STEP 1. Intercepts

y int when x = 0y = (1)²(-2) = -2 Passes through (0, -2)

x int when y = 0 $0 = (x + 1)^2 (x - 2)$ $(x + 1)^2 = 0$ and (x - 2) = 0 x + 1 = 0 x = -2 x = -1Passes through (-1, 0) and (-2, 0)

STEP 2. Finding turning points (T.Ps)

Let
$$y = u \cdot v$$

where $u = (x + 1)^2$ and $v = (x - 2)$
 $u' = 2(x + 1)$ $v' = 1$
 $\frac{dy}{dx} = u' \cdot v + v' \cdot u$
 $= 2(x + 1) \cdot (x - 2) + 1 \cdot (x + 1)^2$
 $= (x + 1) [2 \cdot (x - 2) + (x + 1)]$
 $= (x + 1) [2 \cdot (x - 4 + x + 1]]$
 $= (x + 1) [3x - 3]$
T.Ps when $\frac{dy}{dx} = 0$
 $(x + 1) [3x - 3] = 0$
 $(x + 1) [3x - 3] = 0$
 $x = -1$ $3x = 3$
 $x = 1$
When $x = -1$, $y = (-1+1)^2(-1+2)$
 $= 0$
 $(-1, 0)$
when $x = 1$, $y = (2)^2(-1)$
 $= -4$
 $(1, -4)$

STEP 3. Nature of the T.Ps

When x = -2,
$$\frac{dy}{dx} = +ve$$

When x = 0, $\frac{dy}{dx} = -ve$
When x = 2, $\frac{dy}{dx} = +ve$
Min at (1, -4)