
J2EE (Advanced) JAVA

By Mr. K. V. R Page 4

Day - 4:

4) We know the class name at runtime and we have to obtain the runtime information about

the class.

To perform the above we must use the method java.lang.Class and whose prototype is given

below:

When we use the forName as a part of java program it performs the following operations:

• It can create an object of the class which we pass at runtime.

• It returns runtime information about the object which is created.

For example:

try

{

 Class c=Class.forName (“java.awt.Button”);

}

catch (ClassNotFoundException cnfe)

{

 System.out.println (“CLASS DOES NOT EXIST...”);

}

forName is taking String as an argument. If the class is not found forName method

throws an exception called ClassNotFoundException.

Here, forName method is a factory method (a factory method is one which return type is

similar to name of the class where it presents).

Every factory method must be static and public. The class which contains a factory

method is known as Singleton class (a java class is said to be Singleton class through which

we can create single object per JVM).

For example:

java.lang.Class is called Singleton class

Write a java program to find name of the class and its super class name by passing the class name

at runtime?

Answer:

class ref1

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 printSuperclass (c);

Preview from Notesale.co.uk

Page 4 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 6

 }

 }

};

Output:

java Hierarchy java.awt.TextField

java.awt.TextField

java.awt.TextComponent

java.awt.Component

java.lang.Object

Obtaining information about CONSTRUCTORS which are present in a class:

In order to get the constructor of the current class we must use the following method:

For example:

Constructor cons []=c.getConstructors ();

System.out.println (“NUMBER OF CONSTRUCTORS = ”+cons.length);

In order to get the parameters of the constructor we must use the following method:

For example:

Class ptype []=cons [0].getParameterTypes ();

Day - 5:

Write a java program to obtain constructors of a class?

Answer:

class ConsInfo

{

 public static void main (String [] args)

 {

 if (args.length==0)

 {

 System.out.println ("PLEASE PASS THE CLASS NAME..!");

 }

 else

 {

 try

 {

 Class c=Class.forName (args [0]);

 printConsts (c);

 }

 catch (ClassNotFoundException cnfe)

 {

 System.out.println (args [0]+" DOES NOT EXISTS...");

 }

 }

 }

 static void printConsts (Class c)

Preview from Notesale.co.uk

Page 6 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 24

Create an oracle procedure which takes two input numbers and it must return sum of two numbers,

multiplication and subtraction?

Answer:

create or replace procedure proc2 (a in number, b number, n out number, n2 out

number, n3 out number)

as

begin

 n1:=a+b;

 n2:=a*b;

 n3:=a-b;

end;

/

• A function is one which contains n number of block of statements to perform some

operation and it returns a single value only.

Syntax for creating a function:

create or replace function (a in number, b in number) return <return type>

as

 n1 out number;

begin

 n1:=a+b;

 return (n1);

end;

/

In order to execute the stored procedures from jdbc we must follow the following steps:

1. Create an object of CallableStatement by using the following method:

 Here, String represents a call for calling a stored procedure from database environment.

2. Prepare a call either for a function or for a procedure which is residing in database.

Syntax for calling a function:

“{? = call <name of the function> (?,?,?….)}”

For example:

CallableStatement cs=con.prepareCall (“{? = call fun1 (?,?)}”);

 The positional parameters numbering will always from left to right starting from 1. In the

above example the positional parameter-1 represents out parameter and the positional parameter-2

and parameter-3 represents in parameters.

Syntax for calling a procedure:

“{call <name of the procedure> (?,?,?….)}”

For example:

CallableStatement cs=con.prepareCall (“{call fun1 (?,?,?,?,?)}”);

3. Specify which input parameters are by using the following generalized method:

Public void setXXX (int, XXX);

For example:

cs.setInt (2, 10);

Preview from Notesale.co.uk

Page 24 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 25

cs.setInt (3, 20);

4. Specify which output parameters are by using the following generalized method:

 In jdbc we have a predefined class called java.sql.Types which contains various data types of

jdbc which are equivalent to database data types.

Java Jdbc Database

int INTEGER number

String VARCHAR varchar2

Short TINY INTEGER number

Byte SMALL INTEGER number

 All the data members which are available in Types class are belongs to public static final

data members.

For example:

cs.registerOutParameter (1, Types.INTEGER);

5. Execute the stored procedure by using the following method:

For example:

cs.execute ();

6. Get the values of out parameters by using the following method:

public XXX getXXX (int);

 Here, int represents position of out parameter. XXX represents fundamental data type or

string or date.

For example:

int x=cs.getInt (1);

System.out.println (x);

Day - 14:

Write a java program which illustrates the concept of function?

Answer:

StuFun:

create or replace function StuFun

(a in number, b in number, n1 out number) return number

as

Preview from Notesale.co.uk

Page 25 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 36

 con.close ();

 }

 catch (Exception e)

 {

 System.out.println (e);

 }

 }// main

};// ScrollResultSet

Day - 18:

Updatable ResultSet:

 Whenever we create a ResultSet object which never allows us to update the database

through ResultSet object and it allows retrieving the data only in forward direction. Such type of

ResultSet is known as non-updatable and non-scrollable ResultSet.

 In order to make the ResultSet object as updatable and scrollable we must use the following

constants which are present in ResultSet interface.

int Type

TYPE_SCROLL_SENSITIVE

int Mode

CONCUR_UPDATABLE

 The above two constants must be specified while we are creating Statement object by using

the following method:

For example:

Statement st=con.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

 On ResultSet we can perform the following three operations, they are inserting a record,

deleting a record and updating a record.

Steps for INSERTING a record through ResultSet object:

1. Decide at which position we are inserting a record by calling absolute method.

For example:

rs.absolute (3);

2. Since we are inserting a record we must use the following method to make the ResultSet

object to hold the record.

For example:

rs.moveToInsertRow ();

Preview from Notesale.co.uk

Page 36 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 44

Servlet Hierarchy:

• In the above hierarchy chart Servlet is an interface which contains three life cycle methods

without definition.

• GenericServlet is an abstract class which implements Servlet interface for defining life cycle

methods i.e., life cycle methods are defined in GenericServlet with null body.

• Using GenericServlet class we can develop protocol independent applications.

• HttpServlet is also an abstract class which extends GenericServlet and by using this class we

can develop protocol dependent applications.

• To develop our own servlet we must choose a class that must extends either GenericServlet

or HttpServlet.

LIFE CYCLE METHODS of servlets:

In servlets we have three life cycle methods, they are

public void init ();

public void service (ServletRequest req, ServletResponse res);

public void destroy ();

public void init ():

 Whenever client makes a request to a servlet, the server will receive the request and it

automatically calls init () method i.e., init () method will be called only one time by the server

whenever we make first request.

 In this method, we write the block of statements which will perform one time operations,

such as, opening the file, database connection, initialization of parameters, etc.

public void service (ServletRequest, ServletResponse):

 After calling init () method, service () method will be called when we make first request from

second request to further subsequent requests, server will call only service method. Therefore,

service () method will be called each and every time as and when we make a request.

 In service () method we write the block of statements which will perform repeated

operations such as retrieving data from database, retrieving data from file, modifications of

parameters data, etc. Hence, in service () method we always write business logic.

 Whenever control comes to service () method the server will create two objects of

ServletRequest and ServletResponse interfaces.

 Object of ServletRequest contains the data which is passed by client. After processing client

data, the resultant data must be kept in an object of ServletResponse.

 An object of ServletRequest and ServletResponse must be used always within the scope of

service () method only i.e., we cannot use in init () method and destroy () method.

 Once the service () method is completed an object of ServletRequest and an object of

ServletResponse will be destroyed.

public void destroy ():

 The destroy () method will be called by the server in two situations; they are when the

server is closed and when the servlet is removed from server context. In this method we write the

block of statements which are obtained in init () method.

Preview from Notesale.co.uk

Page 44 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 48

 pw.println ("<h1> WELCOME TO SERVLETS <h1>");

 pw.println ("<h2> CURRENT DATE & TIME IS : "+s+"<h2>");

 }

 public void destroy ()

 {

 System.out.println ("I AM FROM destroy METHOD...");

 }

};

web.xml:

<web-app>

 <servlet>

 <servlet-name>kalyan</servlet-name>

 <servlet-class>ds.DateServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>kalyan</servlet-name>

 <url-pattern>/suman</url-pattern>

 </servlet-mapping>

</web-app>

Day - 24:

HttpServlet:

• HttpServlet is the sub-class of GenericServlet.

• HttpServlet contains all the life cycle methods of GenericServlet and the service () method of

GenericServlet is further divided into the following two methods, they are

 public void doGet (HttpServletRequest, HttpServletResponse) throws ServletException, IOException

 public void doPost (HttpServletRequest, HttpServletResponse) throws ServletException, IOException

• Whenever client makes a request, the servlet container (server) will call service () method,

the service () method depends on type of the method used by the client application.

• If client method is get then service () method will call doGet () method and doGet () method

internally creates the objects of HttpServletRequest and HttpServletResponse. Once doGet ()

method is completed its execution, the above two objects will be destroyed.

LIMITATIONS of get method:

1. Whatever data we sent from client by using get method, the client data will be populated or

appended as a part of URL.

For example:

http://localhost:7001/servlet/DDservlet?uname=scott&pwd=tiger

2. Large amount of data cannot be transmitted from client side to server side.

• When we use post method to send client data, that data will be send as a part of method

body and internally the service () method will called doPost () method by creating the

objects of HttpServletRequest and HttpServletResponse.

ADVANTAGES of post method:

1. Security is achieved for client data.

2. We can send large amount of data from client to server.

Preview from Notesale.co.uk

Page 48 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 57

 public doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 ……………

 ……………

 ServletContext ctx=this.getServletContext ();

 ……………

 ……………

 }

};

By using ServletConfig interface:

 In ServletConfig interface we have the following method which gives an object of

ServletContext.

 In order to call the above method first we must obtain an object of ServletConfig interface

and later with that object we can call getServletContext () method.

For example:

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 …………

 …………

 ServletConfig config=this.getServletConfig ();

 ServletContext ctx=config.getServletContext ();

 ………….

 ………….

 }

};

Number of ways to RETRIEVE THE DATA from an OBJECT of ServletContext:

 In ServletContext interface we have the following methods to retrieve the value of context

parameter by passing context parameter name.

For example:

ServletContext ctx=getServletContext ();

String val1=ctx.getInitParameter (“v1”);

String val2=ctx.getInitParameter (“v2”);

For example:

ServletContext ctx=getServletContext ();

Enumeration en=ctx.getInitParameterNames ();

While (en.hasMoreElements ())

{

 String cpn= (String) en.nextElement ();

 String cpv=ctx.getInitParameter (cpn);

 pw.println (cpv+” is the value of ”+cpn);

}

Preview from Notesale.co.uk

Page 57 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 66

 float smarks=0;

 if ((sno1==null)||(sno1.equals ("")))

 {

 al.add ("PROVIDE STUDENT NUMBER...");

 }

 else

 {

 try

 {

 sno=Integer.parseInt ("sno1");

 }

 catch (NumberFormatException nfe)

 {

 al.add ("PROVIDE int DATA IN STUDENT NUMBER...");

 }

 }

 if ((sname==null)||(sname.equals ("")))

 {

 al.add ("PROVIDE STUDENT NAME...");

 }

 if ((smarks1==null)||(smarks1.equals ("")))

 {

 al.add ("PROVIDE STUDENT MARKS...");

 }

 else

 {

 try

 {

 smarks=Float.parseFloat ("smarks1");

 }

 catch (NumberFormatException nfe)

 {

 al.add ("PROVIDE float DATA IN STUDENT MARKS...");

 }

 }

 if (al.size ()!=0)

 {

 pw.println (al);

 }

 else

 {

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into Student values (?,?,?)");

 ps.setInt (1, sno);

 ps.setString (2, sname);

 ps.setFloat (3, smarks);

 int i=ps.executeUpdate ();

 if (i>0)

 {

 pw.println ("RECORD INSERTED...");

 }

 else

Preview from Notesale.co.uk

Page 66 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 70

What is the difference between getRequestDispatcher (String) and getNamedRequestDispatcher

(String)?

Answer:

 getRequestDispatcher (String) method takes url-pattern or public-url of web.xml where as

getNamedRequestDispatcher (String) method takes name of the servlet or deployer name of

web.xml

Forwarding or Including request and response of one web-app to another web-app:

 In order to achieve forwarding or including the request and response objects of one web

application to another web application, we must ensure that both the web applications must run in

the same servlet container.

1. Obtain ServletContext object for the current web application.

 For example:

 ServletContext cctx=getServletContext ();

2. Obtain SerletContext object of another web application by using the following method which

is present in ServletContext interface.

 For example:

 ServletContext octx=cctx.getContext (“./webapp2”);

3. Obtain RequestDispatcher object by using ServletContext object of another web application.

For example:

RequestDispatcher rd=octx.getRequestDispatcher (“/s2”);

4. Use either include of forward to pass request and response objects of current web

application.

For example:

rd. include (req, res);

rd.forward (req, res);

Preview from Notesale.co.uk

Page 70 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 72

public class Serv2 extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 pw.println ("<h6>I AM FROM Serv2 OF webapp2</h6>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

Forwarding request and response objects of one web application to another web application and

both the web applications are running in different servlet containers:

 In order to send the request and response object of one web application which is running in

on servlet container to another web application which is running in another servlet container, we

cannot use forward and include methods.

 To achieve the above we must use a method called sendRedirect (String url) method whose

prototype is

 The above method is present in HttpServletResponse interface, the parameter String url

represents url of another web application which is running in some other servlet container.

The following diagram will illustrate the concept of sendRedirect method:

1. Make a request to a servlet or JSP which is running in a web application of one container

http://localhost:2008/webapp1/s1 context path or document root of one web application.

2. Servlet of web application of Tomcat will redirect the request of client to another web

application of Weblogic by using the following statement:

Res.sendRedirect (“http://localhost:7001/webapp2/s2”); must be written in

Serv1 of webapp1

3. Browser will send the request to another web application of another servlet container.

For example:

http://localhost:7001/webapp2/s2 which is redirected by Serv1 of webapp1.

4. Webapp1 gives the response of Serv2 only but not Serv1 servlet.

Preview from Notesale.co.uk

Page 72 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 81

Load-on-startup:

 Load-on-startup is basically used for giving equal response for all the clients who are

accessing a particular web application. By default after making request the ServletContext object will

be created by servlet container. Because of this first response takes more amount of time and

further responses will take minimum amount of time. Therefore to avoid the discrepancy in

response time we use a concept of load-on-startup. <load-on-startup> tag will be used as a part of

<servlet> tag since it is specific to the servlet.

 If the priority value is positive for a group of servlets then whose objects will be created

based on ascending order of the priorities. If the priority value is zero then that servlet object will be

created at the end. If the priority value of a servlet is negative then that servlet object will not be

created i.e., neglected.

 When we use load-on-startup as a part of web.xml the container will create an object of a

servlet before first request is made.

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>DdServ</servlet-class>

 <load-on-startup>10</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/ddurl</url-pattern>

 </servlet-mapping>

</web-app>

DdServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class DdServ extends HttpServlet

{

 public DdServ ()

 {

 System.out.println ("SERVLET OBJECT IS CREATED");

 }

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 System.out.println ("I AM FROM doGet ()");

 pw.println ("<h3>I AM FROM doGet ()</h3>");

 }

};

Preview from Notesale.co.uk

Page 81 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 93

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s2</servlet-name>

 <url-pattern>/test2</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>s3</servlet-name>

 <url-pattern>/test3</url-pattern>

 </servlet-mapping>

</web-app>

personal.html:

<html>

 <title>Complete example</title>

 <body>

 <center>

 <form name="ex" action="./test1" method="post">

 <table border="1">

 <tr>

 <th align="left">Enter ur name : </th>

 <td><input type="text" name="ex_name" value=""></td>

 </tr>

 <tr>

 <th align="left">Enter ur address : </th>

 <td><textarea name="ex_add" value=""></textarea></td>

 </tr>

 <tr>

 <th align="left">Enter ur age : </th>

 <td><input type="text" name="ex_age" value=""></td>

 </tr>

 <tr>

 <table>

 <tr>

 <td align="center"><input type="submit" name="ex_continue" value="Continue"></td>

 </tr>

 </table>

 </tr>

 </table>

 </form>

 </center>

 </body>

</html>

Database table (info):

create table info

(

 name varchar2 (13),

 addr varchar2 (33),

 age number (2),

 exp number (2),

 skills varchar2 (13),

 sal number (7,2),

 loc varchar2 (17)

);

/

Preview from Notesale.co.uk

Page 93 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 95

 pw.println ("</td></tr><table><tr><td align=\"center\"><input type=\"submit\"

name=\"second_submit\" value=\"Submit\">");

 pw.println ("</td></tr></table></table></form></center></body></html>");

 }

 public void doPost (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 doGet (req, res);

 }

};

FinalServ.java:

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

import java.util.*;

public class FinalServ extends HttpServlet

{

 public void doGet (HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException

 {

 res.setContentType ("text/html");

 PrintWriter pw=res.getWriter ();

 String sal1=req.getParameter ("second_sal");

 float salary=Float.parseFloat (sal1);

 String location=req.getParameter ("second_loc");

 HttpSession hs=req.getSession (false);

 String name=(String) hs.getAttribute ("namehs");

 String address=(String) hs.getAttribute ("addresshs");

 String age1=(String) hs.getAttribute ("agehs");

 int age=Integer.parseInt (age1);

 String exp=(String) hs.getAttribute ("exphs");

 int experiance=Integer.parseInt (exp);

 String skills=(String) hs.getAttribute ("skillshs");

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:

Hanuman","scott","tiger");

 PreparedStatement ps=con.prepareStatement ("insert into info values (?,?,?,?,?,?,?)");

 ps.setString (1, name);

 ps.setString (2, address);

 ps.setInt (3, age);

 ps.setInt (4, experiance);

 ps.setString (5, skills);

 ps.setFloat (6, salary);

 ps.setString (7, location);

 int j=ps.executeUpdate ();

 if (j>0)

 {

 pw.println ("<html><body bgcolor=\"lightblue\"><center><h1>

Successfully ");

 pw.println ("Inserted</h1></center>Home

</body></html>");

Preview from Notesale.co.uk

Page 95 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 99

will be placed automatically in out.println () method and this method is available as a

part of service method.

NOTE: Expressions in the expression tag should not be terminated by semi-colon (;) .

For example-1:

<%! int a=10, b=20 %>

<%= a+b %>

 The equivalent servlet code for the above expression tag is out.println (a+b);

out is implicit object of JSPWriter class.

For example-2:

<%= new java.util.Date () %> � out.println (new java.util.Date ());

3. Scriplet tag:

 Scriplets are basically used to write a pure java code. Whatever the java code we

write as a part of scriplet, that code will be available as a part of service () method of

servlet.

Syntax:

<% pure java code %>

Write a scriplet for generating current system date?

Answer:

web.xml:

<web-apps>

</web-apps>

DateTime.java:

<html>

 <title>Current Date & Time</title>

 <head><h4>Current date & time</h4></head>

 <body>

 <%

 Date d=new Date ();

 String s=d.toString ();

 out.println (s);

 %>

 </body>

</html>

[or]

<html>

 <title>Current Date & Time</title>

 <head><h4>Current date & time</h4></head>

 <body>

 <%=new Date ()%>

 </body>

</html>

Write a JSP page to print 1 to 10 numbers? [For web.xml refer page no: 102]

Answer:

One2TenNumbers.jsp:

<html>

 <title>Print Numbers 1-10</title>

 <head>Numbers 1-10</head>

Preview from Notesale.co.uk

Page 99 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 101

 java.util.Date d=new java.util.Date ();

 %>

 <h4>Current date & time</h4>

 <h3><%= d %></h3>

 </body>

</html>

Write a JSP page which will display number of times a request is made [write a JSP for hit counter]?

[For web.xml refer page no: 102]

Answer:

ReloadPageCount.jsp:

<html>

 <title>Number of Reloads</title>

 <head>Number of visitings to a browser</head>

 <body>

 <%! int ctr=0; %>

 <%!

 int count ()

 {

 return (++ctr);

 }

 %>

 <h3><%= count () %></h3>

 </body>

</html>

NOTE:

 Within servlet we use to write html code to generate presentation logic whereas in JSP

environment within html program we are making use of JSP tags.

Write a JSP page which will retrieve the data from database? [For web.xml refer page no: 102]

Answer:

<%@ page import="java.sql.*, java.io.*" %>

<html>

 <title>Data From Database</title>

 <head>Retrieve data from Datebase</head>

 <body>

 <%!

 Connection con=null;

 Statement st=null;

 public void jspInit ()

 {

 try

 {

 Class.forName ("oracle.jdbc.driver.OracleDriver");

 con=DriverManager.getConnection ("jdbc:oracle:thin:@localhost:1521:Hanuman","scott",

"tiger");

 st=con.createStatement ();

 }

 catch (Exception e)

 {

 out.println (e);

 }

 }

Preview from Notesale.co.uk

Page 101 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 114

Login.html:

<html>

 <head><center><h3>Login Page</h3></center></head>

 <body>

 <center>

 <h4>Forward/Include test</h4>

 <form name="login" action="Login.jsp" method="post">

 <p>Enter username : <input type="text" name="login_uname" value="">

 Enter password : <input type="password" name="login_pwd" value="">

 <input type="submit" value="Login">

 </form>

 </center>

 </body>

</html>

Login.jsp:

<% String s1=request.getParameter ("login_uname");

 String s2=request.getParameter ("login_pwd");

 if (s1.equals ("kalpana") && s2.equals ("test"))

 { %>

 <JSP:forward page="Success.jsp"/>

<% }

 else

 { %>

 <h5>Login failed</h5>

 <JSP:include page="Login.html"/>

<% } %>

Success.jsp:

<h5>Login Successful</h5>

Welcome to :

<h4><%= request.getParameter ("login_uname") %></h4>

Develop the following form?

Preview from Notesale.co.uk

Page 114 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 118

 {

 out.println (e);

 } %>

</html>

JavaBeans in JSP

 A JavaBeans class is a software reusable component. Every JavaBeans class must belong to a

package. Since, it is reusable. Every JavaBeans class modifier must be public. Every JavaBeans class

must contain set of data members (known as properties).

 For each and every data member of JavaBeans class we must have set of set methods whose

general representation is:

public void setXxx (datatype FormalVariableName)

{

 ……………..;

 ……………..;

 ……………..;

}

 For each and every data member of JavaBeans class we must have set of get methods whose

general representation is:

public datatype getXxx ()

{

 ……………..;

 ……………..;

 ……………..;

}

 The set of set methods are used for setting the values to JavaBeans class object whereas set

of get methods are used for getting the values from JavaBeans class object.

Properties or characteristics of JavaBeans:

Every JavaBeans class contains simple property, boolean property and indexed properties.

• A simple property is one in which a method takes and returns elementary or single value

(set of set and get methods are known as simple properties of a JavaBeans class.)

• A boolean property is one in which a method takes or return boolean value.

• An indexed property is one in which a method takes or return array of values.

Develop a JavaBeans class which will check whether the username and password correct or not?

Answer:

Test.java:

package abc;

public class Test

{

 String uname;

 String pwd;

 public void setUname (String uname)

 {

 this.uname=uname;

 }

 public void setPwd (String pwd)

Preview from Notesale.co.uk

Page 118 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 120

• request - represents a JavaBeans class object can be accessed in those JSP pages

which are participating in processing a single request.

• session - represents a JavaBeans class object can be accessed in all the JSP pages

which are participating in a session and it is not possible to access in those JSP pages

which are not participating in session.

• application - represents a JavaBeans class object can be accessed in all the JSP pages

which belongs to the same web application but it is not possible to access in those

JSP pages which are belongs to other web applications.

The type attribute represents specification of base interface or class name of a JavaBeans

class.

For example:

<JSP:useBean id=”eo”

 class=”ep.Emp”

 scope=”session”

 type=”ep.GenEmp” />

 When the above statement is executed the container creates an object eo is created

in the following way:

ep.GenEmp eo=new ep.Emp ();

 If we are not specifying the value for type attribute then the object eo is created in

the following way:

ep.Emp eo=new ep.Emp ();

NOTE:

 In the above <JSP:useBean/> tag if we use a tag called <JSP:setProperty/> then

that tag becomes body tag of <JSP:useBean/> tag.

5. <JSP:setProperty/>:

 This tag is used for setting the values to the JavaBeans class object created with

respect to <JSP:useBean/> tag.

Syntax-1:

<JSP:setProperty name=”object name of a JavaBeans class”

 Property=”property name of JavaBeans class”

 Value=”value for property” />

For example:

<JSP:useBean id=”eo” class=”ep.Emp”>

 <JSP:setProperty name=”eo”

 Property=”empno”

 Value=”123” />

</JSP:useBean>

 When the above statement is executed by the container, the following statement

will be taken place.

ep.Emp eo=new ep.Emp ();

eo.setEmpno (“123”);

Preview from Notesale.co.uk

Page 120 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 130

 }

 while (rs.next ())

 {

 %>

 <tr>

 <%

 j=1;

 while (j<=ColCount)

 {

 %>

 <td>

 <% out.print (rs.getString (j)); %>

 </td>

 <%

 j++;

 }

 %>

 </tr>

 <%

 rs.close ();

 con.close ();

 }

 catch (Exception e)

 {

 e.printStackTrace ();

 }

 %>

 </body>

</html>

Day - 58:

SWINGS

• In the earlier days SUN micro system; we have a concept called awt.

• awt is used for creating GUI components.

• All awt components are written in ‘C’ language and those components appearance is

changing from one operating system to another operating system. Since, ‘C’ language is the

platform dependent language.

• In later stages SUN micro system has developed a concept called swings.

• Swings are used for developing GUI components and all swing components are developed in

java language.

• Swing components never change their appearance from one operating system to another

operating system. Since, they have developed in platform independent language.

Differences between awt and swings:

Awt Swings

1. awt components are developed in ‘C’

language.

1. Swing components are developed in java

language.

2. All awt components are platform

dependent.

2. All swing components are platform

independent.

Preview from Notesale.co.uk

Page 130 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 131

3. All awt components are heavy weight

components, since whose processing

time and main memory space is more.

3. All swing components are light weight

components, since its processing time

and main memory space is less.

NOTE: All swing components in java are preceded with a letter ‘J’.

For example:

JButton JB=new JButton (“ok”);

 All components of swings are treated as classes and they are belongs to a package called

javax.swing.*

 In swings, we have two types of components. They are auxiliary components and logical

components.

• Auxiliary components are those which we can touch and feel. For example, mouse,

keyboard, etc.

• Logical components are those which we can feel only.

 Logical components are divided into two types. They are passive or inactive components

and active or interactive components.

• Passive components are those where there is no interaction from user. For example, JLabel.

• Active components are those where there is user interaction. For example, JButton,

JCheckbox, JRadioButton, etc.

� In order to provide functionality or behavior to swing GUI active components one must

import a package called java.awt.event.*

� This package contains various classes and interfaces which provides functionality to active

components.

� EDM is one which always provides the functionality to GUI active components.

Steps in EDM:

1. Every GUI active component can be processed in two ways. They are based on name or

label of the component and based on reference of the component. Whenever we interact

with any GUI component whose reference and label will be stored in one of the predefined

class object whose general notation is xxxEvent class.

For example:

JButton � ActionEvent

JCheckbox � ItemEvent

2. In order to provide behavior of the GUI component we must write some statements in

methods only. And these methods are given by SUN micro system without definition. Such

type of methods is known as abstract methods. In general, all abstract methods present in

interfaces and those interfaces in swings known as Listenters. Hence, each and every

interactive component must have the appropriate Listener whose general notation is

xxxListener.

For example:

JButton � ActionListener

JCheckbox � ItemListener

Preview from Notesale.co.uk

Page 131 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 136

 <filter-name>abc</filter-name>

 <filter-class>FilterEx</filter-class>

 </filter>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>ServletEx</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/Serv</url-pattern>

 </servlet-mapping>

 <filter-mapping>

 <filter-name>abc</filter-name>

 <url-pattern>/Filt</url-pattern>

 </filter-mapping>

</web-app>

Day - 61:

Develop a java program which will illustrate the concept of Filters?

Answer:

web.xml:

<web-app>

 <filter>

 <filter-name>abc</filter-name>

 <filter-class>FilterEx</filter-class>

 </filter>

 <servlet>

 <servlet-name>pqr</servlet-name>

 <servlet-class>ServletEx</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>pqr</servlet-name>

 <url-pattern>/Serv</url-pattern>

 </servlet-mapping>

 <filter-mapping>

 <filter-name>abc</filter-name>

 <url-pattern>/Filt</url-pattern>

 </filter-mapping>

</web-app>

FilterEx.java:

import javax.servlet.*;

import java.io.*;

public class FilterEx implements Filter

{

 public FilterEx ()

 {

Preview from Notesale.co.uk

Page 136 of 141

J2EE (Advanced) JAVA

By Mr. K. V. R Page 140

Steps for creating data sources:

NOTE:

 In a Servlet program we should always use JNDI name which in turns pointing to appropriate

data source name and it points to one of named connection in connection pool.

For example:

web.xml:

<web-app>

 <servlet>

 <servlet-name>abc</servlet-name>

 <servlet-class>FirstConPoolServ</servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>abc</servlet-name>

 <url-pattern>/ServPool</url-pattern>

 </servlet-mapping>

</web-app>

index.html:

<html>

 <body bgcolor=lightblue>

 <center>

 <form action="./ServPool">

 Enter table name: <input type="text" name="table" value="">

 <input type="submit" value="Bring data">

 </center>

 </body>

</html>

FirstConPoolServ.java:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import javax.sql.*;

import javax.naming.InitialContext;

public class FirstConPoolServ extends HttpServlet

Preview from Notesale.co.uk

Page 140 of 141

