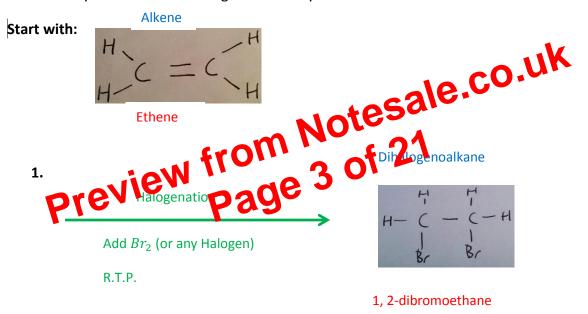
Basic Concepts and Hydrocarbons

Mechanisms

Electrophilic Addition:

When Cl_2 approaches, the Cl-Cl bond becomes polar. A pair of electrons flows flow the double bond to the slightly positive Cl atom and a bond is formed. Equivarrow represents the movement of a pair of electrons.


Nucleophilic Substitution:

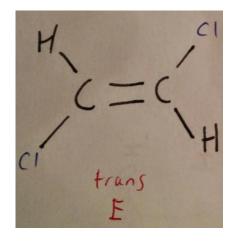
The nucleophile attacks the back of the carbon atom donating an electron pair. This causes a new bond to form and the carbon-halogen bond to break. A curly arrow represents the movement of a pair of electrons.

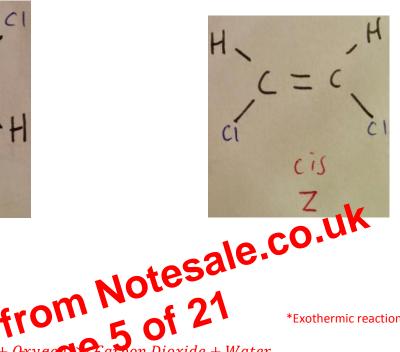
Aldehyde	- C=0
Ketone	
Carboxylic Acid	- C-0H
Ester	-(-0-

Alkenes:

Saturated hydrocarbons have single bonds only.

2.
3. Addition Polymerisation


Addition Polymerisation


Addition Polymerisation

Ethene Poly(ethene)

- Sigma (σ) bonds are formed from overlapping s-orbitals; Pi (π) bonds are formed from overlapping p-orbitals.
- The atoms can't rotate in a double bond because the pi bond stops this rotation.
- The Pi bond is much weaker than the Sigma bond, which is why in addition reactions only the Pi bond breaks.

Stereoisomers are compounds with the same structural formula but a different arrangement of atoms in space. Think E/Z isomers:

Combustion of Alkanes:

*Exothermic reaction

Test for Alkenes (Unsaturation):

- 1. Add Bromine to the organic molecule
- 2. Orange >> Colourless if organic molecule is an alkene

Polymers and the Environment:

Dealing with Waste Polymers:

- 1. Landfill—limited space, bad for environment
- 2. Recycling—some can be melted + remoulded—some can be cracked into monomers then used to make more plastics ('feedstock recycling')
- 3. Burning them—heat produces electricity, toxic gases released