indirect taxes (such as value added taxes). Inrgeimglirect taxes are paid with some
temporal lag respect to the time of the taxablenewecurred. If inflation is high,
there will be a deterioration of the real valudadfes collected by the government.
For example, if the taxable event occurred in metibut the government collect the
taxes about that event only in period t+1 (e.g.biereaucratic reasons), the real value
of the tax will depend on the price level in tHlptice level is particularly high at t+1
compared to t, the government is loosing someinealne from those taxes.

d) General inconvenience

Inflation makes it harder to compare nominal valinem different time periods.

This complicates long-range financial planning.

Examples:

- Parents trying to decide how much to save forftitere college expenses of their
(now) young child.

- Workers trying to decide how much to save forreetent.

- The CEO of a big corporation trying to decide tiee to build a new factory, which

will yield a revenue stream for 20 years or more. \A

a\e co¥

&2

ain at others’ expense.

2) The costs of unexpected inflation

a) Arbitrary redistribution of purc ﬁ‘
exed

Many long-term co\‘q fi‘

entf

? mple: borrowers an Ienders
Suppose that at time t you want to borrow some mamel you need to pay back at
time t+1. You need to repay the amount borrowed plnominal interest rate
The nominal interest you pay at t+1 is decidedna¢ t when you borrow the money.
The nominal interest rate depends on the inflagigpected at time t+1.
Now you can have the following situation at t+1.:
a) If 1> 7T, then purchasing power is transferred from lentet®rrowers. The
borrower repays the loan with less valuable dollargxample.
b) If 77< 7, then purchasing power is transferred from borrsve lenders.
For example, at time t you borrow $1000 and yoweadgo pay back $1000 plus a
nominal interest rate of 10% at time t+1. Suppbsereal interest rate is constant in

both periods and known with certainty by the borownd the lender and it is equal
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Mathematical Appendix

1) The Chain Rule of basic calculus:

Consider a functionf (x) wherex=g ¢ )
Suppose we want to fi g that is the derivative of functidrwith respect t@. That
z

derivative is given by:
df _df d
dz dxdz
For example:f (x) = x* and x = z—1. Here we have:

i =2X and% =1. Therefore:

dx dz

Using the definition of x into the above equatioa @btain:
df

o 2(z-1) \)\4

In this simple case we could have substituted ﬂfmhioraw@eg&(l%of(x). In

this case we will obtairf (z) = (z —(1)(2\%@;9 irec}if?se derivativ%f— gives
z
you exactly the é e's‘lxag) before.}% O"
simple '

In n
funttions in general forn®.

t posshi@eause for example we have

Consider for example a general function of two alales: f & y )

Assume thaty = 3z+2w
gf : g e
Suppose you want to calcul 5 (here we use the notation of partial differentiati
2

0 since we deal with a function with more than oagable)

According to the chain rule, and knowing thg%:3 we have:
z

2) Properties of thelogs

The log with base b of a number y is defined as
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Take logs on both sides:
In(M) =In(P) = aIn(Y)
Or written differently:
INn(M) =In(P) +aIn(Y)
Now the parametar is the elasticity of money with respect to income:

dln(M) _ Y oM _
ain(Y) M ay

where we use the concept of partial derivativeesine have a function of two
variables (M is a function of P and Y).
Logarithms and the growth rate of a variable:

From property f.1) we havedlgﬂ
X X

We can rewrite that expression as:

dIn(x) :d—;

Now, we have define& as the instantaneous growth rate of the varla
X

means that instantaneous growth rate of x is &g w‘\% %nge in the
natural log of that variabldIn(x .) Ote

Consider now the discr Mrowt &%hen the change in the
a@:f @“&%ﬁlﬂegg@@ A & @%ﬂ g

This expression is approximately equal4in(x the) absolute discrete change in the

logarithm of x. That is:

Aln(x) 02X Al)
X

where the symboIE means approximately equal.

Expression Al) implies that:

= =275 0inx) ~Ingx.) = A1n()

Example: consider the following data for the valeax

In(X)-IN (Xt
Year X In(x)  Ax/x 1)
2000 10  2,302585
2001 12 2,484907 0,2 0,182322

2002 14  2,639057 0,166667 0,154151
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