
- (c) Internal energy: The internal energy of a gas is sum of internal energy due to moleculer motion (called internal kinetic energy U_K) and internal energy due to molecular configuration (called internal potential energy $U_{P.E.}$) i.e., $U = U_K + U_{P.E.}$ (1)
 - (i) In ideal gas, as there is no intermolecular attraction, hence

$$U = U_K = \frac{3n}{2}RT \qquad \dots (2)$$

(for n mole of ideal gas)

- (ii) Internal energy is path independent i.e., point function.
- (iii) In cyclic process, there is no change in internal energy (shown in fig.)

$$\begin{aligned} \text{i.e.,} & \qquad & \text{dU} = \text{U}_{f} - \text{U}_{i} = 0 \\ \Rightarrow & \qquad & \text{U}_{f} = \text{U}_{i} \end{aligned}$$

(iv) Internal energy of an ideal gas depends only on temperature eq.(2).

First law of thermodynamics is a generalisation of the law of conservation of energy that includes possible change in internal energy.

First law of thermodynamics "If certain rule tily of heat dQ is added to a system, a part of it is a agin increasing the interpolation by dU and a lift case in performing extension of the dot dW

i.e.,
$$dQ = dU + dW \Rightarrow dU = dQ - dW$$

The quantity dU (i.e., dQ - dW) is path independent but dQ and dW individually are not path independent.

Applications of First Law of Thermodynamics

(i) In **isobaric process** P is constant

so
$$dW = \int_{V_1}^{V_2} P dV = P(V_2 - V_1)$$

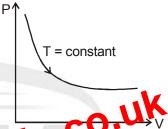
so
$$dQ = dU + dW = n C_p dT$$

- (ii) In **cyclic process** heat given to the system is equal to work done (area of cycle).
- (iii) In **isothermal process** temperature T is constant and work done is

$$dW = \int_{V_1}^{V_2} P dV = nRT Log_e \frac{V_2}{V_1}$$

Since, T = constant so for ideal gas dU = 0

Hence,
$$dQ = dW = nRT Log_e \frac{V_2}{V_1}$$
 (for ideal gas)

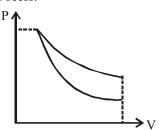

- (iv) In isochoric process W = 0 as V = constant
 It means that heat given to system is used in increasing internal energy of the gas.
- (v) In **adiabatic process** heat given or taken by system from surrounding is zero i.e., dQ=0

$$dU = -dW = -\left\lceil \frac{nR}{\gamma - 1} \big(T_1 - T_2\big) \right\rceil \\ = \left\lceil \frac{(P_1V_1 - P_2V_2)}{\gamma - 1} \right\rceil$$

It means that if system expands dW is +ive and dU is -ive (i.e., temperature decrease) and if system contracts dW is -ive and dU is +ive (i.e., temperature increase).

THERMODYNAMIC PROCESSES

(i) Isothermal process: If a thermodynamic system is perfectly conducting to surroundings and undergoes a physical change in such a way that temperature remains constant throughout, then process is said to be isothermal process.


For isothermal press, the equation of state is *RV* constant, where n is no. of moles.

For ideal gas, since internal energy depends only on temperature

$$3 \quad dQ = 0 \Rightarrow dQ = dW = \int_{V_1}^{V_2} P dV = nRT \int_{V_1}^{V_2} \frac{dV}{V}$$

or
$$dQ = nRT \log_e \frac{V_2}{V_1} = 2.303 nRT \log_{10} \frac{V_2}{V_1}$$

(ii) Adiabatic process: If system is completely isolated from the surroundings so that no heat flows in or out of it, then any change that the system undergoes is called an adiabatic process.

For ideal gas, dQ = 0

$$dU = \mu C_{\nu} dT$$

(for any process)

$$dW = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} \frac{K}{V^{\gamma}} dV$$

(where $PV^{\gamma} = K = \text{constant}$)

$$= \frac{K}{1 - \gamma} \left(\frac{1}{V_2^{\gamma - 1}} - \frac{1}{V_1^{\gamma - 1}} \right) = \frac{(P_2 V_2 - P_1 V_1)}{1 - \gamma}$$