
 

Instructor: HODARI Audace Page 2 
 

1.4  PROGRAMMING LANGUAGES: 

 Computer programming languages are mainly divided into three   categories: 

Machine Language: Is a programming language that a particular computer can understand. Also known 

as Low-Level  language.  

ML is a collection of very detailed instructions that are meant  to control the internal circuitry(hardware) 

of a particular computer. 

In that case, every different CPU(computer) has its own unique machine language. 

This language is coded in series of  binary (0‟s and 1‟s). 

Every different type of computer has its own unique instruction set. Thus a machine language program 

written for one type of computer cannot be run on another type of computer. 

 Assembly languages : This lying between machine languages and high-level languages. 

Assembly languages are similar to machine languages, but there are much easier to program in. because 

they allow programmer to substitute names for numbers whereas machine language consists of only 

numbers. 

In assembly language, a programmer writes instructions using symbolic codes which are meaningful 

abbreviations 

e.g : 

A-for addition          C-for compare 

 L-for load                M-for multiply 

 

 High-Level Language: These are programming languages such as C, FORTRAN or PASCAL that 

enables a programmer to write programs that are more or less independent of a particular type of 

computer. 

Such languages are considered to be high level language because they are closer to human(natural) 

languages. 

Today, almost all computer programs are written in high-level language, whose instruction set is more 

compatible with human languages. 

High-level language offers three significant advantages over machine language:  

 Simplicity 

Preview from Notesale.co.uk

Page 2 of 73



 

Instructor: HODARI Audace Page 6 
 

      

 Comments, Explanations,      Definitions 

FLOWCHART EXAMPLES: 

1. A flowchart to compare two numbers and display the greatest: 

                            

 

 

 

 No Yes 

 

 

 

 

 

 

 

CHAP2: C FUNDAMENTALS 

                2.0..WHAT IS C 

 C is a general-purpose structured computer programming language.  

 This means that you can use C to create lists of instructions for a computer to follow. 

 C is one of the most popular programming languages developed in 1972 by Dennis Ritchie. 

               2.1..FEATURES OF C: 

Input

/Out

Que

start 

  A , 

A B 

A>

End 

    A , B 

Preview from Notesale.co.uk

Page 6 of 73



 

Instructor: HODARI Audace Page 12 
 

" Let's look at the elements of the program. The #include is a preprocessor" directive that tells the compiler to 

put code from the header called stdio.h into our program before actually creating the executable. By including 

header files, you can gain access to many different functions--both the printf and getchar functions are 

included in stdio.h. The semicolon is part of the syntax of C. It tells the compiler that you're at the end of a 

command. You will see later that the semicolon is used to end most commands in C.  

 

The next imporant line is int main(). This line tells the compiler that there is a function named main, and that 

the function returns an integer, hence int. The "curly braces" ({ and }) signal the beginning and end of functions 

and other code blocks. If you have programmed in Pascal, you will know them as BEGIN and END. Even if 

you haven't programmed in Pascal, this is a good way to think about their meaning.  

 

The printf function is the standard C way of displaying output on the screen. The quotes tell the compiler that 

you want to output the literal string as-is (almost). The '\n' sequence is actually treated as a single character that 

stands for a newline (we'll talk about this later in more detail); for the time being, just remember that there are a 

few sequences that, when they appear in a string literal, are actually not displayed literally by printf and that '\n' 

is one of them. The actual effect of '\n' is to move the cursor on your screen to the next line. Again, notice the 

semicolon: it is added onto the end of all lines, such as function calls, in C.  

 

The next command is getchar(). This is another function call: it reads in a single character and waits for the 

user to hit enter before reading the character. This line is included because many compiler environments will 

open a new console window, run the program, and then close the window before you can see the output. This 

command keeps that window from closing because the program is not done yet because it waits for you to hit 

enter. Including that line gives you time to see the program run.  

 

Finally, at the end of the program, we return a value from main to the operating system by using the return 

statement. This return value is important as it can be used to tell the operating system whether our program 

succeeded or not. A return value of 0 means success.  

 

The final brace closes off the function. You should try compiling this program and running it. You can cut and 

paste the code into a file, save it as a .c file, and then compile it.  

 

  

Preview from Notesale.co.uk

Page 12 of 73



 

Instructor: HODARI Audace Page 18 
 

 

Example „a‟, „8‟, „‟ etc. 

 

Character constants have integer values known as ASCII (American Standard Code for Information 

Interchange) values. For example, the statement printf( “%c %d”, 65, „B‟) will display the characters „A‟ and 

66. 

 

2) String constants 

String constants are sequence of characters enclosed within a double quote marks. The string may be a 

combination of all kinds of symbols. 

Example “Hello”, “a”,”UNILAK” 

2.6 VARIABLES 

 

When a program is executed, many operations are carried on the data. The data types are integers, real or 

character constants. These data are stored in the memory and at the time of execution different operations are 

performed on them. 

 

A variable is a data name used for storing a data value. Its value may be changed during the program execution. 

The variables value keeps on changing during the execution of a program. In other words, a variable can be 

assigned different values at different times during the execution of a program. 

A variable name may be declared based on the meaning of the operation. Some meaningful variable names are 

as follows. 

Example height, average, sum etc. 

 

 

 

Rules for defining variables 

1) They must begin with a character without spaces but underscore is permitted. 

Preview from Notesale.co.uk

Page 18 of 73



 

Instructor: HODARI Audace Page 20 
 

short int b=2; 

When a variable is declared without short or 

long keyword, the default is short-signed int. 

long int c; 

 

 

b) Integers, signed and unsigned 

Difference between signed and unsigned integers 

Signed integer Unsigned integer 

Occupies 2 bytes in memory Occupies 2 bytes in memory 

Range: -32 768 to 32 767 Range: 0 to 65 535  

Control string is %d or %I Control string %u 

By default signed int is short-signed int. By default unsigned int is short unsigned int. 

There are also long signed integer 

having range from  

- 2 147 483 648 to 2 147 483 647 

There are also long unsigned int with range  

0 to 4 294 967 295 

Example:  

int a=2; 

short int b=2; 

 

Example: 

unsigned long b; 

unsigned long int c; 

 

When a variable is declared as unsigned, the 

negative range of the data type is transferred to 

positive i.e. doubles the largest size of the 

possible value. This is due to on declaring 

unsigned int; the 16
th

 bit is free and not used to 

store the sign of the number. 

 

2. Char, Signed and Unsigned  

 

Difference between signed and unsigned char 

Preview from Notesale.co.uk

Page 20 of 73



 

Instructor: HODARI Audace Page 27 
 

( ?). 

Write a program to use the conditional operator with two values. 

 

#include <stdio.h> 

#include <conio.h> 

 

main() 

{ 

clrscr(); 

printf(“Result as a value =%d”,2= = 3?4:5); 

} 

Output: 

Result: 5 

Explanation: In the above program the condition 2= =3 is false. Hence, 5 is printed. 

 

Write a program to use the conditional operator with two statements. 

 

#include <stdio.h> 

#include <conio.h> 

 

main() 

{ 

clrscr(); 

3>2?printf(“True”):printf(“False); 

} 

Preview from Notesale.co.uk

Page 27 of 73



 

Instructor: HODARI Audace Page 33 
 

is ambiguous. What will happen in this case? The answer is that the C compiler has a convention about the way 

in which expressions are evaluated: it is called operator precedence. The convention is that some operators are 

stronger than others and that the stronger ones will always be evaluated first. Otherwise, expressions like the 

one above are evaluated from left to right: so an expression will be dealt with from left to right unless a strong 

operator overrides this rule. Use parentheses to be sure. A table of all operators and their priorities is given in 

the reference section.  

Unary Operator Precedence 

Unary operators are operators which have only a single operand: that is, they operate on only one object. For 

instance:  

     ++  --  +  -  & 

 

The precedence of unary operators is from right to left so an expression like:  

     *ptr++; 

 

would do ++ before *.  

Special Assignment Operators ++ and -- 

C has some special operators which cut down on the amount of typing involved in a program. This is a subject 

in which it becomes important to think in C and not in other languages. The simplest of these perhaps are the 

increment and decrement operators:  

 

++  

increment: add one to  

--  

decrement: subtract one from  

These attach to any variable of integer or floating point type. (character types too, with care.) They are used to 

simply add or subtract 1 from a variable. Normally, in other languages, this is accomplished by writing:  

variable = variable + 1; 

 

In C this would also be quite valid, but there is a much better way of doing this:  

variable++; or 

Preview from Notesale.co.uk

Page 33 of 73



 

Instructor: HODARI Audace Page 44 
 

int x,y,z; 

printf("\n Enter three numbers:"); 

scanf("%d %d %d",&x,&y,&z); 

printf("\n Largest out of three numbers is:"); 

if(x>y&&x>z) 

printf("x=%d",x); 

else if(y>x&&y>z) 

printf("y=%d",y); 

else 

printf("z=%d",z); 

getch(); 

} 

 

Output: 

Enter three numbers: 10 20 30 

Largest out of three numbers is: z=30 

 

 

3.0 Iteration:  
Iteration simply means repeating or reiterating the same sequence of commands. And it is more commonly referred to 

as Looping. 

 

What is a loop?  

A loop is defined as a block of statements which are repeatedly executed for a certain number of times. 

 

Steps involved in  looping 

Preview from Notesale.co.uk

Page 44 of 73



 

Instructor: HODARI Audace Page 50 
 

getch(); 

} 

Output: 

Numbers from 1 to 100 not divisible by 2,3&5: 

1 7 11 13 17 19 23 29 31 37 41 43 47 49 53 59 61 67 71 73 77 79 83 89 91 97. 

Total Numbers: 26 

 

Example3:  

Write a program to display the stars as shown below. 

 

* 

** 

*** 

**** 

***** 

 

 

#include<stdio.h> 

main() 

{ 

clrscr(); 

int x,i,j; 

printf("How many lines stars (*) should be printed ?:"); 

scanf("%d",&x); 

for(i=1;i<=x;i++) 

Preview from Notesale.co.uk

Page 50 of 73



 

Instructor: HODARI Audace Page 51 
 

{ 

    for(j=1;j<=i;j++) 

    { 

    printf("*"); 

    } 

printf("\n"); 

} 

getch(); 

 

Output: 

How many lines stars (*) should be printed?:5 

* 

** 

*** 

**** 

***** 

 

Example4: 

Write a program to display the series of numbers as given below. 

 

1 

1  2 

1  2  3 

 

3  2  1 

Preview from Notesale.co.uk

Page 51 of 73



 

Instructor: HODARI Audace Page 60 
 

    printf("\n %d memory locations are reserved for ten 'long' elements",sizeof(l)); 

    getch(); 

                  } 

Output: 

 

 

Data type & their required bytes. 

Data type Memory Requirement 

Character 1 byte 

Integer 2 bytes 

Float 4 bytes 

Long 4 bytes 

Double 8 bytes 

 

Character arrays are called strings. There is a slight difference between an integer array and a character array: in 

character array NULL (‘\0’) character is automatically added at the end where as in integer or other types of arrays, no 

character is placed at the end. 

The NULL character acts as an end of the character array. By using this NULL character compiler detects the end of the 

character array. When a compiler reads the NULL character ‘\0’ it ends a character array. 

 

Write a program to display character array with their address. 

 

              #include <stdio.h> 

    #include <conio.h> 

Preview from Notesale.co.uk

Page 60 of 73



 

Instructor: HODARI Audace Page 71 
 

  if(i==a[j]) 

  printf("%3d",a[j]); 

   } 

  } 

} 

 

 

Output: 

 

 

Write a program to sort the numbers in ascending order by comparison method 

 

#include <stdio.h> 

#include <conio.h> 

main() 

{ 

int i,j,temp,a[10],n; 

printf("\n Enter how many numbers to sort:"); 

scanf("%d",&n); 

for(i=0;i<n;i++) 

scanf("%d",&a[i]); 

for(i=0;i<n-1;i++) 

{ 

Preview from Notesale.co.uk

Page 71 of 73


