- 10) i) Expand $(8+x)^{\frac{1}{3}}$ in ascending powers of x up to and including the term in x^2 , amd state the values of x for which this expansion is valid. [5]
 - ii) The function $f(x) = 3 (8 + x)^{\frac{1}{3}}$ is defined for $0 \le x \le 19$. Find the inverse of the function $f^{-1}(x)$.
 - iii) Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same axes, and show the geometrical relation between the two graphs and the line y = x. [3]
 - iv) Show that the x-coordinates of the point of intersection of the graphs of y = f(x) and $y = f^{-1}(x)$ is given by

$$\left(8+x\right)^{\frac{1}{3}} = 3-x \,.$$
^[2]

[3]

v) Use the first two terms of the expansion of $(8+x)^{\frac{1}{3}}$ to obtain an approximation to the x-coordinate of the point intersection. Give your answer as a simple fraction. [1]

Preview from Notesale.co.uk Page 4 of 4