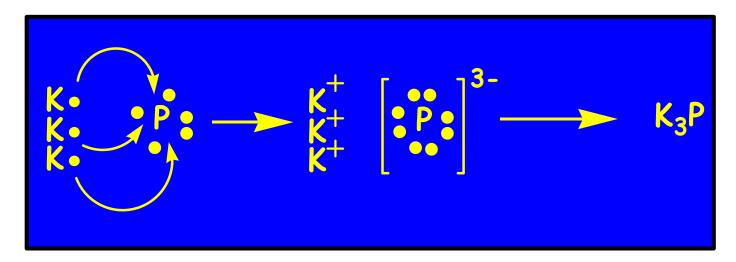
Formation of Anions

Some examples Notes ale. co. N

1s² 2s² 2p⁶ 3s² 3p⁴

1s² 2s² 2p⁶ 3s² 3p⁶

1s² 2s² 2p⁶ 3s² 3p³


Lewis Structures for Ionic Compounds

Using Lewis Dot Diagrams (Lewis Structures) to show ionic compound formation 23 of 5

Preview page 23 of 5

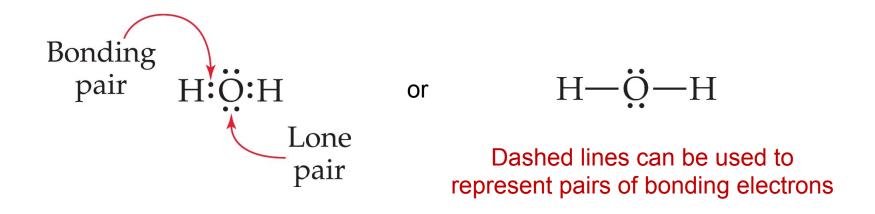
Example #1: What do we expect when Potassium (K) and Phosphorus (P) react?

To get an octet, K must lose one electron and P must gain three. How can Lewis diagrams help?

Lewis Structures for Molecular

- In the beginning of the chapter, we drew electron dot formulan for atoms
- The number of dots around each atom is equal to the number of valence electrons the atom has.
- We will now draw electron dot formulas for molecules (also called *Lewis structures*).
- A Lewis structure shows the bonds between atoms and helps us to visualize the arrangement of atoms in a molecule.

Guidelines for Drawing Lewis


- Structures of Moderales

 1. Add up the valence electrons of all atoms in the molecule. Page
- 2. Divide the total valence electrons by 2 to find the number of electron pairs in the molecule (makes counting easier).
- 3. Surround the *central atom* with 4 electron pairs.
- 4. Arrange the other atoms around the central atom. (Make molecule as symmetrical as possible)

Bonding vs Nonbonding Electrons Bonding electrons Notesale.co. Bonding electrons Notesale.co. Preview Page 28 of 57 •Electron pairs that are shared by atoms.

Nonbonding electrons (lone pairs):

•Electrons that are only on one atom.

More Complicated Lewis Structures

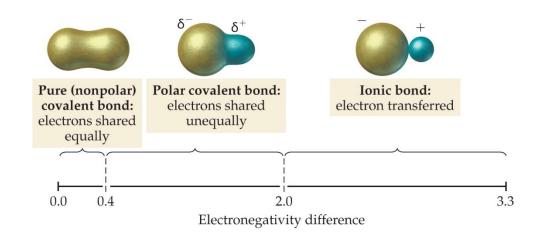
Note: When there are thomany atoms to fit around the central atomal by Grogen usually goes on the purside. Page

ex) H_2SO_4

Electron Dot Formula for CO₃²What is the Electronte of formula for CO₃²-?

Preview from AO of 5 formula for CO₃²-?

Electronegativity Differences


- Using the electronegativity failes on your periodic table, we see the electronegativity of H is 2.1 and Cl is 3.0.

 • Since there is a difference in electronegativity between the
- two elements (3.0 2.1 = 0.9), the bond in H–Cl is <u>polar</u>.
- Since Cl is more electronegative, the bonding electrons are attracted toward the Cl atom and away from the H atom. This will give the Cl atom a *slightly* negative charge and the H atom a *slightly* positive charge.

Electronegativity and Bond Type

Electronegativity Difference	Notesalor Type of Bond	Example
Preview Page	Nonpolar Covalent	H–C
0.4 – 2.0	Polar Covalent	H–F
> 2.0	Ionic	NaCl

^{*} These are just guidelines. Textbooks vary with these ranges

- The degree of bond polarity is a continuous function.
- Scientists arbitrarily decided on these ranges