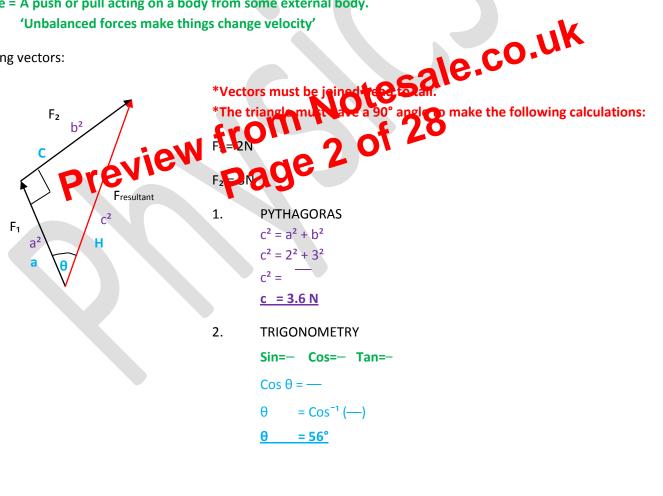
Scalar = A quantity that has magnitude only.

Vector = A quantity that has magnitude and direction.

Scalars		Vectors
Density	Power	Displacement
Mass	Charge	Velocity (Rate of change of displacement)
Volume	Time	Acceleration (Rate of change of velocity)
Distance	Resistance	Force
Length	Temprature	Momentum
Work	Potential differance / v	Electric field strength
Energy (all forms)	Capacitance	Magnetic field strength
Activity	Luminosity	Gravitational field strength
Speed (Rate of change	Pressure (even though it's force/area,	
in distance, no	because it acts in all directions and it's the	
direction)	area that decides the direction of the force.)	


NEWTONS FIRST LAW

"Things travel at constant velocity (or stationary) unless you have unbalanced forces."

Force = A push or pull acting on a body from some external body.

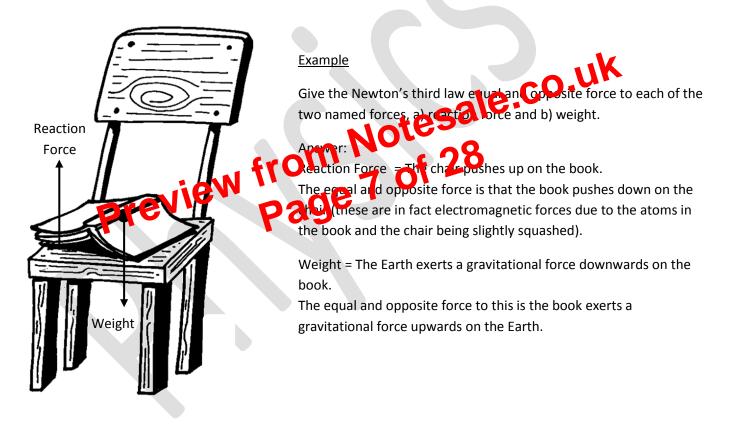
'Unbalanced forces make things change velocity'

Adding vectors:

ANSWER: MAGNITUDE = 3.6N DIRECTION = 56° (AS SHOWN ON DIAGRAM)

NEWTONS THIRD LAW

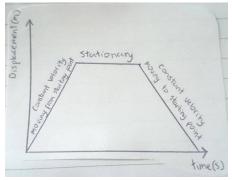
"IF BODY <u>A</u> EXERTS A FORCE ON BODY <u>B</u>, THEN BODY <u>B</u> EXERTS AN EQUAL AND OPPOSITE FORCE ON BODY <u>A</u>."


Rules:

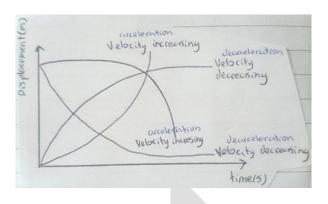
- 1) The forces of Newton's third law are always in pairs.
- 2) The forces act on different bodies.
- 3) The forces are equal.
- 4) The forces act in opposite directions.
- 5) The forces are the same type i.e. both are gravitational forces.

Free body diagrams = A simplified representation of the body along with arrows showing the forces acting on the body. Also note lengths of arrows.

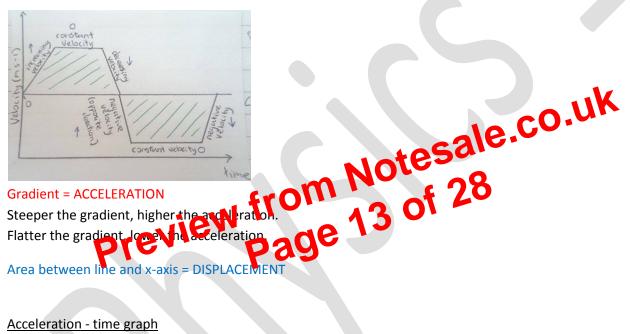
Example:


A cricket bat hitting a ball, it's obvious the bat is exerting a force on the ball, hence its accelerating in a changed direction. But Newton's third law tells us that the ball exerts an equal but opposite force on the bat, to prove this, a used bat will have dents where a ball has been hit repeatedly; Newton's third law.

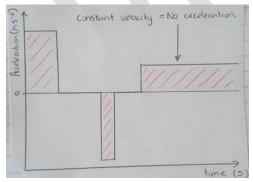
To conclude: One type of force Two different bodies Force of equal magnitude Exerted in opposite directions


MOTION GRAPHS

Displacement - time graph

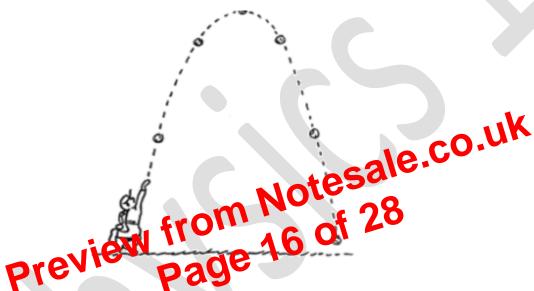


Gradient = VELOCITY


Steeper the gradient, higher the velocity. Flatter the gradient, lower the velocity.

Velocity - time graph

Acceleration - time graph


Area between line and x-axis = VELOCITY (The change in velocity only)

*You might be asked to plot an acceleration-time graph, using a velocity-time graph given. This means that you must transfer the values of the gradient (acceleration) in the velocity-time graph.

- * Vertical motion is completely independent of horizontal motion.
- * Vertical motion = 9.81ms⁻² (constant acceleration) Apply TUVAX equation vertically.
- * Horizontal motion = constant velocity (no acceleration)

Effect of air resistance on projectile motion

- Air resistance always opposes the motion of an object.
- Vertical velocity is always lower with air resistance.
- Falling time is longer.
- Large resistive force horizontally due to high velocity.
- Overall decrease in range due to larger effect horizontally.

When the object is at its greatest height, the vertical velocity is zero.

*Remember the pay attention in all questions whether the directions (up or down) are given in positive or negative values.