2 Advanced Engineering Mathematics

Complex numbers obey the fundamental rules of algebra. Thus,
two complex numbers a + bi and ¢ + di are equal if and only if a = ¢
and b = d. Just as real numbers have the fundamental operations of
addition, subtraction, multiplication, and division, so too do complex
numbers. These operations are defined:

Addition

(a+bi)+ (c+di)=(a+c)+ (b+d) (1.1.1)
Subtraction

(a+b)—(c+di)=(a—c)+(b—d)i (1.1.2)
Multiplication

(a+ bi)(c + di) = ac+ bei + adi + i°bd = (ac — bd)mm

Division . "( O

a+bi_a+bz e Aae}bc!— @2 ad)z
%Qgs 2 + d2

c+di  c+dke=¥Yi c? +d?

(1.1.4)
The absolute value or modulus of a complex number a + b, written
|a + bi|, equals va? + b2. Additional properties include:

|2122Z3--‘zn| = |21||22||Z3|‘-'|2n| (115)

|21/22] = |21]/|22] if 22 #0 (1.1.6)
|21 + 22 4+ 23+ -+ -+ 2n| < |z1| + |22 + |23] + - + [ 2n] (1.1.7)

and
|Z1 + Zzl > |21| - |22| (118)

The use of inequalities with complex variables has meaning only when
they involve absolute values.

It is often useful to plot the complex number z + iy as a point (z, y)
in the zy plane, now called the complex plane. Figure 1.1.1 illustrates
this representation.

This geometrical interpretation of a complex number suggests an
alternative method of expressing a complex number: the polar form.
From the polar representation of « and y,

z =rcos(f) and y=rsin(f), (1.1.9)

where 7 = /22 + y? is the modulus, amplitude, or absolute value of z
and @ is the argument or phase, we have that

z = & + iy = r[cos(f) + isin(F)]. (1.1.10)

g,a‘
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e Example 1.1.1

Let us simplify the following complex number:

3—21 _ 3-2t -—-1-1 —3-3i+2i+2% —5-—1 5 i

A+ A4 T1=i T 1+1 =73 2 7%

o Example 1.1.2
Let us reexpress the complex number —/6 — #v/2 in polar form.

From (1.1.9) r = v/6 + 2 and 6 = tan~!(b/a) = tan~?! l/f) = n'i é

Tw/6. Because —/6 — iv/2 lies in the third quadrant o

plane, § = 77 /6 and
Vo é’\N““ D s
Note that (1.1 " mque represeriéboaglgjﬁmr may be
added to 77/6 e still have the same number since
e'PE20™) — cos( + 2n7) + isin(d £ 2n7) = cos(f) + isin(f) = '’
(1.1.19)
For uniqueness we will often choose n = 0 and define this choice as the
principal branch. Other branches correspond to different values of n.

e Example 1.1.3

Find the curve described by the equation |z — zg| = a.
From the definition of the absolute value,

V(Ee=-20)? +(y—w)*=a (1.1.20)

or
(z —20)* + (¥ — w0)* = a®. (1.1.21)

Equation (1.1.21), and hence |z — zy| = a, describes a circle of radius a
with its center located at (zq, yo). Later on, we shall use equations such
as this to describe curves in the complex plane.

e Example 1.1.4
As an example in manipulating complex numbers, let us show that

a -+ bi _
b+ai|

(1.1.22)
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Figure 1.2.2: The zeros of z® = —1 + 1.

or
) T L. T
zg = 2exp <€) =2 [cos (g) + 2sin (g)] ,
z1 = 2ex @ =2 |cos 3—7T + isin 3—77
1 = p 5 - 5 5 )
z2 = 2exp(wi) = -2,
z3 = 2ex m =2 -7—7£ -+ isin 7_7r
L AN A AN 5
and

9me 97 .. {97
24 = 2exp (T) =2 [cos <?) + 2sin (?)] .

(1.2.9)

(1.2.10)

(1.2.11)

(1.2.12)

(1.2.13)

Figure 1.2.1 shows the location of these roots in the complex plane.

e Example 1.2.2

Let us find the cube roots of —1 + ¢ and locate them graphically.
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Any function that has continuous partial derivatives of second order
and satisfies Laplace’s equation (1.3.51) or (1.3.52) is called a harmonic
function. Because both u(z,y) and v(z,y) satisfy Laplace’s equation
if f(2) = u + tv is analytic, u(z,y) and v(z,y) are called conjugate
harmonic functions.

e Example 1.3.8
Given that u(z,y) = e *[rsin(y) — ycos(y)], let us show that u

is harmonic and find a conjugate harmonic function v(z,y) such that
f(2) = u + iv is analytic.

Because esa

6%u

9g2 = —2¢”"sin(y) + ze™ " sin(y) — ye~T y)NQ&'-53
and \N "( O 9 O'< 6(

:?z( en\!) ¥ 2¢~sin a@% (1.3.54)

it follows that uzz + uyy = 0. Therefore, u(z, y) is harmonic. From the
Cauchy-Riemann equations,

ov Ou e . . e
a—y- 3 ¢ sin(y) — ze” " sin(y) + ye~ " cos(y) (1.3.55)
and
v Ou e -z -z
5z = 9y - e~ 7 cos(y) — ze™7 cos(y) — ye~ T sin(y). (1.3.56)

Integrating (1.3.55) with respect to y,
v(z,y) = ye " sin(y) + ze~" cos(y) + g(z). (1.3.57)
Using (1.3.56),

vy = —ye” " sin(y)—ze~ " cos(y) + e~ cos(y) + ¢'(x)
= e~ " cos(y) — e~ cos(y) — ye 7 sin(z). (1.3.58)

Therefore, g'(xz) = 0 or g{x) = constant. Consequently,
v(z,y) = e “[ysin(y) + z cos(y)] + constant. (1.3.59)

Hence, for our real harmonic function u(z,y), there are infinitely many
harmonic conjugates v(z, y) which differ from each other by an additive
constant.
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Figure 1.4.1: Contour used in Example 1.4.1. N tes
axis from z = 0 to z = 2¢ and then alon l@“ml to the z-a -‘ 6(
from z = 2i to z = 4 + 2i. SeeFl 2‘!
For the first case, the nd z= 4+ 7 .‘ % pond
tot_Oandt?fe henth quals

/ 2*dz = (t2 +iit)* d(t* +it) = (2t3 —it’ +1)dt =10~ &,
G

(1.4.5)
The line integral for the second contour C; equals

/ z*dz:/ z*dz+/ 2" dz, (1.4.6)
C2 Cga Cap

where C, denotes the integration from z = 0 to z = 2i while Cs,
denotes the integration from z = 2i to 2 = 4+ 2i. For the first integral,

/cz,, *dz = /2 (z — ty)(dz +idy) = /02ydy: 2, (1.4.7)

because £ = 0 and dz = 0 along C5,. On the other hand, along Ca,
¥y =2 and dy = 0 so that

4 4
/ z*dz:/ (x—iy)(d:c+idy):/ z‘d:c-}—i/ ~2dr = 8 - 8i.
Ca2p Can 0 0
(1.4.8)

Thus the value of entire C contour integral equals the sum of the two
parts or 10 — 84.

The point here is that integration along two different paths has
given us different results even though we integrated from z = 0 to
z = 4 + 2i both times. This results foreshadows a general result that
1s extremely important. Because the integrand contains nonanalytic
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Figure 1.5.1: Diagram use¢\ Wg x(caucﬁu%@o Q‘ 6

3. Evaluate fc@’( %g e right half @e&@?: 1fromz = —¢

to z = 1.

4. Evaluate [, e” dz along the line y = z from (-1, —1) to (1, 1).
5. Evaluate [,(z*)? dz along the line y = z? from (0, 0) to (1, 1).

6. Evaluate [, 271/2dz, where C is (a) the upper semicircle |z| = 1 and
(b) the lower semicircle |z| = 1. If z = re®®, restrict —7 < # < 7. Take
both contours in the counterclockwise direction.

1.5 THE CAUCHY-GOURSAT THEOREM

In the previous section we showed how to evaluate line integrations
by brute-force reduction to real-valued integrals. In general, this direct
approach is quite difficult and we would like to apply some of the deeper
properties of complex analysis to work smarter. In the remaining por-
tions of this chapter we will introduce several theorems that will do just
that.

If we scan over the examples worked in the previous section, we
see considerable differences when the function was analytic inside and
on the contour and when it was not. We may formalize this anecdotal
evidence into the following theorem:

Cauchy-Goursat theorem?: Let f(z) be analytic in a domain D and

2 See Goursat, E., 1900: Sur la définition générale des fonctions an-
alytiques, d’aprés Cauchy. Trans. Am. Math. Soc., 1, 14-16.
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closed curve. \, \ e
let C be a siVe‘o%n curve® inside?s@'zgz) is analytic on and

inside of C. Then §, f(z)dz = 0.

Proof: Let C denote the contour around which we will integrate w =
f(z). We divide the region within C into a series of infinitesimal rect-
angles. See Figure 1.5.1. The integration around each rectangle equals
the product of the average value of w on each side and its length,

[w + 6—w£i-£] dx + [w + 6—l:d:c + ———62 d(zy)] d(ty)

Oz 2 1é] O(iy) 2
+ [w + Z—Z’d?—“ + 5‘?% d(iy)] (—dz) + [w + 5%"(;1’)] d(—iy)
= (%‘.;i - fa_’:) (i dz dy) (1.5.1)

Substituting w = u + v into (1.5.1),

dw Ow du Ov .fOv Ou
5o (o 5) (G 5) (1.32)

Because the function is analytic, the right side of (1.5.1) and (1.5.2)
equals zero. Thus, the integration around each of these rectangles also
equals zero.

3 A Jordan curve is a simply closed curve. It looks like a closed loop
that does not cross itself. See Figure 1.5.2.
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not inside the contour, then the integrand would have been analytic
inside and on the contour C. In this case, the answer would then be
zero by the Cauchy-Goursat theorem.

Returning to the original problem, we construct the Laurent ex-
pansion for the integrand around the point z = 1 by noting that

2 [z+D-17 1
z4+1 z+1 Tz+1

-2+ (z+1). (1.8.4)

The singularity at z = —1 is a simple pole and by inspection the value
of the residue equals 1. Therefore,

2
f ol dz = 27i.
lz|=2 2+ 1 m
As it presently stands, gl ae’d Jp ear that we iﬁ
struct a Laur M ach Sl ish to use the
as t

residue theore comes 1ncrea51 he structure of
the integrand becomes more complicated® In the following paragraphs
we will show several techniques that avoid this problem in practice.

We begin by noting that many functions that we will encounter
consist of the ratio of two polynomials, i.e., rational functions: f(z) =
9(2)/h(z). Generally, we can write h(z) as (z — 21)™(z — 22)™% - -
Here we have assumed that we have divided out any common factors
between g(z) and h(z) so that g(z) does not vanish at z1, 23, .. .. Clearly
z1,zs,..., are singularities of f(z). Further analysis shows that the
nature of the singularities are a pole of order m; at z = 21, a pole of
order ms at z = z3, and so forth.

Having found the nature and location of the singularity, we compute
the residue as follows. Suppose we have a pole of order n. Then we know
that its Laurent expansion is

flz) = (z zo)" e :17;;)1"_1 4+t bo+bi(z—20)+--- (1.8.6)

Multiplying both sides of (1.8.6) by (z — z0)",
F(z) = (2 — 20)" f(2)

=an + an_1(z — 20) + -+ bo(z — 20)" + ba(z — z0)" 1 + - -
(1.8.7)

Because F(z) is analytic at z = z, it has the Taylor expansion

F(n-—l)(zO)

ez (188)

F(z) = F(z0)+F'(20)(z—20)+ -+



