
Atomic Structure – Additional Mass Spectrometry • Working out Atomic Mod from Jsotopes • Ar of X view of (m/z* Aelaive abundance)] / (sum of relative abundance) • Ar of Mg = $[(24^*79.0)+(25^*10.0)+(26^*11.0)] / (79.0+10.0+11.0) = 24.3$

- Relative Molecular Mass (Mr)
 - "the mean mass of a molecule compared to one-twelfth of a 12C atom"

Atomic Structure – Electron Configurations of Ions The S and P Blocks Notesale.co. For +1 Joriew from 8 of 103 • For +1 Joriew from 8 of 103 • Calcium (11) = 152 252 2p6 351 The D Block • We take from the 4s first • Chromium (24) = [Ar] 3d5 451 • Chromium (24) = [Ar] ada

- - - Calcium+ (10) = 152 252 2p6
 - For +2 lons
 - Magnesium (12) = 152 252 2p6 352
 - Magnesium2+ (10) = 152 252 2p6
 - For +3 lons
 - Aluminium (13) = 182 282 2p6 382 3p1
 - Aluminium3+ (10) = 182 282 2p6
 - They have all become **isoelectronic** with Neon (10) = 1s2 2s2 2p6

- - · Chromium₃+ $(21) = [Ar] 3d_3$
 - · Iron (26) = [Ar] 3d6 4s2
 - · $Iron_{24} = [Ar]_{3d6}$
- · Non metal lons
 - We give to the highest energy level first
 - Phosphorous (15) = 1s2 2s2 2p6 3s2 3p3
 - Phosphorous3- (18) = 1s2 2s2 2p6 3s2 3p6
 - Phosphorous as become **isoelectronic** with Argon (18) = 1s2 2s2 2p6 3s6

Amount of Substance – Amount of Substance • The Mole (the Avogad Moonstart) • "the number of atoms in 12 ram of any given substance relative to 1/12 of 12C" • 6.023 * 1023

- n (mol) = mass (g) / amu
 - What is the mass of 3 mol of Helium atoms?
 - mass = amu * n
 - mass = 4.0 * 3
 - $mass = \underline{12 \ grams}$

Amount of Substance – Acid-Base Titrations How to do Acid-Base Thetion Operations: Acid-Base Titration Example

- - Write the Banced Equation
 - Underline the (two) substances involved in the 2. question
 - Write down the information of each substance 3. beneath it
 - Use the information to find the number of 4. moles
 - Use the ratio in the equation to find the 5. number of moles for the other underlined substance
 - Then find the mass with the answer to (5.)6.

Acid-Base Titration Example:

25.0 cm3 of NaOH is neutralised by 22.5 cm3 of HCl at 0.10 mol dm-3.

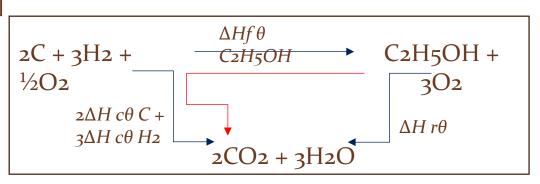
What was the concentration of NaOH?

- $HCl + NaOH \rightarrow NaCl + H_2O$
- <u>HCl</u> + <u>NaOH</u> \rightarrow NaCl + H2O
- <u>NaOH</u> \rightarrow +HCI 3. 22.5 CM3 25.0 CM3 0.10 mol dm-3

1:1, so no change

0.10 * (22.5/1000) = 2.24 * 10-3

Bonding and Periodicity Tk Permanent Dipole Dipole Attraction Notesale. When twie Nms in a cosalent bond have different electronegativities Hydrogen Bonds


- - Will happen if:
 - A molecule contains a hydrogen atom covalently bonded to F, O or N
 - There is also a lone pair on the FON atom
- The Structure of Ice
 - Ice has a regular open lattice
 - Further apart in solid than liquid so it expands
 - This is because the water forms hydrogen bonds

Energetics – Calculating Enthalpy Changes Calculating Enthalpy Changes

Calculate the explain the formula for the reaction below using the data given. $P(2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O)$

 $\Delta Hc\theta C$: C + O₂ \rightarrow CO₂ (-394 kJ mol-1) $\Delta Hc\theta H_2$: H₂ + $\frac{1}{2}O_2 \rightarrow$ H₂O (-286 kJ mol-1) $\Delta Hf \theta C_2H_5OH: 2C + 3H_2 + \frac{1}{2}O_2 \rightarrow CO_2 (-278 \text{ kJ mol-1})$

 $\Delta H r\theta = -[\Delta H c\theta C_2 H_5 OH] + [2\Delta H c\theta C + 3\Delta H c\theta H_2]$ $\Delta H r\theta = -[-278] + [2(-394) + 3(-286)]$ $\Delta H r\theta = -[-278] + [-1646]$ $\Delta H r\theta = -1368 \text{ kJ mol} -1$

Kinetics – Catalysis

- Catalyst "Provides an alternate pathwo of lower activation energy" **Prev Page** Heterogeneous Catalyst In a different
 - In a different phase from the reactants
 - E.g. Hardening of Vegetable Oils (Nickel Catalyst) ٠
 - Homogenous Catalyst
 - In the same phase as the reactants •
 - E.g. The Ozone (Cl•) ٠
 - $Cl_{\bullet} + O_{3} \rightarrow ClO_{\bullet} + O_{2}$
 - $ClO \bullet + O_3 \rightarrow Cl \bullet + 2O_2$
 - The Cl• is reproduced again and goes on to destroy more Ozone

Redox Reactions - Combining Half-Equation How to combine Half equations Write out the two half equations Write out the two half equations Note the number of electrons each half equation gains or loses

- Multiply the half equations to get the electrons to equal values 3.
- Combine the equations by putting all the reactants on one side and all the products on the other 4.
- Cancel the electrons to get the final equation 5.
- (A) Fe₃₊ + e- \rightarrow Fe₂₊, (B) Zn \rightarrow Zn₂₊ + 2e-
 - Done 1.
 - We need to multiple A by 2 2.
 - (A) $_2Fe_3+ + 2e_- \rightarrow _2Fe_2+$ 3.
 - $2Fe_3+ + 2e_- + Zn \rightarrow 2Fe_2+ + Zn_2+ + 2e_-$ 4.
 - $2Fe_3 + Zn \rightarrow 2Fe_2 + Zn_2 +$

Group 2 – Sulphates

- Solubility decreases as vice so down Barium Subviate 72 of 103 Barium Subviate 72 of 103 Barium Sulphate is very insoluble in
- - water (as it's at the bottom of gp. 2)
 - It is also opaque to X-rays and so can be used as a contrast medium in scans of the digestive system
 - Is also used in rat poison
 - $BaCO_3(s) + 2HCl(aq) \rightarrow$ $BaCl_2(aq) + H_2O(l) + CO_2(q)$

Testing for sulphates

- Because Barium Sulphate is insoluble it has become the basis for a laboratory test
- If an unknown solution contains sulphate • ions then when its added to Barium Chloride/Nitrate, a white precipitate forms
 - $BaCl_2(aq) + Na_2SO_4(aq) \rightarrow BaSO_4(s) +$ 2NaCl(aq)
- This can be simplified to the ionic equation:
 - $Ba_2+(aq) + SO_{42}-(aq) \rightarrow BaSO_4(aq)$ •
- We must first acidify the test sample with • Hydrochloric acid or Nitric Acid

This is to prevent the false detection of sulphite

Metal Extraction – Acid Mine Drainage Acid Mine Drainage Notesale. Pumps are pended to stop an orground mines from flooding When the miners used and finished with the pumps are taken away

- The mine floods, oxidising sulphides to H2SO4 which dissolves potentially toxic metals, e.g. iron ٠
- This produces Fe₂₊ and Fe₃₊ which ruins rivers and coats fish gills ۲
- It can be stopped with: ٠
 - Calcium Carbonate to neutralise the acid
 - Reed beds to reduce the H₂SO₄ to **Hydrogen Sulphide** (with its bacteria) ٠
- This reacts with the metals ions to form **insoluble sulphide** minerals again ٠

Haloalkanes – The Ozona Layer Ozone, O3 is an allotropeote arbon Reactions ize Ne Ozona Bayer With UV light: 02 - 00 + 00

- - They can react with oxygen: $\cdot O \cdot + O_2 \rightarrow O_3$
 - Ozone can dissociate with UV: $O_3 \rightarrow O_2 +$ ٠ •()•
 - (Decomposition = Production) of Ozone •
- CFC's and the Ozone Layer
- Each chlorine molecule can decompose 1000's
- $CCl_3F \rightarrow CCl_2F + Cl_3F$
- •Cl + O₃ \rightarrow ClO• + O₂
- $ClO \bullet + O_3 \rightarrow 2O_2 + \bullet Cl$

- Repairing the Ozone Layer
 - Nitrogen Monoxide catalyses Ozone Decomp.
 - $NO + O_3 \rightarrow : NO_2 + O_2$
 - \cdot NO₂ + O \rightarrow NO + O₂
 - CFC's have been banned as of 1987 in most countries
 - Alternatives
 - Hydrochlorofluorocarbons (HCFC's)
 - Hydrofluorocarbons are chlorine free

Haloalkanes – OH- with Bromoethane • OH- with Bromoethane (Stestitution): preview from 85 of 103

Haloalkanes – CN- with Bromoethane • CN- with Bromoethane (Sternitution): preview from 87 of 103

Alkenes – Haloalkanes from Alkenes · Electrophiles • Accept pairs of lefectrons 1 of 103 • Positively charged ions (e.g. H+)

- - Atoms that have a partial positive charge (attached to a largely electronegative atom) ٠
- **Electrophilic Addition Reactions**
- Hydrogen Bromide (HBr)
 - $CH_2=CH_2 + HBr \rightarrow CH_3CH_2Br$ •
- Bromine (Br2) •
 - · CH₂=CH₂ + Br₂ \rightarrow BrCH₃CHBr
- Sulphuric Acid ٠
 - $CH_2=CH_2 + H_2SO_4 \rightarrow CH_3CH_2OSO_3H$
- (see mechanisms)

- Alcohols Oxidising Alcohols

 Primary Alcohols
 Notesale.co.

 Primary Alcohols
 Notesale.co.

 Primary Alcohols
 Secon

 Primary Alcohols
 Secon
 - $CH_3CH_2OH + [O] \rightarrow CH_3CHO + H_2O$
 - If the Acidified Potassium Dichromate is in excess then it further oxidises to Carboxylic Acid
 - Ethanal \rightarrow Ethanoic Acid
 - $CH_3CHO + [O] \rightarrow CH_3COOH + H_2O$
 - We prevent further oxidation by distilling the aldehyde as the reaction proceeds (removing the aldehyde from the oxidising agent)

- Secondary Alcohols
 - Secondary Alcohols $\rightarrow Oxi$. \rightarrow Ketones
 - Propan-2-ol \rightarrow Propanone
 - $CH_3CH(OH)CH_3 + [O] \rightarrow CH_3COCH_3 + H_2O$
- **Tertiary Alcohols**
 - Tertiary Alcohols $\rightarrow Oxi$. \rightarrow No change
 - It can't oxidise because the R group has • no Hydrogen and Oxygen to be taken, only Oxygen

Unit 2: 14 Alcohols

Alcohols – Distinguishing the Three Types of

1		Potassium Potassium Sichromate (VI)	Product of Reaction with APD(VI)	Result of testing Product with:	
	Alcohole M				
	Primary	Orange → Green	Aldehyde	Silver Mirror Forms	Brick-Red Ppt
	Secondary	Orange → Green	Ketone	No Change	No Change
	Tertiary	No Change	None	No Change	No Change

Analytical Techniques – Using Infrared Spectyligs GOP Mal Gotes ale. • Alkanes iew from 03 Oppurities • Ethers • Preview page • C-O

- - C-C bonds
- Alkenes ٠
 - C-H bonds ٠
 - C-C bonds •
 - C=C bonds
- Carboxylic Acids ٠
 - · C=O
 - O-H •
- Aldehyde

C=O

absorption bands that should not be there

Bond	Wavenumber (cm-1)
C-H	2850 - 3300
C-C	750 – 1100
C=C	1620 - 1680
C=O	1680 - 1750
C-O	1000 – 1300
O-H (alco)	3230 - 3550
O-H (acid)	2500 - 3000

- Alcohols
 - O-H bonds
 - H bonds cause the trough to be deep and wide