operator functions.

Creating a Member Operator Function
A member operator function takes this general form:

ret-type class-name::operator#(arg-list)
{
// operations
}

Often, operator functions return an object of the class they operate on, but ret-type can
be any valid type. The # is a placeholder. When you create an operator function,
substitute the operator for the #. For example, if you are overloading the / operator, use
operator/. When you are overloading a unary operator, arg-list will be empty. When
you are overloading binary operators, arg-list will contain one parameter. (The reasons
for this seemingly unusual situation will be made clear in a moment.)

Here is a simple first example of operator overloading. This program creates a class
called loc, which stores longitude and latitude values. It overloads the + operator
relative to this class. Examine this program carefully, paying special attention to the
definition of operator+():

386 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 419 of 1041

// Postfix increment
type operator++(int x) {
// body of postfix operator
}

// Prefix decrement
type operator– –() {
// body of prefix operator
}

// Postfix decrement
type operator– –(int x) {
// body of postfix operator
}

You should be careful when working with older C++ programs where the increment
and decrement operators are concerned. In older versions of C++, it was not possible
to specify separate prefix and postfix versions of an overloaded ++ or – –. The prefix
form was used for both.

Overloading the Shorthand Operators
You can overload any of C++'s "shorthand" operators, such as +=, –=, and the like. For
example, this function overloads += relative to loc:

loc loc::operator+=(loc op2)

{
longitude = op2.longitude + longitude;
latitude = op2.latitude + latitude;

return *this;

}

When overloading one of these operators, keep in mind that you are simply
combining an assignment with another type of operation.

Operator Overloading Restrictions
There are some restrictions that apply to operator overloading. You cannot alter the
precedence of an operator. You cannot change the number of operands that an operator
takes. (You can choose to ignore an operand, however.) Except for the function call

392 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 425 of 1041

loc() {}

loc(int lg, int lt) {
longitude = lg;

latitude = lt;
}

void show() {

cout << longitude << " ";

cout << latitude << "\n";
}

friend loc operator+(loc op1, int op2);
friend loc operator+(int op1, loc op2);

};

// + is overloaded for loc + int.
loc operator+(loc op1, int op2)

{

loc temp;

temp.longitude = op1.longitude + op2;
temp.latitude = op1.latitude + op2;

return temp;
}

// + is overloaded for int + loc.

loc operator+(int op1, loc op2)
{

loc temp;

temp.longitude = op1 + op2.longitude;
temp.latitude = op1 + op2.latitude;

return temp;
}

int main()

{
loc ob1(10, 20), ob2(5, 30), ob3(7, 14);

ob1.show();

C h a p t e r 1 5 : O p e r a t o r O v e r l o a d i n g 399

Preview from Notesale.co.uk

Page 432 of 1041

cout << "Allocation error for p1.\n";

return 1;;
}

try {
p2 = new loc (-10, -20);

} catch (bad_alloc xa) {

cout << "Allocation error for p2.\n";

return 1;;
}

try {
f = new float; // uses overloaded new, too

} catch (bad_alloc xa) {
cout << "Allocation error for f.\n";
return 1;;

}

*f = 10.10F;
cout << *f << "\n";

p1->show();

p2->show();

delete p1;

delete p2;

delete f;

return 0;

}

Run this program to prove to yourself that the built-in new and delete operators
have indeed been overloaded.

Overloading new and delete for Arrays
If you want to be able to allocate arrays of objects using your own allocation system,
you will need to overload new and delete a second time. To allocate and free arrays,
you must use these forms of new and delete.

C h a p t e r 1 5 : O p e r a t o r O v e r l o a d i n g 405

Preview from Notesale.co.uk

Page 438 of 1041

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] appears on left

cout << ob[1]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range

return 0;

}

In this program, when the statement

ob[3] = 44;

executes, the boundary error is intercepted by operator[](), and the program is
terminated before any damage can be done. (In actual practice, some sort of
error-handling function would be called to deal with the out-of-range condition; the
program would not have to terminate.)

Overloading ()
When you overload the () function call operator, you are not, per se, creating a new
way to call a function. Rather, you are creating an operator function that can be passed
an arbitrary number of parameters. Let's begin with an example. Given the overloaded
operator function declaration

double operator()(int a, float f, char *s);

and an object O of its class, then the statement

O(10, 23.34, "hi");

translates into this call to the operator() function.

O.operator()(10, 23.34, "hi");

In general, when you overload the () operator, you define the parameters that you
want to pass to that function. When you use the () operator in your program, the

C h a p t e r 1 5 : O p e r a t o r O v e r l o a d i n g 413

Preview from Notesale.co.uk

Page 446 of 1041

public:

derived(int x) { k=x; }
void showk() { cout << k << "\n"; }

};

int main()
{

derived ob(3);

ob.set(1, 2); // error, can't access set()
ob.show(); // error, can't access show()

return 0;
}

When a base class' access specifier is private, public and protected members of the
base become private members of the derived class. This means that they are still
accessible by members of the derived class but cannot be accessed by parts of your
program that are not members of either the base or derived class.

Inheritance and protected Members
The protected keyword is included in C++ to provide greater flexibility in the
inheritance mechanism. When a member of a class is declared as protected, that
member is not accessible by other, nonmember elements of the program. With one
important exception, access to a protected member is the same as access to a private
member—it can be accessed only by other members of its class. The sole exception to
this is when a protected member is inherited. In this case, a protected member differs
substantially from a private one.

As explained in the preceding section, a private member of a base class is not
accessible by other parts of your program, including any derived class. However,
protected members behave differently. If the base class is inherited as public, then the
base class' protected members become protected members of the derived class and are,
therefore, accessible by the derived class. By using protected, you can create class
members that are private to their class but that can still be inherited and accessed by a
derived class. Here is an example:

#include <iostream>

using namespace std;

class base {

422 C + + : T h e C o m p l e t e R e f e r e n c e

Remember

Preview from Notesale.co.uk

Page 455 of 1041

protected:

int i, j; // private to base, but accessible by derived
public:

void set(int a, int b) { i=a; j=b; }
void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;
public:

// derived may access base's i and j
void setk() { k=i*j; }

void showk() { cout << k << "\n"; }
};

int main()

{

derived ob;

ob.set(2, 3); // OK, known to derived
ob.show(); // OK, known to derived

ob.setk();
ob.showk();

return 0;

}

In this example, because base is inherited by derived as public and because i and j
are declared as protected, derived's function setk() may access them. If i and j had
been declared as private by base, then derived would not have access to them, and the
program would not compile.

When a derived class is used as a base class for another derived class, any protected
member of the initial base class that is inherited (as public) by the first derived class
may also be inherited as protected again by a second derived class. For example, this
program is correct, and derived2 does indeed have access to i and j.

#include <iostream>

using namespace std;

class base {

C h a p t e r 1 6 : I n h e r i t a n c e 423

Preview from Notesale.co.uk

Page 456 of 1041

public:

int j, k;
void seti(int x) { i = x; }

int geti() { return i; }
};

// Inherit base as private.

class derived: private base {

public:
/* The next three statements override

base's inheritance as private and restore j,
seti(), and geti() to public access. */

base::j; // make j public again - but not k
base::seti; // make seti() public
base::geti; // make geti() public

// base::i; // illegal, you cannot elevate access

int a; // public
};

int main()

{
derived ob;

//ob.i = 10; // illegal because i is private in derived

ob.j = 20; // legal because j is made public in derived
//ob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived
ob.seti(10);

cout << ob.geti() << " " << ob.j << " " << ob.a;

return 0;

}

Access declarations are supported in C++ to accommodate those situations in
which most of an inherited class is intended to be made private, but a few members are
to retain their public or protected status.

438 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 471 of 1041

derived3 ob;

ob.i = 10; // this is ambiguous, which i???
ob.j = 20;

ob.k = 30;

// i ambiguous here, too
ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?

cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As the comments in the program indicate, both derived1 and derived2 inherit base.
However, derived3 inherits both derived1 and derived2. This means that there are two
copies of base present in an object of type derived3. Therefore, in an expression like

ob.i = 10;

which i is being referred to, the one in derived1 or the one in derived2? Because there
are two copies of base present in object ob, there are two ob.is! As you can see, the
statement is inherently ambiguous.

There are two ways to remedy the preceding program. The first is to apply the
scope resolution operator to i and manually select one i. For example, this version of
the program does compile and run as expected:

// This program uses explicit scope resolution to select i.

#include <iostream>
using namespace std;

class base {

public:
int i;

};

// derived1 inherits base.

440 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 473 of 1041

being included in derived3? The answer, as you probably have guessed, is yes. This
solution is achieved using virtual base classes.

When two or more objects are derived from a common base class, you can prevent
multiple copies of the base class from being present in an object derived from those
objects by declaring the base class as virtual when it is inherited. You accomplish this
by preceding the base class' name with the keyword virtual when it is inherited. For
example, here is another version of the example program in which derived3 contains
only one copy of base:

// This program uses virtual base classes.

#include <iostream>
using namespace std;

class base {
public:

int i;
};

// derived1 inherits base as virtual.

class derived1 : virtual public base {

public:
int j;

};

// derived2 inherits base as virtual.
class derived2 : virtual public base {

public:

int k;
};

/* derived3 inherits both derived1 and derived2.
This time, there is only one copy of base class. */

class derived3 : public derived1, public derived2 {

public:
int sum;

};

int main()
{

derived3 ob;

ob.i = 10; // now unambiguous

442 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 475 of 1041

ob.j = 20;

ob.k = 30;

// unambiguous

ob.sum = ob.i + ob.j + ob.k;

// unambiguous
cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As you can see, the keyword virtual precedes the rest of the inherited class'
specification. Now that both derived1 and derived2 have inherited base as virtual, any
multiple inheritance involving them will cause only one copy of base to be present.
Therefore, in derived3, there is only one copy of base and ob.i = 10 is perfectly valid
and unambiguous.

One further point to keep in mind: Even though both derived1 and derived2
specify base as virtual, base is still present in objects of either type. For example, the
following sequence is perfectly valid:

// define a class of type derived1

derived1 myclass;

myclass.i = 88;

The only difference between a normal base class and a virtual one is what occurs when
an object inherits the base more than once. If virtual base classes are used, then only
one base class is present in the object. Otherwise, multiple copies will be found.

C h a p t e r 1 6 : I n h e r i t a n c e 443

Preview from Notesale.co.uk

Page 476 of 1041

This page intentionally left blank.

Preview from Notesale.co.uk

Page 477 of 1041

Polymorphism is supported by C++ both at compile time and at run time. As
discussed in earlier chapters, compile-time polymorphism is achieved by
overloading functions and operators. Run-time polymorphism is accomplished

by using inheritance and virtual functions, and these are the topics of this chapter.

Virtual Functions
A virtual function is a member function that is declared within a base class and
redefined by a derived class. To create a virtual function, precede the function's
declaration in the base class with the keyword virtual. When a class containing a
virtual function is inherited, the derived class redefines the virtual function to fit its
own needs. In essence, virtual functions implement the "one interface, multiple
methods" philosophy that underlies polymorphism. The virtual function within the
base class defines the form of the interface to that function. Each redefinition of the
virtual function by a derived class implements its operation as it relates specifically to
the derived class. That is, the redefinition creates a specific method.

When accessed "normally," virtual functions behave just like any other type of class
member function. However, what makes virtual functions important and capable of
supporting run-time polymorphism is how they behave when accessed via a pointer.
As discussed in Chapter 13, a base-class pointer can be used to point to an object of any
class derived from that base. When a base pointer points to a derived object that
contains a virtual function, C++ determines which version of that function to call based
upon the type of object pointed to by the pointer. And this determination is made at run
time. Thus, when different objects are pointed to, different versions of the virtual
function are executed. The same effect applies to base-class references.

To begin, examine this short example:

#include <iostream>
using namespace std;

class base {

public:
virtual void vfunc() {

cout << "This is base's vfunc().\n";
}

};

class derived1 : public base {
public:

void vfunc() {

cout << "This is derived1's vfunc().\n";
}

446 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 479 of 1041

public:

// vfunc() not overridden by derived2, base's is used
};

int main()
{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;
p->vfunc(); // access base's vfunc()

// point to derived1
p = &d1;
p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;
p->vfunc(); // use base's vfunc()

return 0;

}

The program produces this output:

This is base's vfunc().

This is derived1's vfunc().

This is base's vfunc().

Because derived2 does not override vfunc(), the function defined by base is used
when vfunc() is referenced relative to objects of type derived2.

The preceding program illustrates a special case of a more general rule. Because
inheritance is hierarchical in C++, it makes sense that virtual functions are also
hierarchical. This means that when a derived class fails to override a virtual function,
the first redefinition found in reverse order of derivation is used. For example, in the
following program, derived2 is derived from derived1, which is derived from base.
However, derived2 does not override vfunc(). This means that, relative to derived2,

C h a p t e r 1 7 : V i r t u a l F u n c t i o n s a n d P o l y m o r p h i s m 453

Preview from Notesale.co.uk

Page 486 of 1041

protected:

int val;
public:

void setval(int i) { val = i; }

// show() is a pure virtual function
virtual void show() = 0;

};

class hextype : public number {
public:

void show() {
cout << hex << val << "\n";

}
};

class dectype : public number {

public:

void show() {
cout << val << "\n";

}

};

class octtype : public number {

public:

void show() {
cout << oct << val << "\n";

}
};

int main()

{
dectype d;

hextype h;

octtype o;

d.setval(20);

d.show(); // displays 20 - decimal

h.setval(20);

h.show(); // displays 14 - hexadecimal

456 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 489 of 1041

public:

f_to_c(double i) : convert(i) { }
void compute() {

val2 = (val1-32) / 1.8;
}

};

int main()

{
convert *p; // pointer to base class

l_to_g lgob(4);
f_to_c fcob(70);

// use virtual function mechanism to convert
p = &lgob;
cout << p->getinit() << " liters is ";

p->compute();

cout << p->getconv() << " gallons\n"; // l_to_g

p = &fcob;
cout << p->getinit() << " in Fahrenheit is ";

p->compute();
cout << p->getconv() << " Celsius\n"; // f_to_c

return 0;

}

The preceding program creates two derived classes from convert, called l_to_g and
f_to_c. These classes perform the conversions of liters to gallons and Fahrenheit to
Celsius, respectively. Each derived class overrides compute() in its own way to
perform the desired conversion. However, even though the actual conversion (that is,
method) differs between l_to_g and f_to_c, the interface remains constant.

One of the benefits of derived classes and virtual functions is that handling a new
case is a very easy matter. For example, assuming the preceding program, you can add
a conversion from feet to meters by including this class:

// Feet to meters

class f_to_m : public convert {

public:

f_to_m(double i) : convert(i) { }

C h a p t e r 1 7 : V i r t u a l F u n c t i o n s a n d P o l y m o r p h i s m 459

Preview from Notesale.co.uk

Page 492 of 1041

Chapter 18
Templates

461

C++

Preview from Notesale.co.uk

Page 494 of 1041

A Generic Sort
Sorting is exactly the type of operation for which generic functions were designed.
Within wide latitude, a sorting algorithm is the same no matter what type of data is
being sorted. The following program illustrates this by creating a generic bubble sort.
While the bubble sort is a rather poor sorting algorithm, its operation is clear and
uncluttered and it makes an easy-to-understand example. The bubble() function will
sort any type of array. It is called with a pointer to the first element in the array and the
number of elements in the array.

// A Generic bubble sort.

#include <iostream>
using namespace std;

template <class X> void bubble(
X *items, // pointer to array to be sorted

int count) // number of items in array
{

register int a, b;

X t;

for(a=1; a<count; a++)
for(b=count-1; b>=a; b--)

if(items[b-1] > items[b]) {

// exchange elements
t = items[b-1];

items[b-1] = items[b];

items[b] = t;
}

}

int main()
{

int iarray[7] = {7, 5, 4, 3, 9, 8, 6};
double darray[5] = {4.3, 2.5, -0.9, 100.2, 3.0};

int i;

cout << "Here is unsorted integer array: ";
for(i=0; i<7; i++)

C h a p t e r 1 8 : T e m p l a t e s 471

Preview from Notesale.co.uk

Page 504 of 1041

register int i;

for(i=0; i<SIZE; i++) a[i] = i;
}

AType &operator[](int i);
};

// Provide range checking for atype.

template <class AType> AType &atype<AType>::operator[](int i)

{
if(i<0 || i> SIZE-1) {

cout << "\nIndex value of ";
cout << i << " is out-of-bounds.\n";

exit(1);
}
return a[i];

}

int main()
{

atype<int> intob; // integer array

atype<double> doubleob; // double array

int i;

cout << "Integer array: ";

for(i=0; i<SIZE; i++) intob[i] = i;
for(i=0; i<SIZE; i++) cout << intob[i] << " ";

cout << '\n';

cout << "Double array: ";
for(i=0; i<SIZE; i++) doubleob[i] = (double) i/3;

for(i=0; i<SIZE; i++) cout << doubleob[i] << " ";
cout << '\n';

intob[12] = 100; // generates runtime error

return 0;
}

This program implements a generic safe-array type and then demonstrates its use
by creating an array of ints and an array of doubles. You should try creating other
types of arrays. As this example shows, part of the power of generic classes is that they

480 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 513 of 1041

atype<int, 10> intob; // integer array of size 10

atype<double, 15> doubleob; // double array of size 15

int i;

cout << "Integer array: ";
for(i=0; i<10; i++) intob[i] = i;
for(i=0; i<10; i++) cout << intob[i] << " ";

cout << '\n';

cout << "Double array: ";
for(i=0; i<15; i++) doubleob[i] = (double) i/3;

for(i=0; i<15; i++) cout << doubleob[i] << " ";
cout << '\n';

intob[12] = 100; // generates runtime error

return 0;

}

Look carefully at the template specification for atype. Note that size is declared as
an int. This parameter is then used within atype to declare the size of the array a. Even
though size is depicted as a "variable" in the source code, its value is known at compile
time. This allows it to be used to set the size of the array. size is also used in the bounds
checking within the operator[]() function. Within main(), notice how the integer and
floating-point arrays are created. The second parameter specifies the size of each array.

Non-type parameters are restricted to integers, pointers, or references. Other types,
such as float, are not allowed. The arguments that you pass to a non-type parameter
must consist of either an integer constant, or a pointer or reference to a global function
or object. Thus, non-type parameters should themselves be thought of as constants,
since their values cannot be changed. For example, inside operator[](), the following
statement is not allowed.

size = 10; // Error

Since non-type parameters are treated as constants, they can be used to set the
dimension of an array, which is a significant, practical benefit.

As the safe-array example illustrates, the use of non-type parameters greatly
expands the utility of template classes. Although the information contained in the
non-type argument must be known at compile-time, this restriction is mild compared
with the power offered by non-type parameters.

482 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 515 of 1041

The following program shows how to restrict the types of exceptions that can be
thrown from a function.

// Restricting function throw types.

#include <iostream>
using namespace std;

// This function can only throw ints, chars, and doubles.
void Xhandler(int test) throw(int, char, double)
{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char
if(test==2) throw 123.23; // throw double

}

int main()

{
cout << "start\n";

try{

Xhandler(0); // also, try passing 1 and 2 to Xhandler()

}
catch(int i) {

cout << "Caught an integer\n";

}
catch(char c) {

cout << "Caught char\n";

}
catch(double d) {

cout << "Caught double\n";
}

cout << "end";

return 0;

}

In this program, the function Xhandler() may only throw integer, character, and
double exceptions. If it attempts to throw any other type of exception, an abnormal
program termination will occur. (That is, unexpected() will be called.) To see an
example of this, remove int from the list and retry the program.

It is important to understand that a function can be restricted only in what types of
exceptions it throws back to the try block that called it. That is, a try block within a

C h a p t e r 1 9 : E x c e p t i o n H a n d l i n g 503

Preview from Notesale.co.uk

Page 536 of 1041

function may throw any type of exception so long as it is caught within that function.
The restriction applies only when throwing an exception outside of the function.

The following change to Xhandler() prevents it from throwing any exceptions.

// This function can throw NO exceptions!

void Xhandler(int test) throw()
{

/* The following statements no longer work. Instead,
they will cause an abnormal program termination. */

if(test==0) throw test;

if(test==1) throw 'a';

if(test==2) throw 123.23;
}

At the time of this writing, Microsoft's Visual C++ does not support the throw()
clause for functions.

Rethrowing an Exception
If you wish to rethrow an expression from within an exception handler, you may do so
by calling throw, by itself, with no exception. This causes the current exception to be
passed on to an outer try/catch sequence. The most likely reason for doing so is to
allow multiple handlers access to the exception. For example, perhaps one exception
handler manages one aspect of an exception and a second handler copes with another.
An exception can only be rethrown from within a catch block (or from any function
called from within that block). When you rethrow an exception, it will not be recaught
by the same catch statement. It will propagate outward to the next catch statement. The
following program illustrates rethrowing an exception, in this case a char * exception.

// Example of "rethrowing" an exception.
#include <iostream>

using namespace std;

void Xhandler()

{

try {
throw "hello"; // throw a char *

}
catch(const char *) { // catch a char *

cout << "Caught char * inside Xhandler\n";

throw ; // rethrow char * out of function
}

}

504 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 537 of 1041

C++ Streams
Like the C-based I/O system, the C++ I/O system operates through streams. Streams
were discussed in detail in Chapter 9; that discussion will not be repeated here.
However, to summarize: A stream is a logical device that either produces or consumes
information. A stream is linked to a physical device by the I/O system. All streams
behave in the same way even though the actual physical devices they are connected to
may differ substantially. Because all streams behave the same, the same I/O functions
can operate on virtually any type of physical device. For example, you can use the
same function that writes to a file to write to the printer or to the screen. The advantage
to this approach is that you need learn only one I/O system.

The C++ Stream Classes
As mentioned, Standard C++ provides support for its I/O system in <iostream>. In
this header, a rather complicated set of class hierarchies is defined that supports I/O
operations. The I/O classes begin with a system of template classes. As explained in
Chapter 18, a template class defines the form of a class without fully specifying the
data upon which it will operate. Once a template class has been defined, specific
instances of it can be created. As it relates to the I/O library, Standard C++ creates two
specializations of the I/O template classes: one for 8-bit characters and another for
wide characters. This book will use only the 8-bit character classes since they are by far
the most common. But the same techniques apply to both.

The C++ I/O system is built upon two related but different template class
hierarchies. The first is derived from the low-level I/O class called basic_streambuf.
This class supplies the basic, low-level input and output operations, and provides the
underlying support for the entire C++ I/O system. Unless you are doing advanced I/O
programming, you will not need to use basic_streambuf directly. The class hierarchy
that you will most commonly be working with is derived from basic_ios. This is a
high-level I/O class that provides formatting, error checking, and status information
related to stream I/O. (A base class for basic_ios is called ios_base, which defines
several nontemplate traits used by basic_ios.) basic_ios is used as a base for several
derived classes, including basic_istream, basic_ostream, and basic_iostream. These
classes are used to create streams capable of input, output, and input/output,
respectively.

As explained, the I/O library creates two specializations of the template class
hierarchies just described: one for 8-bit characters and one for wide characters. Here is
a list of the mapping of template class names to their character and wide-character
versions.

C h a p t e r 2 0 : T h e C + + I / O S y s t e m B a s i c s 513

Preview from Notesale.co.uk

Page 546 of 1041

Standard C++ also defines these four additional streams: win, wout, werr, and
wlog. These are wide-character versions of the standard streams. Wide characters are
of type wchar_t and are generally 16-bit quantities. Wide characters are used to hold
the large character sets associated with some human languages.

Formatted I/O
The C++ I/O system allows you to format I/O operations. For example, you can set a
field width, specify a number base, or determine how many digits after the decimal
point will be displayed. There are two related but conceptually different ways that
you can format data. First, you can directly access members of the ios class.
Specifically, you can set various format status flags defined inside the ios class or
call various ios member functions. Second, you can use special functions called
manipulators that can be included as part of an I/O expression.

We will begin the discussion of formatted I/O by using the ios member functions
and flags.

Formatting Using the ios Members
Each stream has associated with it a set of format flags that control the way
information is formatted. The ios class declares a bitmask enumeration called fmtflags
in which the following values are defined. (Technically, these values are defined within
ios_base, which, as explained earlier, is a base class for ios.)

adjustfield basefield boolalpha dec

fixed floatfield hex internal

left oct right scientific

showbase showpoint showpos skipws

unitbuf uppercase

These values are used to set or clear the format flags. If you are using an older
compiler, it may not define the fmtflags enumeration type. In this case, the format flags
will be encoded into a long integer.

When the skipws flag is set, leading white-space characters (spaces, tabs, and
newlines) are discarded when performing input on a stream. When skipws is cleared,
white-space characters are not discarded.

When the left flag is set, output is left justified. When right is set, output is right
justified. When the internal flag is set, a numeric value is padded to fill a field by
inserting spaces between any sign or base character. If none of these flags are set,
output is right justified by default.

C h a p t e r 2 0 : T h e C + + I / O S y s t e m B a s i c s 515

Preview from Notesale.co.uk

Page 548 of 1041

By default, numeric values are output in decimal. However, it is possible to change
the number base. Setting the oct flag causes output to be displayed in octal. Setting the
hex flag causes output to be displayed in hexadecimal. To return output to decimal, set
the dec flag.

Setting showbase causes the base of numeric values to be shown. For example, if
the conversion base is hexadecimal, the value 1F will be displayed as 0x1F.

By default, when scientific notation is displayed, the e is in lowercase. Also, when a
hexadecimal value is displayed, the x is in lowercase. When uppercase is set, these
characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.
Setting showpoint causes a decimal point and trailing zeros to be displayed for all

floating-point output—whether needed or not.
By setting the scientific flag, floating-point numeric values are displayed using

scientific notation. When fixed is set, floating-point values are displayed using normal
notation. When neither flag is set, the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion operation.
When boolalpha is set, Booleans can be input or output using the keywords true

and false.
Since it is common to refer to the oct, dec, and hex fields, they can be collectively

referred to as basefield. Similarly, the left, right, and internal fields can be referred to
as adjustfield. Finally, the scientific and fixed fields can be referenced as floatfield.

Setting the Format Flags
To set a flag, use the setf() function. This function is a member of ios. Its most common
form is shown here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and turns on those flags
specified by flags. For example, to turn on the showpos flag, you can use this statement:

stream.setf(ios::showpos);

Here, stream is the stream you wish to affect. Notice the use of ios:: to qualify showpos.
Since showpos is an enumerated constant defined by the ios class, it must be qualified
by ios when it is used.

The following program displays the value 100 with the showpos and showpoint
flags turned on.

516 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 549 of 1041

There are overloaded forms of width(), precision(), and fill() that obtain but do
not change the current setting. These forms are shown here:

char fill();
streamsize width();
streamsize precision();

Using Manipulators to Format I/O
The second way you can alter the format parameters of a stream is through the use of
special functions called manipulators that can be included in an I/O expression. The
standard manipulators are shown in Table 20-1. As you can see by examining the table,
many of the I/O manipulators parallel member functions of the ios class. Many of the
manipulators were added recently to C++ and will not be supported by older
compilers.

524 C + + : T h e C o m p l e t e R e f e r e n c e

Manipulator Purpose Input/Output

boolalpha Turns on boolapha flag. Input/Output

dec Turns on dec flag. Input/Output

endl Output a newline character
and flush the stream.

Output

ends Output a null. Output

fixed Turns on fixed flag. Output

flush Flush a stream. Output

hex Turns on hex flag. Input/Output

internal Turns on internal flag. Output

left Turns on left flag. Output

nobooalpha Turns off boolalpha flag. Input/Output

noshowbase Turns off showbase flag. Output

noshowpoint Turns off showpoint flag. Output

noshowpos Turns off showpos flag. Output

Table 20-1. The C++ Manipulators

Preview from Notesale.co.uk

Page 557 of 1041

int main()

{
phonebook a("Ted", 111, 555, 1234);

phonebook b("Alice", 312, 555, 5768);
phonebook c("Tom", 212, 555, 9991);

cout << a << b << c;

return 0;

}

When you define the body of an inserter function, remember to keep it as general as
possible. For example, the inserter shown in the preceding example can be used with
any stream because the body of the function directs its output to stream, which is the
stream that invoked the inserter. While it would not be wrong to have written

stream << o.name << " ";

as

cout << o.name << " ";

this would have the effect of hard-coding cout as the output stream. The original
version will work with any stream, including those linked to disk files. Although in
some situations, especially where special output devices are involved, you will want to
hard-code the output stream, in most cases you will not. In general, the more flexible
your inserters are, the more valuable they are.

The inserter for the phonebook class works fine unless the value of num is
something like 0034, in which case the preceding zeroes will not be displayed. To fix
this, you can either make num into a string or you can set the fill character to zero
and use the width() format function to generate the leading zeroes. The solution is
left to the reader as an exercise.

Before moving on to extractors, let's look at one more example of an inserter
function. An inserter need not be limited to handling only text. An inserter can be used
to output data in any form that makes sense. For example, an inserter for some class
that is part of a CAD system may output plotter instructions. Another inserter might
generate graphics images. An inserter for a Windows-based program could display a
dialog box. To sample the flavor of outputting things other than text, examine the
following program, which draws boxes on the screen. (Because C++ does not define a

532 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 565 of 1041

graphics library, the program uses characters to draw a box, but feel free to substitute
graphics if your system supports them.)

#include <iostream>

using namespace std;

class box {

int x, y;
public:

box(int i, int j) { x=i; y=j; }

friend ostream &operator<<(ostream &stream, box o);

};

// Output a box.

ostream &operator<<(ostream &stream, box o)
{

register int i, j;

for(i=0; i<o.x; i++)
stream << "*";

stream << "\n";

for(j=1; j<o.y-1; j++) {
for(i=0; i<o.x; i++)

if(i==0 || i==o.x-1) stream << "*";

else stream << " ";
stream << "\n";

}

for(i=0; i<o.x; i++)
stream << "*";

stream << "\n";

return stream;
}

int main()
{

box a(14, 6), b(30, 7), c(40, 5);

C h a p t e r 2 0 : T h e C + + I / O S y s t e m B a s i c s 533

Preview from Notesale.co.uk

Page 566 of 1041

using namespace std;

// A simple input manipulator.
istream &getpass(istream &stream)

{
cout << '\a'; // sound bell
cout << "Enter password: ";

return stream;

}

int main()

{
char pw[80];

do {
cin >> getpass >> pw;

} while (strcmp(pw, "password"));

cout << "Logon complete\n";

return 0;
}

Remember that it is crucial that your manipulator return stream. If it does not, your
manipulator cannot be used in a series of input or output operations.

540 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 573 of 1041

If open() fails, the stream will evaluate to false when used in a Boolean expression.
Therefore, before using a file, you should test to make sure that the open operation
succeeded. You can do so by using a statement like this:

if(!mystream) {

cout << "Cannot open file.\n";

// handle error

}

Although it is entirely proper to open a file by using the open() function, most of
the time you will not do so because the ifstream, ofstream, and fstream classes have
constructor functions that automatically open the file. The constructor functions have
the same parameters and defaults as the open() function. Therefore, you will most
commonly see a file opened as shown here:

ifstream mystream("myfile"); // open file for input

As stated, if for some reason the file cannot be opened, the value of the associated
stream variable will evaluate to false. Therefore, whether you use a constructor
function to open the file or an explicit call to open(), you will want to confirm that the
file has actually been opened by testing the value of the stream.

You can also check to see if you have successfully opened a file by using the
is_open() function, which is a member of fstream, ifstream, and ofstream. It has this
prototype:

bool is_open();

It returns true if the stream is linked to an open file and false otherwise. For example,
the following checks if mystream is currently open:

if(!mystream.is_open()) {

cout << "File is not open.\n";

// ...

To close a file, use the member function close(). For example, to close the file linked
to a stream called mystream, use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

544 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 577 of 1041

}

char item[20];
float cost;

in >> item >> cost;
cout << item << " " << cost << "\n";
in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;
cout << item << " " << cost << "\n";

in.close();
return 0;

}

In a way, reading and writing files by using >> and << is like using the C-based
functions fprintf() and fscanf() functions. All information is stored in the file in the
same format as it would be displayed on the screen.

Following is another example of disk I/O. This program reads strings entered at
the keyboard and writes them to disk. The program stops when the user enters an
exclamation point. To use the program, specify the name of the output file on the
command line.

#include <iostream>
#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

if(argc!=2) {
cout << "Usage: output <filename>\n";

return 1;
}

ofstream out(argv[1]); // output, normal file

if(!out) {
cout << "Cannot open output file.\n";

return 1;

}

546 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 579 of 1041

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {
cout << "Cannot open input file.\n";

return 1;
}

register int i, j;

int count = 0;

char c[16];

cout.setf(ios::uppercase);

while(!in.eof()) {
for(i=0; i<16 && !in.eof(); i++) {

in.get(c[i]);
}
if(i<16) i--; // get rid of eof

for(j=0; j<i; j++)

cout << setw(3) << hex << (int) c[j];
for(; j<16; j++) cout << " ";

cout << "\t";

for(j=0; j<i; j++)
if(isprint(c[j])) cout << c[j];

else cout << ".";

cout << endl;

count++;

if(count==16) {
count = 0;
cout << "Press ENTER to continue: ";

cin.get();
cout << endl;

}

}

in.close();

return 0;
}

556 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 589 of 1041

fstream inout(argv[1], ios::in | ios::out | ios::binary);

if(!inout) {
cout << "Cannot open input file.\n";

return 1;
}

long e, i, j;

char c1, c2;

e = atol(argv[2]);

for(i=0, j=e; i<j; i++, j--) {

inout.seekg(i, ios::beg);
inout.get(c1);

inout.seekg(j, ios::beg);
inout.get(c2);

inout.seekp(i, ios::beg);

inout.put(c2);

inout.seekp(j, ios::beg);
inout.put(c1);

}

inout.close();
return 0;

}

To use the program, specify the name of the file that you want to reverse, followed
by the number of characters to reverse. For example, to reverse the first 10 characters of
a file called TEST, use this command line:

reverse test 10

If the file had contained this:

This is a test.

it will contain the following after the program executes:

a si sihTtest.

562 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 595 of 1041

else if(i & ios::failbit)

cout << "Non-Fatal I/O error\n";
else if(i & ios::badbit)

cout << "Fatal I/O error\n";
}

This program will always report one "error." After the while loop ends, the final
call to checkstatus() reports, as expected, that an EOF has been encountered. You
might find the checkstatus() function useful in programs that you write.

The other way that you can determine if an error has occurred is by using one or
more of these functions:

bool bad();
bool eof();
bool fail();
bool good();

The bad() function returns true if badbit is set. The eof() function was discussed
earlier. The fail() returns true if failbit is set. The good() function returns true if there
are no errors. Otherwise, it returns false.

Once an error has occurred, it may need to be cleared before your program
continues. To do this, use the clear() function, which has this prototype:

void clear(iostate flags=ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared. Otherwise, set flags as
you desire.

Customized I/O and Files
In Chapter 20 you learned how to overload the insertion and extraction operators
relative to your own classes. In that chapter, only console I/O was performed, but
because all C++ streams are the same, you can use the same overloaded inserter or
extractor function to perform I/O on the console or a file with no changes whatsoever.
As an example, the following program reworks the phone book example in Chapter 20
so that it stores a list on disk. The program is very simple: It allows you to add names
to the list or to display the list on the screen. It uses custom inserters and extractors to
input and output the telephone numbers. You might find it interesting to enhance the
program so that it will find a specific number or delete unwanted numbers.

C h a p t e r 2 1 : C + + F i l e I / O 565

Preview from Notesale.co.uk

Page 598 of 1041

break;

case '3':
pb.close();

return 0;
}

}

}

Notice that the overloaded << operator can be used to write to a disk file or to the
screen without any changes. This is one of the most important and useful features of
C++'s approach to I/O.

568 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 601 of 1041

nothing to do with inheritance or class hierarchies.) The name() function returns a
pointer to the name of the type.

Here is a simple example that uses typeid.

// A simple example that uses typeid.

#include <iostream>
#include <typeinfo>

using namespace std;

class myclass1 {
// ...

};

class myclass2 {
// ...

};

int main()

{
int i, j;
float f;

char *p;

myclass1 ob1;
myclass2 ob2;

cout << "The type of i is: " << typeid(i).name();

cout << endl;
cout << "The type of f is: " << typeid(f).name();

cout << endl;

cout << "The type of p is: " << typeid(p).name();
cout << endl;

cout << "The type of ob1 is: " << typeid(ob1).name();
cout << endl;
cout << "The type of ob2 is: " << typeid(ob2).name();

cout << "\n\n";

if(typeid(i) == typeid(j))

cout << "The types of i and j are the same\n";

if(typeid(i) != typeid(f))
cout << "The types of i and f are not the same\n";

C h a p t e r 2 2 : R u n - T i m e T y p e I D a n d t h e C a s t i n g O p e r a t o r s 571

Preview from Notesale.co.uk

Page 604 of 1041

dp = dynamic_cast<Derived *> (bp); // cast to derived pointer OK

if(dp) cout << "Cast OK";

Here, the cast from the base pointer bp to the derived pointer dp works because bp is
actually pointing to a Derived object. Thus, this fragment displays Cast OK. But in the
next fragment, the cast fails because bp is pointing to a Base object and it is illegal to
cast a base object into a derived object.

bp = &b_ob; // base pointer points to Base object

dp = dynamic_cast<Derived *> (bp); // error

if(!dp) cout << "Cast Fails";

Because the cast fails, this fragment displays Cast Fails.
The following program demonstrates the various situations that dynamic_cast can

handle.

// Demonstrate dynamic_cast.

#include <iostream>
using namespace std;

class Base {
public:

virtual void f() { cout << "Inside Base\n"; }

// ...

};

class Derived : public Base {

public:
void f() { cout << "Inside Derived\n"; }

};

int main()
{

Base *bp, b_ob;

Derived *dp, d_ob;

dp = dynamic_cast<Derived *> (&d_ob);
if(dp) {

cout << "Cast from Derived * to Derived * OK.\n";
dp->f();

} else

C h a p t e r 2 2 : R u n - T i m e T y p e I D a n d t h e C a s t i n g O p e r a t o r s 581

Preview from Notesale.co.uk

Page 614 of 1041

a pointer to a derived object.

Can't cast from Num<double>* to Num<int>*.

These are two different types.

A key point illustrated by this example is that it is not possible to use dynamic_cast
to cast a pointer to one type of template instantiation into a pointer to another type of
instance. Remember, the precise type of an object of a template class is determined by
the type of data used to create an instance of the template. Thus, Num<double> and
Num<int> are two different types.

const_cast
The const_cast operator is used to explicitly override const and/or volatile in a cast.
The target type must be the same as the source type except for the alteration of its const
or volatile attributes. The most common use of const_cast is to remove const-ness. The
general form of const_cast is shown here.

const_cast<type> (expr)

Here, type specifies the target type of the cast, and expr is the expression being cast into
the new type.

The following program demonstrates const_cast.

// Demonstrate const_cast.

#include <iostream>
using namespace std;

void sqrval(const int *val)

{

int *p;

// cast away const-ness.
p = const_cast<int *> (val);

*p = *val * *val; // now, modify object through v
}

int main()

{

588 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 621 of 1041

Anything defined within a namespace statement is within the scope of that namespace.
Here is an example of a namespace. It localizes the names used to implement a

simple countdown counter class. In the namespace are defined the counter class, which
implements the counter, and the variables upperbound and lowerbound, which
contain the upper and lower bounds that apply to all counters.

namespace CounterNameSpace {
int upperbound;

int lowerbound;

class counter {
int count;

public:
counter(int n) {

if(n <= upperbound) count = n;
else count = upperbound;

}

void reset(int n) {

if(n <= upperbound) count = n;
}

int run() {

if(count > lowerbound) return count--;
else return lowerbound;

}

};
}

Here, upperbound, lowerbound, and the class counter are part of the scope defined by
the CounterNameSpace namespace.

Inside a namespace, identifiers declared within that namespace can be referred to
directly, without any namespace qualification. For example, within
CounterNameSpace, the run() function can refer directly to lowerbound in the
statement

if(count > lowerbound) return count--;

However, since namespace defines a scope, you need to use the scope resolution
operator to refer to objects declared within a namespace from outside that namespace.

C h a p t e r 2 3 : N a m e s p a c e s , C o n v e r s i o n F u n c t i o n s , a n d O t h e r A d v a n c e d T o p i c s 595

Preview from Notesale.co.uk

Page 628 of 1041

For example, to assign the value 10 to upperbound from code outside
CounterNameSpace, you must use this statement:

CounterNameSpace::upperbound = 10;

Or to declare an object of type counter from outside CounterNameSpace, you will use
a statement like this:

CounterNameSpace::counter ob;

In general, to access a member of a namespace from outside its namespace, precede the
member's name with the name of the namespace followed by the scope resolution
operator.

Here is a program that demonstrates the use of CounterNameSpace.

// Demonstrate a namespace.

#include <iostream>
using namespace std;

namespace CounterNameSpace {
int upperbound;
int lowerbound;

class counter {

int count;
public:

counter(int n) {
if(n <= upperbound) count = n;

else count = upperbound;
}

void reset(int n) {

if(n <= upperbound) count = n;

}

int run() {
if(count > lowerbound) return count--;

else return lowerbound;

}

596 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 629 of 1041

cout << NS::i * NS::j << "\n";

// use NS namespace
using namespace NS;

cout << i * j;

return 0;

}

This program produces the following output:

100

100

Here, NS is split into two pieces. However, the contents of each piece are still within
the same namespace, that is, NS.

A namespace must be declared outside of all other scopes. This means that you
cannot declare namespaces that are localized to a function, for example. There is,
however, one exception: a namespace can be nested within another. Consider
this program:

#include <iostream>

using namespace std;

namespace NS1 {

int i;
namespace NS2 { // a nested namespace

int j;

}

}

int main()
{

NS1::i = 19;
// NS2::j = 10; Error, NS2 is not in view

NS1::NS2::j = 10; // this is right

cout << NS1::i << " "<< NS1::NS2::j << "\n";

// use NS1

602 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 635 of 1041

cout << "Enter a number: ";

cin >> val;
cout << "This is your number: ";

cout << hex << val;
return 0;

}

Here, cin, cout, and hex may be used directly, but the rest of the std namespace has not
been brought into view.

As explained, the original C++ library was defined in the global namespace. If you
will be converting older C++ programs, then you will need to either include a using
namespace std statement or qualify each reference to a library member with std::. This
is especially important if you are replacing old .H header files with the new-style
headers. Remember, the old .H headers put their contents into the global namespace;
the new-style headers put their contents into the std namespace.

Creating Conversion Functions
In some situations, you will want to use an object of a class in an expression involving
other types of data. Sometimes, overloaded operator functions can provide the means
of doing this. However, in other cases, what you want is a simple type conversion from
the class type to the target type. To handle these cases, C++ allows you to create
custom conversion functions. A conversion function converts your class into a type
compatible with that of the rest of the expression. The general format of a type
conversion function is

operator type() { return value; }

Here, type is the target type that you are converting your class to, and value is the value
of the class after conversion. Conversion functions return data of type type, and no
other return type specifier is allowed. Also, no parameters may be included. A
conversion function must be a member of the class for which it is defined. Conversion
functions are inherited and they may be virtual.

The following illustration of a conversion function uses the stack class first
developed in Chapter 11. Suppose that you want to be able to use objects of type stack
within an integer expression. Further, suppose that the value of a stack object used in
an integer expression is the number of values currently on the stack. (You might want

C h a p t e r 2 3 : N a m e s p a c e s , C o n v e r s i o n F u n c t i o n s , a n d O t h e r A d v a n c e d T o p i c s 605

Preview from Notesale.co.uk

Page 638 of 1041

tos--;

return stck[tos];
}

int main()
{

stack stck;

int i, j;

for(i=0; i<20; i++) stck.push(i);

j = stck; // convert to integer

cout << j << " items on stack.\n";

cout << SIZE - stck << " spaces open.\n";

return 0;
}

This program displays this output:

20 items on stack.
80 spaces open.

As the program illustrates, when a stack object is used in an integer expression,
such as j = stck, the conversion function is applied to the object. In this specific case,
the conversion function returns the value 20. Also, when stck is subtracted from SIZE,
the conversion function is also called.

Here is another example of a conversion function. This program creates a class
called pwr() that stores and computes the outcome of some number raised to some
power. It stores the result as a double. By supplying a conversion function to type
double and returning the result, you can use objects of type pwr in expressions
involving other double values.

#include <iostream>

using namespace std;

class pwr {

double b;
int e;

double val;

C h a p t e r 2 3 : N a m e s p a c e s , C o n v e r s i o n F u n c t i o n s , a n d O t h e r A d v a n c e d T o p i c s 607

Preview from Notesale.co.uk

Page 640 of 1041

This program won't compile.

*/
#include <iostream>

using namespace std;

class Demo {
int i;

public:

int geti() const {
return i; // ok

}

void seti(int x) const {

i = x; // error!
}

};

int main()

{
Demo ob;

ob.seti(1900);

cout << ob.geti();

return 0;

}

This program will not compile because seti() is declared as const. This means that it is
not allowed to modify the invoking object. Since it attempts to change i, the program is
in error. In contrast, since geti() does not attempt to modify i, it is perfectly acceptable.

Sometimes there will be one or more members of a class that you want a const
function to be able to modify even though you don't want the function to be able to
modify any of its other members. You can accomplish this through the use of mutable.
It overrides constness. That is, a mutable member can be modified by a const member
function. For example:

// Demonstrate mutable.

#include <iostream>

using namespace std;

class Demo {

610 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 643 of 1041

Explicit Constructors
As explained in Chapter 12, any time you have a constructor that requires only one
argument, you can use either ob(x) or ob = x to initialize an object. The reason for this is
that whenever you create a constructor that takes one argument, you are also implicitly
creating a conversion from the type of that argument to the type of the class. But there
may be times when you do not want this automatic conversion to take place. For this
purpose, C++ defines the keyword explicit. To understand its effects, consider the
following program.

#include <iostream>

using namespace std;

class myclass {

int a;
public:

myclass(int x) { a = x; }
int geta() { return a; }

};

int main()

{
myclass ob = 4; // automatically converted into myclass(4)

cout << ob.geta();

return 0;

}

Here, the constructor for myclass takes one parameter. Pay special attention to how
ob is declared in main(). The statement

myclass ob = 4; // automatically converted into myclass(4)

is automatically converted into a call to the myclass constructor with 4 being the
argument. That is, the preceding statement is handled by the compiler as if it were
written like this:

myclass ob(4);

612 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 645 of 1041

If you do not want this implicit conversion to be made, you can prevent it by using
explicit. The explicit specifier applies only to constructors. A constructor specified as
explicit will only be used when an initialization uses the normal constructor syntax. It
will not perform any automatic conversion. For example, by declaring the myclass
constructor as explicit, the automatic conversion will not be supplied. Here is
myclass() declared as explicit.

#include <iostream>
using namespace std;

class myclass {

int a;
public:

explicit myclass(int x) { a = x; }
int geta() { return a; }

};

Now, only constructors of the form

myclass ob(4);

will be allowed and a statement like

myclass ob = 4; // now in error

will be invalid.

Using the asm Keyword
While C++ is a comprehensive and powerful programming language, there are a few
highly specialized situations that it cannot handle. (For example, there is no C++
statement that disables interrupts.) To accommodate special situations, C++ provides a
"trap door" that allows you to drop into assembly code at any time, bypassing the C++
compiler entirely. This "trap door" is the asm statement. Using asm, you can embed
assembly language directly into your C++ program. This assembly code is compiled
without any modification, and it becomes part of your program's code at the point at
which the asm statement occurs.

The general form of the asm keyword is shown here:

asm ("op-code");

C h a p t e r 2 3 : N a m e s p a c e s , C o n v e r s i o n F u n c t i o n s , a n d O t h e r A d v a n c e d T o p i c s 613

Preview from Notesale.co.uk

Page 646 of 1041

where op-code is the assembly language instruction that will be embedded in your
program. However, several compilers also allow the following forms of asm:

asm instruction ;
asm instruction newline
asm {

instruction sequence
}

Here, instruction is any valid assembly language instruction. Because of the
implementation-specific nature of asm, you must check the documentation that
came with your compiler for details.

At the time of this writing, Microsoft's Visual C++ uses _ _asm for embedding
assembly code. It is otherwise similar to asm.

Here is a simple (and fairly "safe") example that uses the asm keyword:

#include <iostream>
using namespace std;

int main()

{
asm int 5; // generate intertupt 5

return 0;

}

When run under DOS, this program generates an INT 5 instruction, which invokes the
print-screen function.

A thorough working knowledge of assembly language programming is required for
using the asm statement. If you are not proficient with assembly language, it is best
to avoid using asm because very nasty errors may result.

Linkage Specification
In C++ you can specify how a function is linked into your program. By default,
functions are linked as C++ functions. However, by using a linkage specification, you can
cause a function to be linked for a different type of language. The general form of a
linkage specifier is

extern "language" function-prototype

614 C + + : T h e C o m p l e t e R e f e r e n c e

Caution

Preview from Notesale.co.uk

Page 647 of 1041

// reading 0x75 42.73 OK

ins >> hex >> i;
ins >> f;

ins >> str;

cout << hex << i << " " << f << " " << str;

return 0;

}

If you want only part of a string to be used for input, use this form of the istrstream
constructor:

istrstream istr(const char *buf, streamsize size);

Here, only the first size elements of the array pointed to by buf will be used. This string
need not be null terminated, since it is the value of size that determines the size of
the string.

Streams linked to memory behave just like those linked to other devices. For
example, the following program demonstrates how the contents of any text array can
be read. When the end of the array (same as end-of-file) is reached, ins will be false.

/* This program shows how to read the contents of any

array that contains text. */
#include <iostream>
#include <strstream>

using namespace std;

int main()

{

char s[] = "10.23 this is a test <<>><<?!\n";

istrstream ins(s);

char ch;

/* This will read and display the contents
of any text array. */

ins.unsetf(ios::skipws); // don't skip spaces

while (ins) { // false when end of array is reached

C h a p t e r 2 3 : N a m e s p a c e s , C o n v e r s i o n F u n c t i o n s , a n d O t h e r A d v a n c e d T o p i c s 619

Preview from Notesale.co.uk

Page 652 of 1041

In C, it is not an error to declare a global variable several times, even though this is
bad programming practice. In C++, it is an error.

In C, an identifier will have at least 31 significant characters. In C++, all characters
are significant. However, from a practical point of view, extremely long identifiers are
unwieldy and seldom needed.

In C, although it is unusual, you can call main() from within your program. This is
not allowed by C++.

In C, you cannot take the address of a register variable. In C++, this is allowed.
In C, if no type specifier is present in some types of declaration statements, the type

int is assumed. This "default-to-int" rule no longer applies to C++. (Future versions of
C are also expected to drop the "default-to-int" rule.)

624 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 657 of 1041

This chapter explores what is considered by many to be the most important new
feature added to C++ in recent years: the standard template library (STL). The
inclusion of the STL was one of the major efforts that took place during the

standardization of C++. It provides general-purpose, templatized classes and functions
that implement many popular and commonly used algorithms and data structures,
including, for example, support for vectors, lists, queues, and stacks. It also defines
various routines that access them. Because the STL is constructed from template
classes, the algorithms and data structures can be applied to nearly any type of data.

The STL is a complex piece of software engineering that uses some of C++'s most
sophisticated features. To understand and use the STL, you must have a complete
understanding of the C++ language, including pointers, references, and templates.
Frankly, the template syntax that describes the STL can seem quite intimidating—
although it looks more complicated than it actually is. While there is nothing in this
chapter that is any more difficult than the material in the rest of this book, don't be
surprised or dismayed if you find the STL confusing at first. Just be patient, study the
examples, and don't let the unfamiliar syntax override the STL's basic simplicity.

The purpose of this chapter is to present an overview of the STL, including its
design philosophy, organization, constituents, and the programming techniques
needed to use it. Because the STL is a large library, it is not possible to discuss all of its
features here. However, a complete reference to the STL is provided in Part Four.

This chapter also describes one of C++'s most important new classes: string. The
string class defines a string data type that allows you to work with character strings
much as you do other data types: using operators. The string class is closely related
to the STL.

An Overview of the STL
Although the standard template library is large and its syntax can be intimidating, it is
actually quite easy to use once you understand how it is constructed and what
elements it employs. Therefore, before looking at any code examples, an overview of
the STL is warranted.

At the core of the standard template library are three foundational items: containers,
algorithms, and iterators. These items work in conjunction with one another to provide
off-the-shelf solutions to a variety of programming problems.

Containers
Containers are objects that hold other objects, and there are several different types. For
example, the vector class defines a dynamic array, deque creates a double-ended
queue, and list provides a linear list. These containers are called sequence containers
because in STL terminology, a sequence is a linear list. In addition to the basic

626 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 659 of 1041

Term Represents

BiIter Bidirectional iterator

ForIter Forward iterator

InIter Input iterator

OutIter Output iterator

RandIter Random access iterator

Other STL Elements
In addition to containers, algorithms, and iterators, the STL relies upon several other
standard components for support. Chief among these are allocators, predicates,
comparison functions, and function objects.

Each container has defined for it an allocator. Allocators manage memory allocation
for a container. The default allocator is an object of class allocator, but you can define
your own allocators if needed by specialized applications. For most uses, the default
allocator is sufficient.

Several of the algorithms and containers use a special type of function called a
predicate. There are two variations of predicates: unary and binary. A unary predicate
takes one argument, while a binary predicate has two. These functions return true/false
results. But the precise conditions that make them return true or false are defined by
you. For the rest of this chapter, when a unary predicate function is required, it will be
notated using the type UnPred. When a binary predicate is required, the type BinPred
will be used. In a binary predicate, the arguments are always in the order of first,second.
For both unary and binary predicates, the arguments will contain values of the type of
objects being stored by the container.

Some algorithms and classes use a special type of binary predicate that compares
two elements. Comparison functions return true if their first argument is less than their
second. Comparison functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard
library includes the <utility> and <functional> headers, which provide support for the
STL. For example, the template class pair, which can hold a pair of values, is defined in
<utility>. We will make use of pair later in this chapter.

The templates in <functional> help you construct objects that define operator().
These are called function objects and they may be used in place of function pointers in
many places. There are several predefined function objects declared within
<functional>. They are shown here:

plus minus multiplies divides modulus

negate equal_to not_equal_to greater greater_equal

less less_equal logical_and logical_or logical_not

628 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 661 of 1041

return 0;

}

The output of this program is shown here:

Size = 10
Current Contents:
a b c d e f g h i j

Expanding vector
Size now = 20
Current contents:

a b c d e f g h i j k l m n o p q r s t

Modified Contents:
A B C D E F G H I J K L M N O P Q R S T

Let's look at this program carefully. In main(), a character vector called v is created
with an initial capacity of 10. That is, v initially contains 10 elements. This is confirmed
by calling the size() member function. Next, these 10 elements are initialized to the
characters a through j and the contents of v are displayed. Notice that the standard
array subscripting notation is employed. Next, 10 more elements are added to the end
of v using the push_back() function. This causes v to grow in order to accommodate
the new elements. As the output shows, its size after these additions is 20. Finally, the
values of v's elements are altered using standard subscripting notation.

There is one other point of interest in this program. Notice that the loops that
display the contents of v use as their target value v.size(). One of the advantages that
vectors have over arrays is that it is possible to find the current size of a vector. As you
can imagine, this can be quite useful in a variety of situations.

Accessing a Vector Through an Iterator
As you know, arrays and pointers are tightly linked in C++. An array can be accessed
either through subscripting or through a pointer. The parallel to this in the STL is the
link between vectors and iterators. You can access the members of a vector using
subscripting or through the use of an iterator. The following example shows how.

// Access the elements of a vector through an iterator.

#include <iostream>

#include <vector>

#include <cctype>

C h a p t e r 2 4 : I n t r o d u c i n g t h e S t a n d a r d T e m p l a t e L i b r a r y 635

Preview from Notesale.co.uk

Page 668 of 1041

stored are determined automatically by the compiler rather than being explicitly
specified by you.

The following program illustrates the basics of using a map. It stores key/value
pairs that show the mapping between the uppercase letters and their ASCII character
codes. Thus, the key is a character and the value is an integer. The key/value pairs
stored are

A 65
B 66
C 67

and so on. Once the pairs have been stored, you are prompted for a key (i.e., a letter
between A and Z), and the ASCII code for that letter is displayed.

// A simple map demonstration.

#include <iostream>
#include <map>
using namespace std;

int main()

{
map<char, int> m;
int i;

// put pairs into map
for(i=0; i<26; i++) {

m.insert(pair<char, int>('A'+i, 65+i));

}

char ch;

cout << "Enter key: ";
cin >> ch;

map<char, int>::iterator p;

// find value given key
p = m.find(ch);

if(p != m.end())

cout << "Its ASCII value is " << p->second;
else

cout << "Key not in map.\n";

C h a p t e r 2 4 : I n t r o d u c i n g t h e S t a n d a r d T e m p l a t e L i b r a r y 657

Preview from Notesale.co.uk

Page 690 of 1041

Input sequence:

The STL is power programming.
Result after removing spaces:

TheSTLispowerprogramming.

Input sequence:
The STL is power programming.

Result after replacing spaces with colons:

The:STL:is:power:programming.

Reversing a Sequence
An often useful algorithm is reverse(), which reverses a sequence. Its general form is

template <class BiIter> void reverse(BiIter start, BiIter end);

The reverse() algorithm reverses the order of the range specified by start and end.
The following program demonstrates reverse().

// Demonstrate reverse.

#include <iostream>
#include <vector>

#include <algorithm>
using namespace std;

int main()
{

vector<int> v;

int i;

for(i=0; i<10; i++) v.push_back(i);

cout << "Initial: ";
for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

reverse(v.begin(), v.end());

cout << "Reversed: ";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

return 0;

}

668 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 701 of 1041

Here, binfunc_obj is a binary function object. bind1st() returns a unary function object
that has binfunc_obj's left-hand operand bound to value. bind2nd() returns a unary
function object that has binfunc_obj's right-hand operand bound to value. The bind2nd()
binder is by far the most commonly used. In either case, the outcome of a binder is a
unary function object that is bound to the value specified.

To demonstrate the use of a binder, we will use the remove_if() algorithm. It
removes elements from a sequence based upon the outcome of a predicate. It has
this prototype:

template <class ForIter, class UnPred>
ForIter remove_if(ForIter start, ForIter end, UnPred func);

The algorithm removes elements from the sequence defined by start and end if the
unary predicate defined by func is true. The algorithm returns a pointer to the new end
of the sequence which reflects the deletion of the elements.

The following program removes all values from a sequence that are greater than
the value 8. Since the predicate required by remove_if() is unary, we cannot simply
use the greater() function object as-is because greater() is a binary object. Instead, we
must bind the value 8 to the second argument of greater() using the bind2nd() binder,
as shown in the program.

// Demonstrate bind2nd().
#include <iostream>

#include <list>
#include <functional>

#include <algorithm>

using namespace std;

int main()

{
list<int> lst;
list<int>::iterator p, endp;

int i;

for(i=1; i < 20; i++) lst.push_back(i);

cout << "Original sequence:\n";

p = lst.begin();
while(p != lst.end()) {

cout << *p << " ";
p++;

C h a p t e r 2 4 : I n t r o d u c i n g t h e S t a n d a r d T e m p l a t e L i b r a r y 677

Preview from Notesale.co.uk

Page 710 of 1041

string &assign(const string &strob, size_type start, size_type num);
string &assign(const char *str, size_type num);

In the first form, num characters from strob beginning at the index specified by start will
be assigned to the invoking object. In the second form, the first num characters of the
null-terminated string str are assigned to the invoking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the = to assign one
entire string to another. You will need to use the assign() function only when
assigning a partial string.

You can append part of one string to another using the append() member function.
Two of its forms are shown here:

string &append(const string &strob, size_type start, size_type num);
string &append(const char *str, size_type num);

Here, num characters from strob beginning at the index specified by start will be
appended to the invoking object. In the second form, the first num characters of the
null-terminated string str are appended to the invoking object. In each case, a reference
to the invoking object is returned. Of course, it is much easier to use the + to append
one entire string to another. You will need to use the append() function only when
appending a partial string.

You can insert or replace characters within a string using insert() and replace().
The prototypes for their most common forms are shown here:

string &insert(size_type start, const string &strob);
string &insert(size_type start, const string &strob,

size_type insStart, size_type num);
string &replace(size_type start, size_type num, const string &strob);
string &replace(size_type start, size_type orgNum, const string &strob,

size_type replaceStart, size_type replaceNum);

The first form of insert() inserts strob into the invoking string at the index specified
by start. The second form of insert() function inserts num characters from strob
beginning at insStart into the invoking string at the index specified by start.

Beginning at start, the first form of replace() replaces num characters from the
invoking string, with strob. The second form replaces orgNum characters, beginning
at start, in the invoking string with the replaceNum characters from the string specified
by strob beginning at replaceStart. In both cases, a reference to the invoking object
is returned.

You can remove characters from a string using erase(). One of its forms is
shown here:

684 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 717 of 1041

Match found at 0

Remaining string is:
Quick of Mind, Strong of Body, Pure of Heart

Match found at 15
Remaining string is:
Strong of Body, Pure of Heart

Match found at 31

Remaining string is:
Pure of Heart

Match found at 36
Remaining string is:

of Heart

Comparing Strings
To compare the entire contents of one string object to another, you will normally use
the overloaded relational operators described earlier. However, if you want to compare
a portion of one string to another, you will need to use the compare() member
function, shown here:

int compare(size_type start, size_type num, const string &strob) const;

Here, num characters in strob, beginning at start, will be compared against the invoking
string. If the invoking string is less than strob, compare() will return less than zero. If
the invoking string is greater than strob, it will return greater than zero. If strob is equal
to the invoking string, compare() will return zero.

Obtaining a Null-Terminated String
Although string objects are useful in their own right, there will be times when you will
need to obtain a null-terminated character-array version of the string. For example, you
might use a string object to construct a filename. However, when opening a file, you
will need to specify a pointer to a standard, null-terminated string. To solve this
problem, the member function c_str() is provided. Its prototype is shown here:

const char *c_str() const;

This function returns a pointer to a null-terminated version of the string contained in
the invoking string object. The null-terminated string must not be altered. It is also not
guaranteed to be valid after any other operations have taken place on the string object.

688 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 721 of 1041

Strings Are Containers
The string class meets all of the basic requirements necessary to be a container. Thus, it
supports the common container functions, such as begin(), end(), and size(). It also
supports iterators. Therefore, a string object can also be manipulated by the STL
algorithms. Here is a simple example:

// Strings as containers.

#include <iostream>
#include <string>

#include <algorithm>
using namespace std;

int main()

{

string str1("Strings handling is easy in C++");
string::iterator p;

int i;

// use size()

for(i=0; i<str1.size(); i++)
cout << str1[i];

cout << endl;

// use iterator

p = str1.begin();
while(p != str1.end())

cout << *p++;

cout << endl;

// use the count() algorithm

i = count(str1.begin(), str1.end(), 'i');

cout << "There are " << i << " i's in str1\n";

// use transform() to upper case the string

transform(str1.begin(), str1.end(), str1.begin(),
toupper);

p = str1.begin();

while(p != str1.end())
cout << *p++;

cout << endl;

C h a p t e r 2 4 : I n t r o d u c i n g t h e S t a n d a r d T e m p l a t e L i b r a r y 689

Preview from Notesale.co.uk

Page 722 of 1041

This chapter describes the C-based I/O functions. These functions are defined by
Standard C and Standard C++. While you will usually want to use C++'s
object-oriented I/O system for new code, there is no fundamental reason that you

cannot use the C I/O functions in a C++ program when you deem it appropriate. The
functions in this chapter were first specified by the ANSI C standard, and they are
commonly referred to collectively as the ANSI C I/O system.

The header associated with the C-based I/O functions is called <cstdio>. (A C
program must use the header file stdio.h.) This header defines several macros and
types used by the file system. The most important type is FILE, which is used to
declare a file pointer. Two other types are size_t and fpos_t. The size_t type (usually
some form of unsigned integer) defines an object that is capable of holding the size of
the largest file allowed by the operating environment. The fpos_t type defines an object
that can hold all information needed to uniquely specify every position within a file.
The most commonly used macro defined by the headers is EOF, which is the value that
indicates end-of-file.

Many of the I/O functions set the built-in global integer variable errno when an
error occurs. Your program can check this variable when an error occurs to obtain
more information about the error. The values that errno may take are implementation
dependent.

For an overview of the C-based I/O system, see Chapters 8 and 9 in Part One.

This chapter describes the character-based I/O functions. These are the functions
that were originally defined for Standard C and C++ and are, by far, the most widely
used. In 1995, several wide-character (wchar_t) functions were added, and they are
briefly described in Chapter 31.

clearerr

#include <cstdio>

void clearerr(FILE * stream);

The clearerr() function resets (i.e., sets to zero) the error flag associated with the
stream pointed to by stream. The end-of-file indicator is also reset.

The error flags for each stream are initially set to zero by a successful call to fopen().
Once an error has occurred, the flags stay set until an explicit call to either clearerr() or
rewind() is made.

File errors can occur for a wide variety of reasons, many of which are system
dependent. The exact nature of the error can be determined by calling perror(), which
displays what error has occurred (see perror()).

Related functions are feof(), ferror(), and perror().

696 C + + : T h e C o m p l e t e R e f e r e n c e

Note

Preview from Notesale.co.uk

Page 729 of 1041

fclose

#include <cstdio>

int fclose(FILE * stream);

The fclose() function closes the file associated with stream and flushes its buffer.
After an fclose(), stream is no longer connected with the file, and any automatically
allocated buffers are deallocated.

If fclose() is successful, zero is returned; otherwise EOF is returned. Trying to close
a file that has already been closed is an error. Removing the storage media before
closing a file will also generate an error, as will lack of sufficient free disk space.

Related functions are fopen(), freopen(), and fflush().

feof

#include <cstdio>

int feof(FILE * stream);

The feof() function checks the file position indicator to determine if the end of the
file associated with stream has been reached. A nonzero value is returned if the file
position indicator is at end-of-file; zero is returned otherwise.

Once the end of the file has been reached, subsequent read operations will return
EOF until either rewind() is called or the file position indicator is moved using fseek().

The feof() function is particularly useful when working with binary files because
the end-of-file marker is also a valid binary integer. Explicit calls must be made to
feof() rather than simply testing the return value of getc(), for example, to determine
when the end of a binary file has been reached.

Related functions are clearerr(), ferror(), perror(), putc(), and getc().

ferror

#include <cstdio>

int ferror(FILE * stream);

The ferror() function checks for a file error on the given stream. A return value of
zero indicates that no error has occurred, while a nonzero value means an error.

The error flags associated with stream will stay set until either the file is closed, or
rewind() or clearerr() is called.

C h a p t e r 2 5 : T h e C - B a s e d I / O F u n c t i o n s 697

Preview from Notesale.co.uk

Page 730 of 1041

The freopen() function associates an existing stream with a different file. The new
file's name is pointed to by fname, the access mode is pointed to by mode, and the
stream to be reassigned is pointed to by stream. The string mode uses the same format as
fopen(); a complete discussion is found in the fopen() description.

When called, freopen() first tries to close a file that may currently be associated
with stream. However, if the attempt to close the file fails, the freopen() function still
continues to open the other file.

The freopen() function returns a pointer to stream on success and a null pointer
otherwise.

The main use of freopen() is to redirect the system defined files stdin, stdout, and
stderr to some other file.

Related functions are fopen() and fclose().

fscanf

#include <cstdio>

int fscanf(FILE * stream , const char * format , ...);

The fscanf() function works exactly like the scanf() function, except that it reads
the information from the stream specified by stream instead of stdin. See scanf()
for details.

The fscanf() function returns the number of arguments actually assigned values.
This number does not include skipped fields. A return value of EOF means that a
failure occurred before the first assignment was made.

Related functions are scanf() and fprintf().

fseek

#include <cstdio>

int fseek(FILE * stream , long offset , int origin);

The fseek() function sets the file position indicator associated with stream
according to the values of offset and origin. Its purpose is to support random-access I/O
operations. The offset is the number of bytes from origin to seek to. The values for origin
must be one of these macros (defined in <cstdio>):

C h a p t e r 2 5 : T h e C - B a s e d I / O F u n c t i o n s 703

Preview from Notesale.co.uk

Page 736 of 1041

The ftell() function returns −1 when an error occurs. If the stream is incapable of
random seeks—if it is a modem, for instance—the return value is undefined.

Related functions are fseek() and fgetpos().

fwrite

#include <cstdio>

size_t fwrite(const void * buf , size_t size ,

size_t count , FILE * stream);

The fwrite() function writes count number of objects, each object being size bytes in
length, to the stream pointed to by stream from the character array pointed to by buf.
The file position indicator is advanced by the number of characters written.

The fwrite() function returns the number of items actually written, which, if the
function is successful, will equal the number requested. If fewer items are written than
are requested, an error has occurred. For text streams, various character translations
may take place but will have no effect upon the return value.

Related functions are fread(), fscanf(), getc(), and fgetc().

getc

#include <cstdio>

int getc(FILE * stream);

The getc() function returns the next character from the input stream and
increments the file position indicator. The character is read as an unsigned char that
is converted to an integer.

If the end of the file is reached, getc() returns EOF. However, since EOF is a valid
integer value, when working with binary files you must use feof() to check for the
end-of-file character. If getc() encounters an error, EOF is also returned. If working
with binary files, you must use ferror() to check for file errors.

The functions getc() and fgetc() are identical, and in most implementations getc()
is simply defined as the macro shown here.

#define getc(fp) fgetc(fp)

This causes the fgetc() function to be substituted for the getc() macro.
Related functions are fputc(), fgetc(), putc(), and fopen().

C h a p t e r 2 5 : T h e C - B a s e d I / O F u n c t i o n s 705

Preview from Notesale.co.uk

Page 738 of 1041

remove

#include <cstdio>

int remove(const char * fname);

The remove() function erases the file specified by fname. It returns zero if the file
was successfully deleted and nonzero if an error occurred.

A related function is rename().

rename

#include <cstdio>

int rename(const char * oldfname , const char * newfname);

The rename() function changes the name of the file specified by oldfname to
newfname. The newfname must not match any existing directory entry.

The rename() function returns zero if successful and nonzero if an error
has occurred.

A related function is remove().

rewind

#include <cstdio>

void rewind(FILE * stream);

The rewind() function moves the file position indicator to the start of the specified
stream. It also clears the end-of-file and error flags associated with stream. It has no
return value.

A related function is fseek().

scanf

#include <cstdio>

int scanf(const char * format , ...);

C h a p t e r 2 5 : T h e C - B a s e d I / O F u n c t i o n s 711

Preview from Notesale.co.uk

Page 744 of 1041

scanf("%20s", address);

If the input stream were greater than 20 characters, a subsequent call to input would
begin where this call left off. Input for a field may terminate before the maximum field
length is reached if a white space is encountered. In this case, scanf() moves on to the
next field.

Although spaces, tabs, and newlines are used as field separators, when reading a
single character, these are read like any other character. For example, with an input
stream of x y,

scanf("%c%c%c", &a, &b, &c);

will return with the character x in a, a space in b and the character y in c.
Beware: Any other characters in the control string—including spaces, tabs, and

newlines—will be used to match and discard characters from the input stream. Any
character that matches is discarded. For example, given the input stream 10t20,

scanf("%dt%d", &x, &y);

will place 10 into x and 20 into y. The t is discarded because of the t in the
control string.

Another feature of scanf() is called a scanset. A scanset defines a set of characters
that will be read by scanf() and assigned to the corresponding character array. A
scanset is defined by putting the characters you want to scan for inside square brackets.
The beginning square bracket must be prefixed by a percent sign. For example, this
scanset tells scanf() to read only the characters A, B, and C:

%[ABC]

When a scanset is used, scanf() continues to read characters and put them into
the corresponding character array until a character that is not in the scanset is
encountered. The corresponding variable must be a pointer to a character array. Upon
return from scanf(), the array will contain a null-terminated string comprised of the
characters read.

You can specify an inverted set if the first character in the set is a ^. When the ^ is
present, it instructs scanf() to accept any character that is not defined by the scanset.

You can specify a range using a hyphen. For example, this tells scanf() to accept
the characters A through Z.

714 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 747 of 1041

The standard function library has a rich and varied set of string and character
handling functions. The string functions operate on null-terminated arrays of
characters and require the header <cstring>. The character functions use the

header <cctype>. C programs must use the header files string.h and ctype.h.
Because C/C++ has no bounds checking on array operations, it is the programmer's

responsibility to prevent an array overflow. Neglecting to do so may cause your
program to crash.

In C/C++, a printable character is one that can be displayed on a terminal. These are
usually the characters between a space (0x20) and tilde (0xFE). Control characters have
values between (0) and (0x1F) as well as DEL (0x7F).

For historical reasons, the parameters to the character functions are integers, but
only the low-order byte is used; the character functions automatically convert their
arguments to unsigned char. However, you are free to call these functions with
character arguments because characters are automatically elevated to integers at the
time of the call.

The header <cstring> defines the size_t type, which is essentially the same as
unsigned.

This chapter describes only those functions that operate on characters of type char.
These are the functions originally defined by Standard C and C++, and they are by far
the most widely used and supported. Wide-character functions that operate on
characters of type wchar_t are discussed in Chapter 31.

isalnum

#include <cctype>

int isalnum(int ch);

The isalnum() function returns nonzero if its argument is either a letter of the
alphabet or a digit. If the character is not alphanumeric, zero is returned.

Related functions are isalpha(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
and isspace().

isalpha

#include <cctype>

int isalpha(int ch);

The isalpha() function returns nonzero if ch is a letter of the alphabet; otherwise
zero is returned. What constitutes a letter of the alphabet may vary from language to
language. For English, these are the upper- and lowercase letters A through Z.

720 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 753 of 1041

The strlen() function returns the length of the null-terminated string pointed to
by str. The null terminator is not counted.

Related functions are memcpy(), strchr(), strcmp(), and strncmp().

strncat

#include <cstring>

char *strncat(char * str1 , const char * str2 , size_t count);

The strncat() function concatenates not more than count characters of the string
pointed to by str2 to the string pointed to by str1 and terminates str1 with a null. The null
terminator originally ending str1 is overwritten by the first character of str2. The string
str2 is untouched by the operation. If the strings overlap, the behavior is undefined.

The strncat() function returns str1.
Remember that no bounds checking takes place, so it is the programmer's

responsibility to ensure that str1 is large enough to hold both its original contents and
also those of str2.

Related functions are strcat(), strnchr(), strncmp(), and strncpy().

strncmp

#include <cstring>

int strncmp(const char * str1 , const char * str2 , size_t count);

The strncmp() function lexicographically compares not more than count characters
from the two null-terminated strings and returns an integer based on the outcome, as
shown here:

Value Meaning

Less than zero str1 is less than str2.

Zero str1 is equal to str2.

Greater than zero str1 is greater than str2.

If there are less than count characters in either string, the comparison ends when the
first null is encountered.

Related functions are strcmp(), strnchr(), and strncpy().

728 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 761 of 1041

strspn

#include <cstring>

size_t strspn(const char * str1 , const char * str2);

The strspn() function returns the length of the initial substring of the string pointed
to by str1 that is made up of only those characters contained in the string pointed to by
str2. Stated differently, strspn() returns the index of the first character in the string
pointed to by str1 that does not match any of the characters in the string pointed to
by str2.

Related functions are strpbrk(), strrchr(), strstr(), and strtok().

strstr

#include <cstring>

char *strstr(const char * str1 , const char * str2);

The strstr() function returns a pointer to the first occurrence in the string pointed to
by str1 of the string pointed to by str2. It returns a null pointer if no match is found.

Related functions are strchr(), strcspn(), strpbrk(), strspn(), strtok(), and strrchr().

strtok

#include <cstring>

char *strtok(char * str1 , const char * str2);

The strtok() function returns a pointer to the next token in the string pointed to by
str1. The characters making up the string pointed to by str2 are the delimiters that
determine the token. A null pointer is returned when there is no token to return.

To tokenize a string, the first call to strtok() must have str1 point to the string being
tokenized. Subsequent calls must use a null pointer for str1. In this way, the entire
string can be reduced to its tokens.

It is possible to use a different set of delimiters for each call to strtok().
Related functions are strchr(), strcspn(), strpbrk(), strrchr(), and strspn().

730 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 763 of 1041

double frexp(double num, int * exp);

long double frexp(long double num, int * exp);

The frexp() function decomposes the number num into a mantissa in the range 0.5
to less than 1, and an integer exponent such that num = mantissa * 2exp. The mantissa is
returned by the function, and the exponent is stored at the variable pointed to by exp.

A related function is ldexp().

ldexp

#include <cmath>

float ldexp(float num, int exp);

double ldexp(double num, int exp);

long double ldexp(long double num, int exp);

The ldexp() returns the value of num * 2exp. If overflow occurs, HUGE_VAL
is returned.

Related functions are frexp() and modf().

log

#include <cmath>

float log(float num);

double log(double num);

long double log(long double num);

The log() function returns the natural logarithm for num. A domain error occurs if
num is negative, and a range error occurs if the argument is zero.

A related function is log10().

log10

#include <cmath>

float log10(float num);

double log10(double num);

long double log10(long double num);

738 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 771 of 1041

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

LC_ALL refers to all localization categories. LC_COLLATE affects the operation of the
strcoll() function. LC_CTYPE alters the way the character functions work.
LC_MONETARY determines the monetary format. LC_NUMERIC changes the
decimal-point character for formatted input/output functions. Finally, LC_TIME
determines the behavior of the strftime() function.

The setlocale() function returns a pointer to a string associated with the type
parameter.

Related functions are localeconv(), time(), strcoll(), and strftime().

strftime

#include <ctime>

size_t strftime(char * str , size_t maxsize , const char * fmt ,

const struct tm * time);

The strftime() function places time and date information, along with other
information, into the string pointed to by str according to the format commands found
in the string pointed to by fmt and using the broken-down time time. A maximum of
maxsize characters will be placed into str.

The strftime() function works a little like sprintf() in that it recognizes a set of
format commands that begin with the percent sign (%) and places its formatted output
into a string. The format commands are used to specify the exact way various time and
date information is represented in str. Any other characters found in the format string
are placed into str unchanged. The time and date displayed are in local time. The
format commands are shown in the table below. Notice that many of the commands
are case sensitive.

The strftime() function returns the number of characters placed in the string
pointed to by str or zero if an error occurs.

Command Replaced By

%a Abbreviated weekday name

%A Full weekday name

C h a p t e r 2 8 : T i m e , D a t e , a n d L o c a l i z a t i o n F u n c t i o n s 749

Preview from Notesale.co.uk

Page 782 of 1041

calloc()). Using an invalid pointer in the call most likely will destroy the memory
management mechanism and cause a system crash.

Related functions are calloc(), malloc(), and realloc().

malloc

#include <cstdlib>

void *malloc(size_t size);

The malloc() function returns a pointer to the first byte of a region of memory of
size size that has been allocated from the heap. If there is insufficient memory in the
heap to satisfy the request, malloc() returns a null pointer. It is always important to
verify that the return value is not null before attempting to use it. Attempting to use a
null pointer will usually result in a system crash.

Related functions are free(), realloc(), and calloc().

realloc

#include <cstdlib>

void *realloc(void * ptr , size_t size);

The realloc() function changes the size of the previously allocated memory pointed
to by ptr to that specified by size. The value of size may be greater or less than the
original. A pointer to the memory block is returned because it may be necessary for
realloc() to move the block in order to increase its size. If this occurs, the contents of
the old block are copied into the new block—no information is lost.

If ptr is null, realloc() simply allocates size bytes of memory and returns a pointer
to it. If size is zero, the memory pointed to by ptr is freed.

If there is not enough free memory in the heap to allocate size bytes, a null pointer is
returned, and the original block is left unchanged.

Related functions are free(), malloc(), and calloc().

C h a p t e r 2 9 : T h e D y n a m i c A l l o c a t i o n F u n c t i o n s 755

Preview from Notesale.co.uk

Page 788 of 1041

Chapter 30
Utility Functions

757

C++

Preview from Notesale.co.uk

Page 790 of 1041

The standard function library defines several utility functions that provide various
commonly used services. They include a number of conversions, variable-length
argument processing, sorting and searching, and random number generation.

Many of the functions covered here require the use of the header <cstdlib>. (A C
program must use the header file stdlib.h.) In this header are defined div_t and ldiv_t,
which are the types of values returned by div() and ldiv(), respectively. Also defined
is the type size_t, which is the unsigned value returned by sizeof. The following
macros are defined:

Macro Meaning

NULL A null pointer.

RAND_MAX The maximum value that can be returned by the rand()
function.

EXIT_FAILURE The value returned to the calling process if program
termination is unsuccessful.

EXIT_SUCCESS The value returned to the calling process if program
termination is successful.

If a function requires a different header than <cstdlib>, that function description
will discuss it.

abort

#include <cstdlib>

void abort(void);

The abort() function causes immediate abnormal termination of a program.
Generally, no files are flushed. In environments that support it, abort() will return an
implementation-defined value to the calling process (usually the operating system)
indicating failure.

Related functions are exit() and atexit().

abs

#include <cstdlib>

int abs(int num);

long abs(long num);

double abs(double num);

758 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 791 of 1041

size_t num, size_t size ,

int (* compare)(const void *, const void *));

The bsearch() function performs a binary search on the sorted array pointed to by
buf and returns a pointer to the first member that matches the key pointed to by key.
The number of elements in the array is specified by num, and the size (in bytes) of each
element is described by size.

The function pointed to by compare is used to compare an element of the array with
the key. The form of the compare function must be as follows:

int func_name(const void *arg1, const void *arg2);

It must return values as described in the following table:

Comparison Value Returned

arg1 is less than arg2 Less than zero

Arg1 is equal to arg2 Zero

Arg1 is greater than arg2 Greater than zero

The array must be sorted in ascending order with the lowest address containing the
lowest element.

If the array does not contain the key, a null pointer is returned.
A related function is qsort().

div

#include <cstdlib>

div_t div(int numerator , int denominator);

ldiv_t div(long numerator , long denominator);

The int version of div() function returns the quotient and the remainder of the
operation numerator / denominator in a structure of type div_t. The long version of div()
returns the quotient and remainder in a structure of type ldiv_t. The long version of
div() provides the same capabilities as the ldiv() function.

The structure type div_t will have at least these two fields:

int quot; /* quotient */

int rem; /* remainder */

C h a p t e r 3 0 : U t i l i t y F u n c t i o n s 761

Preview from Notesale.co.uk

Page 794 of 1041

The mblen() function returns the length (in bytes) of a multibyte character pointed
to by str. Only the first size number of characters are examined. It returns –1 on error.

If str is null, then mblen() returns non-zero if multibyte characters have
state-dependent encodings. If they do not, zero is returned.

Related functions are mbtowc() and wctomb().

mbstowcs

#include <cstdlib>

size_t mbstowcs(wchar_t * out , const char * in , size_t size);

The mbstowcs() function converts the multibyte string pointed to by in into a wide
character string and puts that result in the array pointed to by out. Only size number of
bytes will be stored in out.

The mbstowcs() function returns the number of multibyte characters that are
converted. If an error occurs, the function returns –1.

Related functions are wcstombs(), mbtowc().

mbtowc

#include <cstdlib>

int mbtowc(wchar_t * out , const char * in , size_t size);

The mbtowc() function converts the multibyte character in the array pointed to by
in into its wide character equivalent and puts that result in the object pointed to by out.
Only size number of characters will be examined.

This function returns the number of bytes that are put into out. –1 is returned if an
error occurs. If in is null, then mbtowc() returns non-zero if multibyte characters have
state dependencies. If they do not, zero is returned.

Related functions are mblen(), wctomb().

qsort

#include <cstdlib>

void qsort(void * buf , size_t num, size_t size ,

int (* compare) (const void *, const void *));

764 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 797 of 1041

have. The value in attr_ob used to determine if ch is a character that has that property. If
it is, iswctype() returns nonzero. Otherwise, it returns zero. The following property
strings are defined for all execution environments.

alnum alpha cntrl digit

graph lower print punct

space upper xdigit

The following program demonstrates the wctype() and iswctype() functions.

#include <iostream>

#include <cwctype>

using namespace std;

int main()

C h a p t e r 3 1 : T h e W i d e - C h a r a c t e r F u n c t i o n s 773

Function char Equivalent

int iswalnum(wint_t ch) isalnum()

int iswalpha(wint_t ch) isalpha()

int iswcntrl(wint_t ch) iscntrl()

int iswdigit(wint_t ch) isdigit()

int iswgraph(wint_t ch) isgraph()

int iswlower(wint_t ch) islower()

int iswprint(wint_t ch) isprint()

int iswpunct(wint_t c) ispunct()

int iswspace(wint_t ch) isspace()

int iswupper(wint_t ch) isupper()

int iswxdigit(wint_t ch) isxdigit()

wint_t tolower(wint_t ch) tolower()

wint_t toupper(wint_t ch) toupper()

Table 31-1. The Wide-Character Classification Functions

Preview from Notesale.co.uk

Page 806 of 1041

Multibyte/Wide-Character Conversion
Functions
The Standard C++ function library supplies various functions that support conversions
between multibyte and wide characters. These functions, shown in Table 31-6, use the
header <cwchar>. Many of them are restartable versions of the normal multibyte
functions. The restartable version utilizes the state information passed to it in a
parameter of type mbstate_t. If this parameter is null, the function will provide its own
mbstate_t object.

C h a p t e r 3 1 : T h e W i d e - C h a r a c t e r F u n c t i o n s 779

Function Description

win_t btowc(int ch) Converts ch into its wide-character
equivalent and returns the result.
Returns WEOF on error or if ch is not
a one-byte, multibyte character.

size_t mbrlen(const char *str, size_t num,
mbstate_t *state)

Restartable version of mblen() as
described by state. Returns a positive
value that indicates the length of the
next multibyte character. Zero is
returned if the next character is null.
A negative value is returned if an
error occurs.

size_t mbrtowc(wchar_t *out,
const char *in, size_t num,
mbstate_t *state)

Restartable version of mbtowc() as
described by state. Returns a positive
value that indicates the length of the
next multibyte character. Zero is
returned if the next character is null.
A negative value is returned if an
error occurs. If an error occurs, the
macro EILSEQ is assigned to errno.

int mbsinit(const mbstate_t *state) Returns true if state represents an
initial conversion state.

size_t mbsrtowcs(wchar_t *out,
const char **in,
size_t num,
mbstate_t state)

Restartable version of mbstowcs() as
described by state. Also, mbsrtowcs()
differs from mbstowcs() in that in is
an indirect pointer to the source
array. If an error occurs, the macro
EILSEQ is assigned to errno.

Table 31-6. Wide-Character/Multibyte Conversion Functions

Preview from Notesale.co.uk

Page 812 of 1041

Manipulator Purpose Input/Output

hex Turns on hex flag. Input/Output

internal Turns on internal flag. Output

left Turns on left flag. Output

noboolalpha Turns off boolalpha flag. Input/Output

noshowbase Turns off showbase flag. Output

noshowpoint Turns off showpoint flag. Output

noshowpos Turns off showpos flag. Output

noskipws Turns off skipws flag. Input

nounitbuf Turns off unitbuf flag. Output

nouppercase Turns off uppercase flag. Output

oct Turns on oct flag. Input/Output

resetiosflags (fmtflags f) Turn off the flags
specified in f.

Input/Output

right Turns on right flag. Output

scientific Turns on scientific flag. Output

setbase(int base) Set the number base to base. Input/Output

setfill(int ch) Set the fill character to ch. Output

setiosflags(fmtflags f) Turn on the flags specified in f. Input/output

setprecision (int p) Set the number of digits of
precision.

Output

setw(int w) Set the field width to w. Output

showbase Turns on showbase flag. Output

showpoint Turns on showpoint flag. Output

showpos Turns on showpos flag. Output

skipws Turns on skipws flag. Input

unitbuf Turns on unitbuf flag. Output

uppercase Turns on uppercase flag. Output

ws Skip leading white space. Input

To use a manipulator that takes a parameter, you must include <iomanip>.

788 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 821 of 1041

Related functions are precision() and width().

flags

#include <iostream>

fmtflags flags() const;

fmtflags flags(fmtflags f);

The flags() function is a member of ios (inherited from ios_base).
The first form of flags() simply returns the current format flags settings of the

associated stream.
The second form of flags() sets all format flags associated with a stream as

specified by f. When you use this version, the bit pattern found in f is copied into the
format flags associated with the stream. This version also returns the previous settings.

Related functions are unsetf() and setf().

flush

#include <iostream>

ostream &flush();

The flush() function is a member of ostream.
The flush() function causes the buffer connected to the associated output

stream to be physically written to the device. The function returns a reference to its
associated stream.

Related functions are put() and write().

fstream, ifstream, and ofstream

#include <fstream>

fstream();

explicit fstream(const char * filename ,

ios::openmode mode = ios::in | ios::out);

ifstream();

explicit ifstream(const char * filename , ios::openmode mode=ios::in);

ofstream();

explicit ofstream(const char * filename ,

ios::openmode mode=ios::out | ios::trunc);

C h a p t e r 3 2 : T h e S t a n d a r d C + + I / O C l a s s e s 793

Preview from Notesale.co.uk

Page 826 of 1041

The rdstate() function is a member of ios.
The rdstate() function returns the status of the associated stream. The C++ I/O

system maintains status information about the outcome of each I/O operation relative
to each active stream. The current state of a stream is held in an object of type iostate,
in which the following flags are defined:

Name Meaning

goodbit No errors occurred.

eofbit End-of-file is encountered.

failbit A nonfatal I/O error has occurred.

badbit A fatal I/O error has occurred.

These flags are enumerated inside ios (via ios_base).
rdstate() returns goodbit when no error has occurred; otherwise, an error bit has

been set.
Related functions are eof(), good(), bad(), clear(), setstate(), and fail().

read

#include <iostream>

istream &read(char * buf , streamsize num);

The read() function is a member of istream.
The read() function reads num bytes from the associated input stream and puts

them in the buffer pointed to by buf. If the end of the file is reached before num
characters have been read, read() simply stops, sets failbit, and the buffer contains
as many characters as were available. (See gcount().) read() returns a reference
to the stream.

Related functions are gcount(), readsome(), get(), getline(), and write().

readsome

#include <iostream>

streamsize readsome(char * buf , streamsize num);

The readsome() function is a member of istream.
The readsome() function reads num bytes from the associated input stream and

puts them in the buffer pointed to by buf. If the stream contains less than num

C h a p t e r 3 2 : T h e S t a n d a r d C + + I / O C l a s s e s 799

Preview from Notesale.co.uk

Page 832 of 1041

str

#include <sstream>

string str() const;

void str(string & s)

The str() function is a member of stringstream, istringstream, and ostringstream.
The first form of the str() function returns a string object that contains the current

contents of the string-based stream.
The second form frees the string currently contained in the string stream and

substitutes the string referred to by s.
Related functions are get() and put().

stringstream, istringstream, ostringstream

#include <sstream>

explicit stringstream(ios::openmode mode = ios::in | ios::out);

explicit stringstream(const string & str ,

ios::openmode mode = ios::in | ios::out);

explicit istringstream(ios::openmode mode=ios::in);

explicit istringstream(const string str , ios::openmode mode=ios::in);

explict ostringstream(ios::openmode mode=ios::out);

explict ostringstream(const string str , ios::openmode

mode=ios::out);

The stringstream(), istringstream(), and ostringstream() functions are the
constructors of the stringstream, istringstream, and ostringstream classes,
respectively. These construct streams that are tied to strings.

The versions of stringstream(), istringstream(), and ostringstream() that specify
only the openmode parameter create empty streams. The versions that take a string
parameter initialize the string stream.

Here is an example that demonstrates the use of a string stream.

// Demonstrate string streams.

#include <iostream>

#include <sstream>

using namespace std;

802 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 835 of 1041

This page intentionally left blank.

Preview from Notesale.co.uk

Page 839 of 1041

explicit multimap(const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

multimap(const multimap<Key, T, Comp, Allocator> &ob);

template <class InIter> multimap(InIter start, InIter end,
const Comp &cmpfn = Comp(),
const Allocator &a = Allocator());

The first form constructs an empty multimap. The second form constructs a multimap
that contains the same elements as ob. The third form constructs a multimap that
contains the elements in the range specified by start and end. The function specified by
cmpfn, if present, determines the ordering of the multimap.

The following comparison operators are defined by multimap:

==, <, <=, !=, >, >=

The member functions contained bymultimap are shown here. In the descriptions,
key_type is the type of the key, T is the value, and value_type represents pair<Key, T>.

Member Description

iterator begin();
const_iterator begin() const;

Returns an iterator to the first element
in the multimap.

void clear(); Removes all elements from the
multimap.

size_type count(const key_type &k) const; Returns the number of times k occurs
in the multimap.

bool empty() const; Returns true if the invoking multimap
is empty and false otherwise.

iterator end();
const_iterator end() const;

Returns an iterator to the end of the
list.

pair<iterator, iterator>
equal_range(const key_type &k);

pair<const_iterator, const_iterator>
equal_range(const key_type &k) const;

Returns a pair of iterators that point
to the first and last elements in the
multimap that contain the specified
key.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end); Removes the elements in the range
start to end.

C h a p t e r 3 3 : T h e S T L C o n t a i n e r C l a s s e s 821

Preview from Notesale.co.uk

Page 854 of 1041

The member functions contained by set are shown here.

Member Description

iterator begin();
const_iterator begin() const;

Returns an iterator to the first
element in the set.

void clear(); Removes all elements from the set.

size_type count(const key_type &k) const; Returns the number of times k occurs
in the set.

bool empty() const; Returns true if the invoking set is
empty and false otherwise.

const_iterator end() const;
iterator end();

Returns an iterator to the end of
the set.

pair<iterator, iterator>
equal_range(const key_type &k) const;

Returns a pair of iterators that point
to the first and last elements in the set
that contain the specified key.

void erase(iterator i); Removes the element pointed to by i.

void erase(iterator start, iterator end); Removes the elements in the range
start to end.

size_type erase(const key_type &k); Removes from the set elements that
have keys with the value k. The
number of elements removed is
returned.

iterator find(const key_type &k) const; Returns an iterator to the specified
key. If the key is not found, then an
iterator to the end of the set is
returned.

allocator_type get_allocator() const; Returns set's allocator.

iterator insert(iterator i,
const value_type &val);

Inserts val at or after the element
specified by i. Duplicate elements are
not inserted. An iterator to the
element is returned.

template <class InIter>
void insert(InIter start, InIter end);

Inserts a range of elements. Duplicate
elements are not inserted.

828 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 861 of 1041

fill and fill_n

template <class ForIter, class T>

void fill(ForIter start , ForIter end , const T & val);

template <class ForIter, class Size, class T>

void fill_n(ForIter start , Size num, const T & val);

The fill() and fill_n() algorithms fill a range with the value specified by val. For
fill() the range is specified by start and end. For fill_n(), the range begins at start and
runs for num elements.

find

template <class InIter, class T>

InIter find(InIter start , InIter end , const T & val);

The find() algorithm searches the range start to end for the value specified by val. It
returns an iterator to the first occurrence of the element or to end if the value is not in
the sequence.

find_end

template <class ForIter1, class ForIter2>

FwdIter1 find_end(ForIter1 start1 , ForIter1 end1 ,

ForIter2 start2 , ForIter2 end2);

template <class ForIter1, class ForIter2, class BinPred>

FwdIter1 find_end(ForIter1 start1 , ForIter1 end1 ,

ForIter2 start2 , ForIter2 end2 , BinPred pfn);

The find_end() algorithm finds the last iterator of the subsequence defined by
start2 and end2 within the range start1 and end1. If the sequence is found, an iterator to
the last element in the sequence is returned. Otherwise, the iterator end1 is returned.

The second form allows you to specify a binary predicate that determines when
elements match.

find_first_of

template <class ForIter1, class ForIter2>

FwdIter1 find_first_of(ForIter1 start1 , ForIter1 end1 ,

C h a p t e r 3 4 : T h e S T L A l g o r i t h m s 839

Preview from Notesale.co.uk

Page 872 of 1041

swap_ranges

template <class ForIter1, class ForIter2>

ForIter2 swap_ranges(ForIter1 start1 , ForIter1 end1 ,

ForIter2 start2);

The swap_ranges() algorithm exchanges elements in the range specified by start1
and end1 with elements in the sequence beginning at start2. It returns a pointer to the
end of the sequence specified by start2.

transform

template <class InIter, class OutIter, class Func>

OutIter transform(InIter start , InIter end ,

OutIter result , Func unaryfunc);

template <class InIter1, class InIter2, class OutIter, class Func>

OutIter transform(InIter1 start1 , InIter1 end1 ,

InIter2 start2 , OutIter result ,

Func binaryfunc);

The transform() algorithm applies a function to a range of elements and stores the
outcome in result. In the first form, the range is specified by start and end. The function
to be applied is specified by unaryfunc. This function receives the value of an element in
its parameter and it must return its transformation.

In the second form, the transformation is applied using a binary operator function
that receives the value of an element from the sequence to be transformed in its first
parameter and an element from the second sequence as its second parameter.

Both versions return an iterator to the end of the resulting sequence.

unique and unique_copy

template <class ForIter>

ForIter unique(ForIter start , ForIter end);

template <class ForIter, class BinPred>

ForIter unique(ForIter start , ForIter end , BinPred pfn);

template <class ForIter, class OutIter>

OutIter unique_copy(ForIter start , ForIter end , OutIter result);

template <class ForIter, class OutIter, class BinPred>

OutIter unique_copy(ForIter start , ForIter end , OutIter result ,

BinPred pfn);

854 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 887 of 1041

Chapter 35
STL Iterators, Allocators, and

Function Objects

857

C++

Preview from Notesale.co.uk

Page 890 of 1041

reverse_iterator
The reverse_iterator class supports reverse iterator operations. A reverse iterator
operates the opposite of a normal iterator. For example, ++ causes a reverse iterator to
back up. Its template definition is shown here:

template <class Iter> class reverse_iterator:
public iterator<iterator_traits<Iter>::iterator_category,

iterator_traits<Iter>::value_type,
iterator_traits<Iter>::difference_type,
iterator_traits<Iter>::pointer,
iterator_traits<Iter>::reference>

Here, Iter is either a random-access iterator or a bidirectional iterator. reverse_iterator
has the following constructors:

reverse_iterator();
explicit reverse_iterator(Iter itr);

Here, itr is an iterator that specifies the starting location.
If Iter is a random-access iterator, then the following operators are available: –>, +,

++, –, −−, *, <, >, <=, >=, –=, +=, ==, !=, and [] . If Iter is a bidirectional iterator, then
only –>, ++, −−, *, ==, and != are available.

The reverse_iterator class defines a protected member called current, which is an
iterator to the current location.

The function base() is also defined by reverse_iterator. Its prototype is shown here:

Iter base() const;

It returns an iterator to the current location.

istream_iterator
The istream_iterator class supports input iterator operations on a stream. Its template
definition is shown here:

template <class T, class CharType, class Attr = char_traits<CharType>,
class Dist = ptrdiff_t> class istream_iterator:

public iterator<input_iterator_tag, T, Dist, const T *, const T &>

Here, T is the type of data being transferred, and CharType is the character type (char
or wchar_t) that the stream is operating upon. Dist is a type capable of holding the
difference between two addresses. istream_iterator has the following constructors:

864 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 897 of 1041

// Use ostream_iterator

#include <iostream>
#include <iterator>

using namespace std;

int main()
{

ostream_iterator<char> out_it(cout);

*out_it = 'X';
out_it++;

*out_it = 'Y';
out_it++;

*out_it = ' ';

char str[] = "C++ Iterators are powerful.\n";
char *p = str;

while(*p) *out_it++ = *p++;

ostream_iterator<double> out_double_it(cout);
*out_double_it = 187.23;
out_double_it++;

*out_double_it = -102.7;

return 0;

}

The output from this program is shown here:

XY C++ Iterators are powerful.

187.23-102.7

ostreambuf_iterator
The ostreambuf_iterator class supports character output iterator operations on a
stream. Its template definition is shown here:

template <class CharType, class Attr = char_traits<CharType> >
class ostreambuf_iterator:
public iterator<output_iterator_tag, void, void, void, void>

C h a p t e r 3 5 : S T L I t e r a t o r s , A l l o c a t o r s , a n d F u n c t i o n O b j e c t s 867

Preview from Notesale.co.uk

Page 900 of 1041

882 C + + : T h e C o m p l e t e R e f e r e n c e

Member Description

int compare(size_type indx, size_type len,
const string &str,
size_type indx2,
size_type len2) const;

Compares a substring of str to a
substring within the invoking string.
The substring in the invoking string
begins at indx and is len characters
long. The substring in str begins at
indx2 and is len2 characters long. It
returns one of the following:
Less than zero if *this < str
Zero if *this == str
Greater than zero if *this > str

int compare(const CharType *str) const; Compares str to the invoking string.
It returns one of the following:
Less than zero if *this < str
Zero if *this == str
Greater than zero if *this > str

int compare(size_type indx, size_type len,
const CharType *str,
size_type len2 = npos) const;

Compares a substring of str to a
substring within the invoking string.
The substring in the invoking string
begins at indx and is len characters
long. The substring in str begins at
zero and is len2 characters long. It
returns one of the following:
Less than zero if *this < str
Zero if *this == str
Greater than zero if *this > str

size_type copy(CharType *str,
size_type len,
size_type indx = 0) const;

Beginning at indx, copies len
characters from the invoking string
into the character array pointed to
by str. Returns the number of
characters copied.

const CharType *data() const; Returns a pointer to the first
character in the invoking string.

bool empty() const; Returns true if the invoking string is
empty and false otherwise.

Table 36-1. The String Member Functions (continued)

Preview from Notesale.co.uk

Page 915 of 1041

C h a p t e r 3 6 : T h e S t r i n g C l a s s 883

Member Description

iterator end();
const_iterator end() const;

Returns an iterator to the end of
the string.

iterator erase(iterator i); Removes character pointed to by i.
Returns an iterator to the character
after the one removed.

iterator erase(iterator start, iterator end); Removes characters in the range start
to end. Returns an iterator to the
character after the last character
removed.

string &erase(size_type indx = 0,
size_type len = npos);

Beginning at indx, removes len
characters from the invoking string.
Returns *this.

size_type find(const string &str,
size_type indx = 0) const;

Returns the index of the first
occurrence of str within the invoking
string. The search begins at index
indx. npos is returned if no match is
found.

size_type find(const CharType *str,
size_type indx = 0) const;

Returns the index of the first
occurrence of str within the invoking
string. The search begins at index
indx. npos is returned if no match is
found.

size_type find(const CharType *str,
size_type indx,
size_type len) const;

Returns the index of the first
occurrence of the first len characters
of str within the invoking string. The
search begins at index indx. npos is
returned if no match is found.

size_type find(CharType ch,
size_type indx = 0) const;

Returns the index of the first
occurrence of ch within the invoking
string. The search begins at index
indx. npos is returned if no match
is found.

Table 36-1. The String Member Functions (continued)

Preview from Notesale.co.uk

Page 916 of 1041

888 C + + : T h e C o m p l e t e R e f e r e n c e

Member Description

string &replace(size_type indx,
size_type len,
const string &str);

Replaces up to len characters in the
invoking string, beginning at indx
with the string in str. Returns *this.

string &replace(size_type indx1,
size_type len1,
const string &str,
size_type indx2,
size_type len2);

Replaces up to len1 characters in the
invoking string beginning at indx1
with the len2 characters from the
string in str that begin at indx2.
Returns *this.

string &replace(size_type indx,
size_type len,
const CharType *str);

Replaces up to len characters in the
invoking string, beginning at indx
with the string in str. Returns *this.

string &replace(size_type indx1,
size_type len1,
const CharType *str,
size_type len2);

Replaces up to len1 characters in the
invoking string beginning at indx1
with the len2 characters from the
string in str that begins at indx2.
Returns *this.

string &replace(size_type indx,
size_type len1,
size_type len2,
CharType ch);

Replaces up to len1 characters in the
invoking string beginning at indx
with len2 characters specified by ch.
Returns *this.

string &replace(iterator start,
iterator start,
const string &str);

Replaces the range specified by start
and end with str. Returns *this.

string &replace(iterator start,
iterator start,
const CharType *str);

Replaces the range specified by start
and end with str. Returns *this.

string &replace(iterator start,
iterator end,
const CharType *str,
size_type len);

Replaces the range specified by start
and end with the first len characters
from str. Returns *this.

string &replace(iterator start,
interator end, size_type len,
CharType ch);

Replaces the range specified by start
and end with the len characters
specified by ch. Returns *this.

Table 36-1. The String Member Functions (continued)

Preview from Notesale.co.uk

Page 921 of 1041

C h a p t e r 3 7 : T h e N u m e r i c C l a s s e s 897

Function Description

template <class T>
complex<T>
polar(const T &v, const T &theta=0);

Returns a complex number that has
the magnitude specified by v and a
phase angle of theta.

template <class T>
complex<T>
pow(const complex<T> &b, int e);

Returns be.

template <class T>
complex<T>
pow(const complex<T> &b,

const T &e);

Returns be.

template <class T>
complex<T>
pow(const complex<T> &b,

const complex<T> &e);

Returns be.

template <class T>
complex<T>
pow(const T &b,

const complex<T> &e);

Returns be.

template <class T>
T real(const complex<T> &ob);

Returns the real component of ob.

template <class T>
complex<T> sin(const complex<T> &ob);

Returns the sine of ob.

template <class T>
complex<T>
sinh(const complex<T> &ob);

Returns the hyperbolic sine of ob.

template <class T>
complex<T>
sqrt(const complex<T> &ob);

Returns the square root of ob.

template <class T>
complex<T>
tan(const complex<T> &ob);

Returns the tangent of ob.

template <class T>
complex<T>
tanh(const complex<T> &ob);

Returns the hyperbolic tangent of ob.

Table 37-1. Functions Defined for complex (continued)

Preview from Notesale.co.uk

Page 930 of 1041

900 C + + : T h e C o m p l e t e R e f e r e n c e

Function Description

valarray<T>
&operator=(const indirect_array<T> &ob);

Assigns a subset. Returns a
reference to the invoking array.

valarray<T> operator+() const; Unary plus applied to each
element in the invoking array.
Returns the resulting array.

valarray<T> operator−() const; Unary minus applied to each
element in the invoking array.
Returns the resulting array.

valarray<T> operator~() const; Unary bitwise NOT applied to
each element in the invoking
array. Returns the resulting
array.

valarray<T> operator!() const; Unary logical NOT applied to
each element in the invoking
array. Returns the resulting
array.

valarray<T> &operator+=(const T &v) const; Adds v to each element in the
invoking array. Returns a
reference to the invoking array.

valarray<T> &operator−=(const T &v) const; Subtracts v from each element
in the invoking array. Returns a
reference to the invoking array.

valarray<T> &operator/=(const T &v) const; Divides each element in the
invoking array by v. Returns a
reference to the invoking array.

valarray<T> &operator*=(const T &v) const; Multiplies each element in the
invoking array by v. Returns a
reference to the invoking array.

valarray<T> &operator%=(const T &v) const; Assigns each element in the
invoking array the remainder of
a division by v. Returns a
reference to the invoking array.

Table 37-2. The Member Functions of valarray (continued)

Preview from Notesale.co.uk

Page 933 of 1041

902 C + + : T h e C o m p l e t e R e f e r e n c e

Function Description

valarray<T>
&operator%=(const valarray<T> &ob) const;

The elements in the invoking
array are divided by their
corresponding elements in ob
and the remainder is stored.
Returns a reference to the
invoking array.

valarray<T>
&operator^=(const valarray<T> &ob) const;

The XOR operator is applied
to corresponding elements in
ob and the invoking array.
Returns a reference to the
invoking array.

valarray<T>
&operator&=(const valarray<T> &ob) const;

The AND operator is applied
to corresponding elements in ob
and the invoking array. Returns
a reference to the invoking
array.

valarray<T>
&operator|=(const valarray<T> &ob) const;

The OR operator is applied
to corresponding elements in ob
and the invoking array.
Returns a reference to the
invoking array.

valarray<T>
&operator<<=(const valarray<T> &ob) const;

Elements in the invoking array
are left-shifted by the number
of places specified in the
corresponding elements in ob.
Returns a reference to the
invoking array.

valarray<T>
&operator>>=(const valarray<T> &ob) const;

Elements in invoking array are
right-shifted by the number of
places specified in the
corresponding elements in ob.
Returns a reference to the
invoking array.

Table 37-2. The Member Functions of valarray (continued)

Preview from Notesale.co.uk

Page 935 of 1041

interval[0] = 2; interval[1] = 3;

cout << "Contents of v: ";
for(i=0; i<12; i++)

cout << v[i] << " ";
cout << endl;

result = v[gslice(0,len,interval)];

cout << "Contents of result: ";

for(i=0; i<result.size(); i++)
cout << result[i] << " ";

return 0;
}

The output is shown here:

Contents of v: 0 1 2 3 4 5 6 7 8 9 10 11
Contents of result: 0 3 6 2 5 8 4 7 10

The Helper Classes
The numeric classes rely upon these "helper" classes, which your program will never
instantiate directly: slice_array, gslice_array, indirect_array, and mask_array.

The Numeric Algorithms
The header <numeric> defines four numeric algorithms that can be used to process the
contents of containers. Each is examined here.

accumulate
The accumulate() algorithm computes a summation of all of the elements within a
specified range and returns the result. Its prototypes are shown here:

template <class InIter, class T> T accumulate(InIter start, InIter end, T v);
template <class InIter, class T, class BinFunc>

T accumulate(InIter start, InIter end, T v, BinFunc func);

Here, T is the type of values being operated upon. The first version computes the sum
of all elements in the range start to end. The second version applies func to the running

916 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 949 of 1041

As you can see, it returns a pair object consisting of values of the types specified by
Ktype and Vtype. The advantage of make_pair() is that the types of the objects being
stored are determined automatically by the compiler rather than being explicitly
specified by you.

The pair class and the make_pair() function require the header <utility>.

Localization
Standard C++ provides an extensive localization class library. These classes allow an
application to set or obtain information about the geopolitical environment in which it
is executing. Thus, it defines such things as the format of currency, time and date, and
collation order. It also provides for character classification. The localization library uses
the header <locale>. It operates through a series of classes that define facets (bits of
information associated with a locale). All facets are derived from the class facet, which
is a nested class inside the locale class.

Frankly, the localization library is extraordinarily large and complex. A description
of its features is beyond the scope of this book. While most programmers will not make
direct use of the localization library, if you are involved in the preparation of
internationalized programs, you will want to explore its features.

Other Classes of Interest
Here are a few other classes defined by the Standard C++ library that may be of
interest.

Class Description

type_info Used in conjunction with the typeid operator and
fully described in Chapter 22. Uses the header
<typeinfo>.

numeric_limts Encapsulates various numeric limits. Uses the
header <limits>.

raw_storage_iterator Encapsulates allocation of uninitialized memory.
Uses the header <memory>.

C h a p t e r 3 8 : E x c e p t i o n H a n d l i n g a n d M i s c e l l a n e o u s C l a s s e s 927

Preview from Notesale.co.uk

Page 960 of 1041

StrType(char *str);

StrType(const StrType &o); // copy constructor

~StrType() { delete [] p; }

friend ostream &operator<<(ostream &stream, StrType &o);
friend istream &operator>>(istream &stream, StrType &o);

StrType operator=(StrType &o); // assign a StrType object

StrType operator=(char *s); // assign a quoted string

StrType operator+(StrType &o); // concatenate a StrType object
StrType operator+(char *s); // concatenate a quoted string

friend StrType operator+(char *s, StrType &o); /* concatenate
a quoted string with a StrType object */

StrType operator-(StrType &o); // subtract a substring
StrType operator-(char *s); // subtract a quoted substring

// relational operations between StrType objects

int operator==(StrType &o) { return !strcmp(p, o.p); }

int operator!=(StrType &o) { return strcmp(p, o.p); }
int operator<(StrType &o) { return strcmp(p, o.p) < 0; }
int operator>(StrType &o) { return strcmp(p, o.p) > 0; }

int operator<=(StrType &o) { return strcmp(p, o.p) <= 0; }
int operator>=(StrType &o) { return strcmp(p, o.p) >= 0; }

// operations between StrType objects and quoted strings

int operator==(char *s) { return !strcmp(p, s); }
int operator!=(char *s) { return strcmp(p, s); }

int operator<(char *s) { return strcmp(p, s) < 0; }
int operator>(char *s) { return strcmp(p, s) > 0; }
int operator<=(char *s) { return strcmp(p, s) <= 0; }

int operator>=(char *s) { return strcmp(p, s) >= 0; }

int strsize() { return strlen(p); } // return size of string

void makestr(char *s) { strcpy(s, p); } // make quoted string

operator char *() { return p; } // conversion to char *
};

C h a p t e r 3 9 : I n t e g r a t i n g N e w C l a s s e s : A C u s t o m S t r i n g C l a s s 933

Preview from Notesale.co.uk

Page 966 of 1041

return stream;

}

// Input a string.

istream &operator>>(istream &stream, StrType &o)
{

char t[255]; // arbitrary size - change if necessary

int len;

stream.getline(t, 255);
len = strlen(t) + 1;

if(len > o.size) {
delete [] o.p;

try {
o.p = new char[len];

} catch (bad_alloc xa) {

cout << "Allocation error\n";

exit(1);
}
o.size = len;

}
strcpy(o.p, t);

return stream;

}

As you can see, output is very simple. However, notice that the parameter o is
passed by reference. Since StrType objects may be quite large, passing one by reference
is more efficient than passing one by value. For this reason, all StrType parameters are
passed by reference. (Any function you create that takes StrType parameters should
probably do the same.)

Inputting a string proves to be a little more difficult than outputting one. First, the
string is read using the getline() function. The length of the largest string that can be
input is limited to 254 plus the null terminator. As the comments indicate, you can
change this if you like. Characters are read until a newline is encountered. Once the
string has been read, if the size of the new string exceeds that of the one currently held
by o, that memory is released and a larger amount is allocated. The new string is then
copied into it.

936 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 969 of 1041

char *s1;

int i, j;

s1 = p;

for(i=0; *s1; i++) {
if(*s1!=*substr) { // if not first letter of substring

temp.p[i] = *s1; // then copy into temp

s1++;

}
else {

for(j=0; substr[j]==s1[j] && substr[j]; j++) ;
if(!substr[j]) { // is substring, so remove it

s1 += j;
i--;

}

else { // is not substring, continue copying

temp.p[i] = *s1;
s1++;

}

}
}

temp.p[i] = '\0';

return temp;
}

These functions work by copying the contents of the left-hand operand into temp,
removing any occurrences of the substring specified by the right-hand operand during
the process. The resulting StrType object is returned. Understand that neither operand
is modified by the process.

The StrType class allows substring subtractions like these:

StrType x("I like C++"), y("like");
StrType z;

z = x - y; // z will contain "I C++"

z = x - "C++"; // z will contain "I like "

// multiple occurrences are removed

z = "ABCDABCD";
x = z -"A"; // x contains "BCDBCD"

942 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 975 of 1041

}

o.size = len;
}

strcpy(o.p, t);
return stream;

}

// Assign a StrType object to a StrType object.

StrType StrType::operator=(StrType &o)
{

StrType temp(o.p);

if(o.size > size) {

delete [] p; // free old memory
try {

p = new char[o.size];

} catch (bad_alloc xa) {

cout << "Allocation error\n";
exit(1);

}

size = o.size;
}

strcpy(p, o.p);

strcpy(temp.p, o.p);

return temp;

}

// Assign a quoted string to a StrType object.
StrType StrType::operator=(char *s)

{
int len = strlen(s) + 1;

if(size < len) {

delete [] p;
try {

p = new char[len];
} catch (bad_alloc xa) {

cout << "Allocation error\n";

exit(1);

}
size = len;

948 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 981 of 1041

Chapter 40
An Object-Oriented

Expression Parser

959

C++

Preview from Notesale.co.uk

Page 992 of 1041

The Parser Class
The expression parser is built upon the parser class. The first version of parser is
shown here. Subsequent versions of the parser build upon it.

class parser {

char *exp_ptr; // points to the expression
char token[80]; // holds current token

char tok_type; // holds token's type

void eval_exp2(double &result);
void eval_exp3(double &result);

void eval_exp4(double &result);

void eval_exp5(double &result);
void eval_exp6(double &result);

void atom(double &result);
void get_token();

void serror(int error);
int isdelim(char c);

public:

parser();

double eval_exp(char *exp);
};

The parser class contains three private member variables. The expression to be
evaluated is contained in a null-terminated string pointed to by exp_ptr. Thus, the
parser evaluates expressions that are contained in standard ASCII strings. For example,
the following strings contain expressions that the parser can evaluate:

"10 − 5"

"2 * 3.3 / (3.1416 * 3.3)"

When the parser begins execution, exp_ptr must point to the first character in the
expression string. As the parser executes, it works its way through the string until the
null-terminator is encountered.

The meaning of the other two member variables, token and tok_type, are described
in the next section.

The entry point to the parser is through eval_exp(), which must be called with a
pointer to the expression to be analyzed. The functions eval_exp2() through
eval_exp6() along with atom() form the recursive-descent parser. They implement an
enhanced set of the expression production rules discussed earlier. In subsequent
versions of the parser, a function called eval_exp1() will also be added.

964 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 997 of 1041

// Process an assignment.

void parser::eval_exp1(double &result)
{

int slot;
char ttok_type;
char temp_token[80];

if(tok_type==VARIABLE) {

// save old token
strcpy(temp_token, token);

ttok_type = tok_type;

// compute the index of the variable

slot = toupper(*token) - 'A';

get_token();
if(*token != '=') {

putback(); // return current token

// restore old token - not assignment
strcpy(token, temp_token);
tok_type = ttok_type;

}
else {

get_token(); // get next part of exp

eval_exp2(result);
vars[slot] = result;

return;
}

}

eval_exp2(result);
}

// Add or subtract two terms.

void parser::eval_exp2(double &result)
{

register char op;
double temp;

eval_exp3(result);

while((op = *token) == '+' || op == '-') {

get_token();

C h a p t e r 4 0 : A n O b j e c t - O r i e n t e d E x p r e s s i o n P a r s e r 979

Preview from Notesale.co.uk

Page 1012 of 1041

*temp = '\0';

if(!*exp_ptr) return; // at end of expression

while(isspace(*exp_ptr)) ++exp_ptr; // skip over white space

if(strchr("+-*/%^=()", *exp_ptr)){
tok_type = DELIMITER;
// advance to next char

*temp++ = *exp_ptr++;

}
else if(isalpha(*exp_ptr)) {

while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;
tok_type = VARIABLE;

}
else if(isdigit(*exp_ptr)) {

while(!isdelim(*exp_ptr)) *temp++ = *exp_ptr++;

tok_type = NUMBER;

}

*temp = '\0';
}

// Return true if c is a delimiter.
int parser::isdelim(char c)

{

if(strchr(" +-/*%^=()", c) || c==9 || c=='\r' || c==0)
return 1;

return 0;
}

// Return the value of a variable.

double parser::find_var(char *s)
{

if(!isalpha(*s)){

serror(1);
return 0.0;

}
return vars[toupper(*token)-'A'];

}

C h a p t e r 4 0 : A n O b j e c t - O r i e n t e d E x p r e s s i o n P a r s e r 983

Preview from Notesale.co.uk

Page 1016 of 1041

// Multiply or divide two factors.

template <class PType> void parser<PType>::eval_exp3(PType &result)
{

register char op;
PType temp;

eval_exp4(result);

while((op = *token) == '*' || op == '/' || op == '%') {

get_token();
eval_exp4(temp);

switch(op) {
case '*':

result = result * temp;
break;

case '/':

result = result / temp;

break;
case '%':

result = (int) result % (int) temp;

break;
}

}

}

// Process an exponent

template <class PType> void parser<PType>::eval_exp4(PType &result)
{

PType temp, ex;

register int t;

eval_exp5(result);

if(*token== '^') {

get_token();
eval_exp4(temp);

ex = result;
if(temp==0.0) {

result = (PType) 1;

return;

}
for(t=(int)temp-1; t>0; --t) result = result * ex;

}

988 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 1021 of 1041

Index

& (bitwise operator), 42, 43-44
& (pointer operator), 48, 49,
115-116, 141, 262, 349

& (reference parameter),
342-343, 349

&&, 40, 41
< >, 242, 268, 467, 485
->, 51, 171, 175, 178, 331

overloading, 409, 415-416
->* (pointer-to-member
operator), 339, 340, 341

* (multiplication operator), 37,
38

* (pointer operator), 48-49,
115-116, 123-124, 349

* (printf() placeholder), 202-203
|, 42, 43, 44
||, 40, 41
[], 51-52, 90, 352, 353, 358

overloading, 409-413
^, 42, 43, 44, 207
:, 47, 271

::(scope resolution operator),
272, 319, 440-441

, (comma operator), 50
overloading, 416-418

{ }, 7, 18
. (dot operator), 51, 165, 175,
178, 272, 293, 346

.* (pointer-to-member
operator), 339, 340

!, 40, 41
!=, 40, 41
=, 35
==, 40, 41
<, 40, 41
<< (left shift), 43, 44-46
<< (output operator), 262-264

overloading, 528-534,
790-791

<=, 40, 41
-, 37, 38

—, 37-39, 391-392, 395-397
() function operator, 138

overloading, 409, 413-415
() precedence operator, 39,
41-42, 50, 51

% (format specifier), 195
% (modulus operator), 37, 38
+, 37, 38
++, 37-39, 391-392, 395-397
(preprocessor directive), 238
(preprocessor operator),
248-250

(printf() modifier), 202
(preprocessor operator),
248-250

?, 47, 63-66
>, 40, 41
>> (right shift), 43, 44-46
>> (input operator), 262,
263-264
overloading, 528, 534-537,

790-791
>=, 40, 41
; (semicolon), 88, 163
/, 37, 38

995

Preview from Notesale.co.uk

Page 1028 of 1041

/* */, 250
//, 251, 262
~, 42, 43, 46-47, 284

A
abort(), 491, 492, 502, 505, 506,
758

abs(), 758-759
Access declarations, 436-439
Access modifiers, 23-25
Access specifiers, 290, 420-427
accumulate() algorithm,
916-917

acos(), 734
Ada, 5
Adaptor(s), 629, 872-874
Address, memory

& operator used to return,
48, 115-116

pointer as, 47, 115
relocatable format, 12

adjacent_difference()
algorithm, 917-918

adjacent_find() algorithm, 836
adjustfield format flag, 516
advance(), 868
Aggregate data type, 162
ALGOL, 6, 8
<algorithm> header, 660
Algorithms, 627, 631, 660-670,
836-855
table of STL, 661-663

allocator class, 628, 875-876
member functions, table of,

876
Allocators, 628, 875-876
AND

& bitwise operator, 42, 43-44
&& logical operator, 40, 41

ANSI/ISO C standard, 2, 4
app, 789
append(), 684
argc, 144-145, 147
Arguments, function

call by reference passing
convention, 140-141, 170,
341-345

call by value passing
convention, 139-140

command line, 144-147
default, 374-380, 382-383
passing arrays as, 92-93, 98,

102, 142-144
passing functions as, 126-129

argv, 123, 144-147
Arithmetic operators, 37-39

precedence of, 39
Array(s)

allocating with new, 352-353
bounds checking on, 5, 91,

369, 412
compacting, 472-474
definition of, 90
generating pointer to, 92
indexing versus pointer

arithmetic, 121
initialization, 105-107
multidimensional, 101-102
of objects, 328-331, 356,

366-368
to functions, passing, 92-93,

142-144
of pointers, 122-123
using pointers to access,

103-104, 121
safe, creating, 369-371,

412-413
single-dimension, 90-91
sorting, 471-472
square brackets as operator

for indexing, 51-52
of strings, 100-101
of structures, 166
within structures, 173
two-dimensional, 96-101
unsized, 106-107
vector as dynamic, 631

Array-based I/O, 615-623
and binary data, 622-623
using dynamic arrays and,

621-622
using ios member functions

with, 616
Arrow operator (->), 51, 171,
175, 178, 331
overloading, 409, 415-416

asctime(), 744-745
asin(), 734-735
asm statement, 613-614
Assembly language, 4, 8

using asm to embed, 613-614
C used in place of, 8

assert(), 759
assign(), 683-684
Assignment

functions used in, 149-150,
346-347

multiple, 36-37
object, 324-325
operation for C++ classes,

default, 391
operator, 34-35
pointer, 117, 333-334
shorthand notation for, 56
structure, 165-166
type conversion in, 35-36

atan(), 735
atan2(), 735
ate, 789
atexit(), 759
atof(), 759-760
atoi(), 146, 760
atol(), 760
auto keyword, 18
auto_ptr class, 924-926

B
B language, 4
back_insert_iterator class, 862,
863

Backslash character constants,
33-34

bad(), 565, 791
bad_alloc class, 350, 922
bad_cast, 580, 923
bad_exception class, 508, 922
bad_typeid, 574, 922
badbit, 563, 565, 790, 799
Base class

access control, 420-426
constructors, passing

parameters to, 432-436
definition of, 278, 420
general form for inheriting,

279, 420
inheritance, protected,

426-427
virtual, 439-443

base(), 864

996 C + + : T h e C o m p l e t e R e f e r e n c e

Preview from Notesale.co.uk

Page 1029 of 1041

