Pascal's Triangle :

You can use Pascal's Triangle to quickly expand expressions such as $(x+2y)^3$. 1

$$\frac{1}{1} \frac{1}{2} \frac{1}{1}$$

$$\frac{1}{1} \frac{2}{3} \frac{1}{3} \frac{1}{1}$$

$$\frac{1}{1} \frac{2}{3} \frac{1}{3} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{4} \frac{6}{6} \frac{4}{4} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{5} \frac{10}{10} \frac{10}{5} \frac{1}{1}$$

$$\frac{1}{1} \frac{1}{5} \frac{10}{10} \frac{10}{10} \frac{10}{1} \frac{10}{10} \frac{1$$

Chapter 6: Radian measure and its applications

Geometric Sequences:

-To get from one term to he next we multiply by the same number each time. This number is called the common ratio 'r'.

-You can define a geometric sequence using the first term 'a' and the common ratio 'r'.

aar ar^2 $ar^3,...$ ar^{n-1} 1^{st} term 2^{nd} term 3^{rd} term 4^{th} term n^{th} term-So formula of nth term is $U_n = ar^{n-1}$.

Use of geometric sequences:

-You can use geometric sequences to solve problems involving growth and decay, interest rates, population growth and decline.

Sum of geometric series:

$$S_n = \frac{a(1-r^n)}{1-r}$$

Sum to infinity of a convergent geometric series:

$$S_{y} = \frac{a}{1-r}$$
, if $|r| < 1$
 $Preview from Notesale.co.uk$
 $Preview page 9 of 16$

Chapter 8: Graphs of trigonometric functions