
Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

POJO: [plain old java object] A pojo class is a class which should not extend any predefined class
belongs to specific API and it should not implement any predefined interface belongs to specific api.

Following are pojo classes:
class C1
{
}
class C2 extends C1
{
}
class C3 extends java.lang.Thread
{
}
Note: Thread is a predefined class but its not confined for development of any particular kind of
application. In another words Thread class can be used for any kind of java application. So our class
C3 is a pojo class.

class C4 implements java.lang.Runnable
{
}
Note: Runnable is an interface which can be used to create a thread. So it can be used for development
of any kind of java application.

class C5 implements java.io.Serializable
{
}
Note: Serializable interface implementation class objects will become serializable objects. So that we
can transfer from one location to another location over the network.
Following are not POJO classes:
class C6 extends GenericServlet
{
}
Note: GenericServlet class is used only for the purpose of web application development. So our class
is not a pojo class.

class C7 implements Servlet
{
}
Note: Our class is implementing Servlet interface which is confined for development of web
applications.
class C8 implements java.rmi.Remote
{
}
Note: Remote interface is used only for development of Distributed Applications. So the above class is
not a pojo class.

POJI Interfaces: The interfaces that are not API dependent are called as POJI [Plain Old Java
Interface]

5

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Preview from Notesale.co.uk

Page 5 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Composite Primary Key: If more than one member variable of POJO class is configured as
primary key field then it is called as Composite Primary Key. To configure this we use
<composite-id> tag in mapping file.

Note: Whether the database table have primary key or not still primary key field configuration on
POJO class member variables hibernate mapping file is mandatory.

In a database table if primary key is not specified then we can prefer unique key field to configure
as a primary key in hibernate mapping file.

If database team has given a table without constraints then it is recommended to configure multiple
member variables of POJO class as a primary key filed (Composite primary key field)

States of Persistent class object [POJO class object]: There are 3 states which are as follows:
1. Transient state:

a. Object is created by programmer with data. But it doesn’t represent any table row.
b. This object doesn’t contain primary key value.
c. The object which is created for POJO class and which is not under control of hibernate

application resides in transient state.
2. Persistent state:

a. The object that represents table row with primary key and managed under the control of
hibernate software is called as persistent object.

b. This object will be in synchronization with table row.
c. Hibernate application developer’s uses this kind of object in persistent logic

development.
3. Detached state

a. When session is closed automatically persistent context will be destroyed and all the
objects which are in persistent state will be thrown to detached state.

b. When table row of persistence state object is deleted then object becomes detached
object.

Hibernate application:
• It uses hibernate setup to interact with database software and this application is a client to

database software.
• It uses two important objects to represent hibernate software. They are:

o SessionFactory
o Session

Note: Hibernate Session object is no way related with HttpSession object of Servlet API.

SessionFactory:
• It’s an object of a class that implements org.hibernate.SessionFactory interface.
• It represents connection pool.
• Using this we can get session objects.
• Its a thread safe object.

Session:
• Each session object of SessionFactory pool is constructed by encapsulating JDBC connection

and statement objects.
• Programmer uses Session object to interact with database software.
• Session object is not a thread safe object.
• Java Hibernate application can have multiple Hibernate Session objects.

14

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

Preview from Notesale.co.uk

Page 14 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Step3: Develop POJO class/persistent class

Employee.java

public class Employee implements java.io.Serializable
{

int no;
String fname, lname, email;

public void setNo(int no)
{

this.no = no;
}
public int getNo()
{

return no;
}
public void setFname(String fname)
{

this.fname = fname;
}
public String getFname()
{

return fname;
}
public void setLname(String lname)
{

this.lname = lname;
}
public String getLname()
{

return lname;
}
public void setEmail(String email)
{

this.email = email;
}
public String getEmail()
{

return email;
}

}

17

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

Preview from Notesale.co.uk

Page 17 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

jt1.setJob("programmer");
jt1.setSalary(12000);
jt1.setDepartment(101);

Person p1= new Person();

 p1.setPname("Sai");
 p1.setPjob(jt1);

ses.save(p1);
tx.commit();

 System.out.println("records are inserted successfully");
}//try
catch(HibernateException he)
{

he.printStackTrace();
 }

To read record:

Person p = (Person) ses.get(Person.class, new Integer(4));

JobType jt = p.getPjob();

System.out.println(p.getPid()+" "+p.getPname()+" "+jt.getJob()+" "+jt.getSalary()+"
"+jt.getDepartment());

Algorithms:
1. In our programs till now we have given primary key values manually for our pojo class objects.

But in real time we will make primary key values to be generated automatically. So that in
order to generate primary key values automatically we are using algorithms.

2. To work with algorithms we need to do changes in mapping file and also in a client program.
3. Hibernate supplies lot of predefined algorithms as identity value generators for pojo class

objects.
4. These algorithms are pre defined classes supplied by hibernate API implementing

org.hibernate.Id.IdentifierGenerator.
5. To specify these algorithms use <generator> tag which is a sub tag of <id> tag in hibernate

mapping file.
6. All these algorithm classes also have nick names or short names to use in mapping file. We

have many algorithms which are as follows:

Short form Algorithm Class name
• assigned (default) org.hibernate.id.Assigned
• increment org.hibernate.id.IncrementGenerator
• identity org.hibernate.id.IdentityGenerator

32

1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

Preview from Notesale.co.uk

Page 32 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Client.java

FileInputStream fis = new FileInputStream("data.properties");
Properties p = new Properties();
p.load(fis);
//activate hibernate software
Configuration cfg = new Configuration();
cfg.setProperties(p);

cfg.addFile("student.hbm.xml");

Note: In these both styles we have drawbacks. We cannot configure additional properties like
show_sql.

Immutable SessionFactory object: After creating SessionFactory object if we modify
hibernate configuration properties dynamically at run time of the client program then still the
SessionFactory will contain old values and modified values will not be reflected in it.

When ever we modify hibernate-configuration file then we need to save & close it. Then we need to
restart the application if the application is already running. Then it self application can create a new
SessionFactory object after reading the modified configuration file.

Tools: By using tools we can create table, update table and we can also create and drop a table at run
time of program based up on details given in mapping file but command should be given in
configuration file.

1. create:
a. It can be used to create table
b. If table already exists with specified name then it will be dropped and a new table will be

created with same name.
Steps:

a. Add the following tag in configuration file
<property name= "hbm2ddl.auto">create</property>

b. Mapping file
<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping>
<class name="StudentBean" table="students">

<id name="sid" length = "10" type = "int" />
<property name="sname" length = "20" type = "string"/>

38

1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

Preview from Notesale.co.uk

Page 38 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Ex4:
Sql>delete from employee where firstname in (‘Sai’, ‘Kanakadhar’);
Hql>delete from EmpBean as eb where eb.firstname in (‘Sai’, ‘Kanakadhar’)

• To execute select queries of hql use list() or iterate() on query object.
• To select non-select statement hql queries call executeUpdate() on query object.
• Execution of hql query is nothing but converting hql query to the underlying database s/w

specific sql query & sending that sql query to database s/w for execution.
• Hibernate 3.x software internally uses AST query translator factory to convert hql queries

into database specific s/w equivalent sql queries.

list() vs iterate():

list() generates results by selecting all the records through the execution of a single select sql query [no
lazy loading]

iterate() selects the records from database table by executing a separate query to read each record and a
separate query to read all id values. [Lazy loading]

Eg: If we read 10 records from table then list() generates one query where as iterate() generates 11
queries [one for id values & 10 queries for 10 records].

Note:
1. We can see difference between list() and iterate() only when hql select queries are selecting all

the columns of a table.
2. When iterate() is used to select specific columns values then lazy loading doesn’t takes place.

Sql select queries of jdbc vs hql select queries of hibernate:
Jdbc code based select queries execution gives ResultSet object which is not serializable object. So we
cannot send ResultSet object over the network.

Hibernate based select hql queries execution gives results in the form of collection framework List data
structure. Since this List data structure is serializable object by default we can send it through network.

Note: All collection frame work data structures are serializable by default.
Note: In order to make pojo class object as serializable object, pojo class should implement
java.io.Serializable interface.

Input values to hql queries:
To make hql queries flexible by setting input values of query from outside the query and to set query
input values without bothering about database s/w, we can pass parameters to hql queries in java style.

Parameters in HQL queries:
1. Positional parameters (?)
2. Named Parameters (:<name>) [Recommended to use]

41

1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942

Preview from Notesale.co.uk

Page 41 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Example: Insertion of records from one table to another table.

Note: Here we need two pojo classes. One for source table and another for destination table. Here
StuBean is for destination and StudentBean is for source. Data types of corresponding columns of both
the tables should be same.

String qry = "insert into StuBean (sid1, sname1, tot_m1) select st.sid, st.sname, st.tot_m
from StudentBean as st where st.tot_m >= :tm";

Query q1 = ses.createQuery(qry);
//setting values for marks
q1.setFloat("tm", 98.0f);
int count = q1.executeUpdate();
System.out.println("No of records inserted into stu table are: "+count);

Criteria API: Using criteria api we can read multiple records at a time with a single method call.
Here mainly we can work with two objects. They are:

1. Criteria: Using its object we can configure two things:
a. Bean class name [by using which we have to retrieve records]
b. Adding criterion objects.

2. Criterion: Criterion object can be created in many ways. We can work with static methods of
following classes:

a. Restrictions: From this class we can call static methods as follows:
i. ge() [greater than or equal to]
ii. ne() [not equal to]
iii. lt() [less than]
iv. gt() [greater than]
v. le() [less than or equal to]
vi. like() [here we can use wild card characters like “%” and “_” [under

score]
vii. and() [to retrieve records which satisfies more than one condition]
viii. or()[to retrieve records which satisfies any one of two conditions]

Note: The above Restruictions class methods works based up on pojo class properties to specify
conditions.

46

2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190

Preview from Notesale.co.uk

Page 46 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

In order to centralize certain persistence logic or business logic for multiple modules of a project or
multiple projects of a company then place that logic in database s/w as pl/sql procedure or function.
Hibernate persistence logic can call pl/sql procedure or function of database s/w from client application
only when they are developed with compatibility to hibernate.
These compatibility rules of developing stored procedures or functions differ from one to other
database.
A cursor in pl/sql programming of oracle is a data type whose variable can store zero or any no. of
selected records from database tables.

Rules & Limitations:

1. Pagination is not possible on results generated by queries of hibernate specific pl/sql procedures
that means we cannot use setMaxResults() & setFirstResults() in this environment.

We must follow the following syntax to call the procedure:

{call procedure-name(<parameters>)}

We must follow the following syntax to call pl/sql function:

{? = call function-name(<parameters>)}

Note: pl/sql procedure does not return a value where as pl/sql function returns a value.

Rules specific to oracle to design stored procedure or function compatible with hibernate:

1. pl/sql procedures first parameter must be an out parameter returning resultset (cursor having
records).

2. pl/sql function must return a result set [cursor having records]
Note: sys_refcursor is cursor type given by pl/sql programming of oracle having the ability to
store selected records (one or more) like result set object of jdbc programming.

Note: For rules specific to Sybase, ms-sql server, database software’s refer chapter 16 of pdf file.

Note: Hibernate application uses native sql programming to call pl/sql procedures or functions.
Calling pl/sql procedure or function which is not compatible wit hibernate is possible indirectly
from hibernate persistence logic by injecting jdbc code.

Limitations of hibernate s/w:
1. Since hibernate is not a distributed technology, hibernate persistence logic is not distributed

persistence logic. So this persistence logic can’t be used from remote clients directly.
2. Calling pl/sql procedures or functions from hibernate persistence logic is quite complex. More

over these pl/sql function or procedure must be written in a compatible form of hibernate.
3. Pagination is not possible on result set generated by pl/sql procedure or function.
4. hibernate can’t be used to interact with non conventional databases like text file, ms-excel

etc.., [jdbc can do this]
5. Hibernate can’t interact with few conventional databases like ms. Access.

Examples:

1. Eg: Entity native sql query or select query that selects all columns values.

52

2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487

Preview from Notesale.co.uk

Page 52 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

q1.addScalar("sname1", Hibernate.STRING);

//Execution of native sql query

List l = q1.list();

System.out.println("Records are: ");

for(int i = 0; i < l.size() ; i++) //for each row
{

Object row[] = (Object[]) l.get(i);
for(int j = 0; j < row.length ; j++) //for each column
{

System.out.print(row[j].toString()+" ");
}

System.out.println();
}

6. Named Queries
a. Named scalar

In mapping file

<hibernate-mapping>
<class name="StudentBean" table="student">

<id name="sid" column = "sid"/>
<property name="sname" column="sname"/>
<property name="tot_m" column = "tot_m"/>

</class>
<sql-query name = "qry">

<return-scalar column = "sname" type = "string"/>
select sname from student where sname like ?

</sql-query>
</hibernate-mapping>
In client program:

Query q1 = ses.getNamedQuery("qry");

q1.setString(0, "K%");

//Execution of native sql query
List l = q1.list();

System.out.println("Records are: "+l.toString());

b. Named Entity
In mapping file:

<sql-query name = "qry">

56

2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687

Preview from Notesale.co.uk

Page 56 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

<proxool>
<alias>ourpool</alias>
<driver-url>jdbc:oracle:thin:@localhost:1521:sathya</driver-url>
<driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
<driver-properties>

<property name = "user" value = "scott"/>
<property name = "password" value = "tiger"/>

</driver-properties>
<minimum-connection-count>10</minimum-connection-count>
<maximum-connection-count>20</maximum-connection-count>

</proxool>
</proxool-config>

Main xml file:
hibernate.cfg.xml
<!DOCTYPE hibernate-configuration PUBLIC

"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<property
name="hibernate.connection.providerclass">org.hibernate.connection.ProxoolConnectionProvider</pr
operty>

<property name="hibernate.proxool.pool_alias">ourpool</property>

<property name="hibernate.proxool.xml">ourfile.xml</property>
<property name="hibernate.dialect">org.hibernate.dialect.Oracle9Dialect</property>
<property name="show_sql">true</property>
<mapping resource="student.hbm.xml"/>

</session-factory>
</hibernate-configuration>

Inheritance:
Hibernate persistence classes are pojo classes. So it can participate in inheritance to give the advantage
of reusability and extensibility.

When classes hibernate is there in inheritance the database tables related to these persistence classes
will also maintain the data with relationship. We need to configure relationships in mapping file based
up on inheritance mapping concepts.

Inheritance between two servlet components is possible but inheritance between two ejb components is
not possible.

Inheritance types: Hibernate s/w gives 3 approaches of performing inheritance mapping to get
reusability, extensibility advantages of inheritance in different ways. They are:

1. Table for class hierarchy

62

2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986

Preview from Notesale.co.uk

Page 62 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

Note: While working with multiple tables it is recommended not to use reverse engineering process
of my-eclipse ide.

Table for concrete class hierarchy:
In this inheritance mapping even though pojo classes are there in inheritance their tables will not
participate in relationship and every pojo class of inheritance hierarchy will use one separate table
without having relationship with other table.

These pojo classes will be configured in hibernate mapping file as individual, independent,
concrete classes without showing inheritance and without showing reusability of properties
configuration.

Inheritance is mandatory. Through this retrieval of records from tables works properly. This is not
industrial standard.

Examples:
1. Table for class hierarchy
Oracle table creation:
create table persons
(

id number(5) primary key,
name varchar2(20),
company varchar2(20),
salary number(8,2),
department number(4),
address varchar2(30),
person_type varchar2(5)

);
Mapping file:
<hibernate-mapping>
 <class name="Person" table="persons" discriminator-value="per" >

 <id name="id" />
 <discriminator column="person_type" type="string" length="5" />
 <property name="name" />
 <property name="company" />

<subclass name="Employee" discriminator-value="emp">
<property name="salary" />
<property name="department" />

</subclass>
 <subclass name="Customer" discriminator-value="cus">

 <property name="address" />
</subclass>

</class>
</hibernate-mapping>

Base pojo classs:
public class Person
{ private int id;

64

3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086

Preview from Notesale.co.uk

Page 64 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

private String name,company;

public void setId(int n)
{

id=n;
}
public int getId()
{

return id;
}
public void setName(String s)
{

name=s;
}
public String getName()
{

return name;
}
public void setCompany(String s)
{

company=s;
}
public String getCompany()
{

return company;
}

}
Derived POJO class1:
public class Employee extends Person
{

private double salary;
private int department;

public void setSalary(double d)
{

salary=d;
}
public double getSalary()
{

return salary;
}
public void setDepartment(int n)
{

department=n;
}

public int getDepartment()
{

return department;

65

3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136

Preview from Notesale.co.uk

Page 65 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

The process of combining a set of related operations into single unit and executing them by applying
logic of do every thing or do nothing principle is called as transaction management.

While executing sensitive business logic and persistence logic we must deal with transaction
management.

E.g.: Transfer money operation is composed with two operations.

1. Withdraw amount from source a/c.
2. Deposit amount in destination account.

So we need to execute these two operations by applying do every thing or nothing principle through
transaction management.

Transaction management is applied on the code applies ACID properties support on database software.

A – Atomicity
C – Consistency
I – Isolation
D – Durability

Atomicity: The process of combining related sub operations into single unit is called atomicity.

Consistency: The process of getting guarantee that the rules kept on database s/w like balance must
not be negative are not violated by end of the transaction is called as consistency.

Isolation: The process of getting concurrent operations from database s/w from multiple users and
applications by applying logs is called as isolation.
Durability: The ability of bringing database s/w back to normal state by using log files and backup
files when database is crashed and using database data for long time is called as durability.

Architecture Transaction management:

The application or component on which transaction management is enabled is called as transactional
application or component.

Transaction manager is responsible to begin transaction and to commit or rollback the transaction on
the application code.

Based on no. of resources (database software’s) that are involved there are two types of transactions.

1. Local transaction: All the operations of application code on which transaction management is
enabled will deal with single resource [database s/w]
Eg: Transfer money operation between two accounts of same bank.

2. Distributed Transaction: If multiple resources or database software’s are involved for various
operations of application code on which transaction management is called as distributed
transaction.
Eg: Transfer money operation between two accounts of two different banks.

Distributed transaction runs based on 2pc [two phase commit] protocol.
Fig: Architecture of transaction management

74

3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578

Preview from Notesale.co.uk

Page 74 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

According to two pc (2 phase commit) protocol in phase 1 the distributed transaction manager asks all
database software’s permission to commit the transaction.

In phase 2 if all database software’s gives permission to commit the transaction then it will be
committed otherwise the distributed transaction will rollback.

Hibernate supports local transaction management but does not supports distributed transaction
management.

75

3579

3580
3581

3582
3583
3584
3585
3586
3587
3588
3589
3590
3591

Preview from Notesale.co.uk

Page 75 of 90

Sathya Technologies Hibernate 3.x Kanakadhar Surapaneni :)

OSCache (Open Symphony Cache) (org.hibernate.cache.OSCacheProvider)

1. It is a powerful .
2. flexible package
3. supports read-only and read/write caching.
4. Supports memory- based and disk-based caching.
5. Provides basic support for clustering via either JavaGroups or JMS.

Level 1 Cache: will be default in every hibernate program. When ever we get a session object from
session-factory immediately it creates a persistent context and maintains all records. When ever we try
to retrieve the same record more than one time then only once it gives a request to database server and
gives you the same record for every request. So we can reduce no of database hits.

Note: When ever we need to remove any persistent state object explicitly from our level 1 cache then
we can call evict(_) method belongs to session object

Example:

StudentBean st1;
st1 = (StudentBean) ses1.get(StudentBean.class, new Integer(105));
System.out.println(st1.getSid()+" "+st1.getSname()+" "+st1.getTot_m());

st1 = (StudentBean) ses1.get(StudentBean.class, new Integer(105));
System.out.println("Record Values r: ");
System.out.println(st1.getSid()+" "+st1.getSname()+" "+st1.getTot_m());

Note: Here we are loading the same record no: 105 for two times. But only one query will be
displayed. It means internally it is fetching data from level 1 cache.

sess.evict():

StudentBean st1;
st1 = (StudentBean) ses1.get(StudentBean.class, new Integer(105));
System.out.println(st1.getSid()+" "+st1.getSname()+" "+st1.getTot_m());

ses1.evict(st1);

st1 = (StudentBean) ses1.get(StudentBean.class, new Integer(105));
System.out.println("Record Values r: ");
System.out.println(st1.getSid()+" "+st1.getSname()+" "+st1.getTot_m());

Note: In the above code snippet as we have called evict() method student object “st1” will be removed
from level 1 cache. So that this time it will generate two queries to retrieve the same record.

79

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775

Preview from Notesale.co.uk

Page 79 of 90

