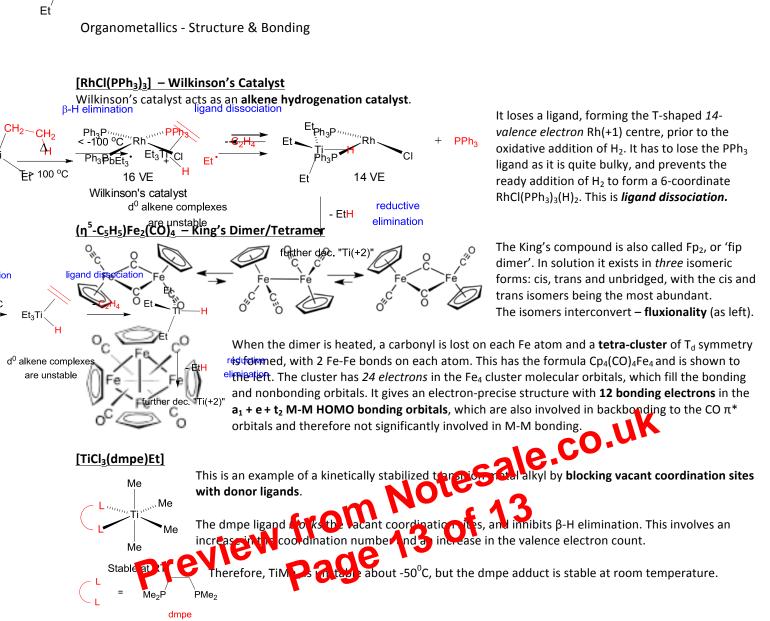

Include theoretical, thermodynamic and kinetic perspectives on stability, limitations, uses and the 16/14 electron rules. Make reference to examples of your own choice and some of the following compounds: W(CO)₄(PMe₃)₂, (5-C₅H₅)₂TiCl₂, Mo(CO)₅{CPh(OEt)}, (5-C₅H₅)₂Co, Ti(CH₂Ph)₄ [RhCl₂(CO)₂], Hg(CO)₂²⁺, Cr(NO)₄, Cr(6-C₈H₈)(CO)₃, Ce(8-C₈H₈)₂, Fe(4-C₈H₈)(CO)₃ Re₂(CO)₁₀, Ir₄(CO)₁₂, [(5-C₅H₅)Fe(CO)]₄

When does the 18-electron rule work?

It was devised for mid-low oxidation state metals with π -acceptor ligands, such as CO, for 2nd & 3rd row compounds. It doesn't work for lanthanide or actinide-based organometallic compounds as they have valence f-orbitals, as well as the s, p, and d orbitals of the transition metals.

What is the 18-electron rule?

If all of the metal-ligand bonding & low-energy non-bonding d-orbitals are filled and the antibonding orbitals are unoccupied,


4. Add electrons for any metal-metal bonds, providing there are sufficient d electrons. The number of metal-metal bonds present in a compound can be predicted according to the 18-electron rule.

Complications

This does not explain why not all transition metals follow this rule, or why there is an equivalent 16-electron rule.

It is disobeyed for:

- Some octahedral (ML₆) complexes
- Square planar (*D*_{4h} ML₄) complexes
- Early transition metals
- Sterically encumbered compounds

(1,2-bis(dimethylphosphino)ethane)

T > 100 °C