Discuss how far the results of this investig	gation support her conclusion.	(4)
		•••••
		1
		LOSAIC
	(Total for Question 2 = 2	13.5
2 The photograph below shows hand lens. (June 2013)	s part of a leat, as seen us	singa 10
mana teris. (Gane 2016)		
11177		
Midrib containing		Lami
branches of vessels		phot
from the stem		cells
		Veir
		mid
		pho cells
	\setminus \setminus \setminus	Cen.
经验证 任何的数据	Magnification ×20	MEDIN
(a) Suggest why each of the fol		е
production of carbohydrates in the photosyntl	hetic cells.	
(i) The thin lamina		
(2)		

(ii) Vessels in the midrib
(ii) vessels in the midrib
(2)
(2)

- (b) The photosynthetic cells contain many chloroplasts.
- (i) Complete the table below by naming the part of the chloroplast where each

of the reactions, R, S and T, takes place. (3)

Reaction	Details	Part of chlorop
R	ADP + inorganic phosphate → ATP	
S	$RuBP + CO_2 \rightarrow 2 \times GP$	
Т	$2 \times GP \rightarrow 2 \times GALP$	

- (ii) Place a cross in the box next to the name of reaction R.
- (1)

A carbon fixation

B hydrolysis

C phosphorylation

D photolysis

(iii) Place a cross in the box next to the name of the enzyme involved in reaction **S**.

(1)

A endonuclease

B phosphorylase

C RUBISCO

D transcriptase

(iv) Suggest how GALP, formed by reaction \mathbf{T} , can be used to synthesise the

cellulose in plant cell walls. (4)

primary properties of the primary primar	roductivity. ss in the box ne: roductivity (GPF = NPP PP + R ble below show	ts produce carbo ot to the equation other primary produce GPP = GPP = s the net primary	that shows the relationship between gros oductivity (NPP) and respiration (R). NPP = R NPP - R productivity in four different ecosystems. of increasing distance from the equator,	s)
	ith tropical rainf	orest.	-	22
	Ecosystem	Net primary productivity / kJ m ⁻² year ⁻¹	from Note of the state of the	5
	Tropical rainforest	37 800	NO	
	Temperate forest	25 200	111000	1
	Boreal forest Polar tundra	14 700 2 400	14101. 10 UI	
available the secon Answer (ii) Sugge	to second in o dary cons mer	n une s. Calcula s in the tropical r kJ m-2 year- for the difference	ainfolest. Snow your working.	
		nows an outline o with some of the p note CALP is glyceraldeby 3-phosphate.	, <i>,</i>	
	ne information p	rovided in the dia carbon atoms pre	gram, identify substances X and Y sent in each. (2)	
X			Y	

b Explain how substance Y is converted to GALP. (2)
c. GALP is converted to a phosphorylated 6-carbon sugar which in turn can be converted to a number of products such as sucrose and glucose. Sucrose is translocated around the plant in phloem.
Describe how phloem tissue is adapted for this function. (6) (Total 10 marks)
14. Photosynthesis is a complex metabolic process which can be influenced by many different environmental factors. (a) Explain the term limiting factor with reference to photosynthesis.
(2) (b) An investigation into the effect of light intensity and carbon dioxide concentration on photosynthesis was carried out using pond weed. The pond weed was placed in a test tube that contained pond water and a quantity of sodium hydrogencarbonate. The light was provided by a lamp. The oxygen bubbles produced by the pond weed were directed into a length of capillary tubing.

The graph below shows how the rate of oxygen production of the pond weed changed with light intensity when immersed in two different concentrations of sodium hydrogencarbonate.

- 8. Bi-directional flow / flow in any direction; 9. From {leaves / eq} to {growing regions / storage organs} / reference to source to sink; Oxygen by diffusion: 10. 5 **[12]**
- 16. (a) Light {intensity / wavelength} / photoperiod / carbon dioxide concentration / {soil / eg} / {watering / humidity} / temperature / {age / size / mass / eg} of plant; [Reject amount]
- (b) Prevent { reactions / respiration / photosynthesis / carbon fixing / uptake 1 of carbon dioxide} / eq:
- (c) 1. ATP production requires electron flow / ATP production reduced:
- 2. ATP produced in {light dependent reactions / photosystems /chloroplast membranes / thvlakoids):
- 3. CO₂ fixation requires ATP / less CO₂ fixed;

- 3. grana / thylakoids shown as at least two stacks joined by So less radioactive carbon fixed in products of photosynthes s / eq; 5 [7]

 17. (a) Stroma of chloroplast / stroma
- (b) NADPH / reduced NADP / NADPH + H⁺ / NADPH + H A H
- (c) Idea of carbon code fraction / carbon dioxi e code
- To form 6C (compound / intermediate / molecula / to form (2 x 3C molecules / GP);2
- (d) (i) RuBP increases and GP decreases:
- Description of one curve (e.g. GP decreases and levels off, both quantities equal at 3.5 minutes, comparison of 2 gradients);
- (ii) 1. [RuBP rises because] it is being regenerated / it accumulates / eg:
- 2. [RuBP rises because] less CO₂ (to combine with it / for fixation / eq);
- 3. [GP falls because] less is being formed:
- 4. [GP falls because] being used faster than it's being formed; 2 [9]
- **18.** (a) 1. Factor which {controls / eq} the rate
- 2. Increasing this factor increases the rate (of photosynthesis);
- 3. Factor {not at optimum / nearest its {threshold / minimum} value / eq} 2
- [condition + control for two marks]
- 1. Temperature: Use water bath / description of heat filter / eg:
- 2. Carbon dioxide; adding sodium hydrogen carbonate / bubble through carbon dioxide / eq; 3. {Wavelength / colour} of light; Use same {light source / filter / gel};
- 4. pH; [not acidity / alkalinity] Buffer; 4
- (c) 1. {Equilibrate / eq} before timing;
- 2.{Clear / remove} bubbles from capillary tube at start / eq:
- 3. Use syringe to move {oxygen / gas bubble} into capillary tube eg:
- 4.measure length of bubble / eq;
- 5. Correct reference to determining volume of oxygen / eg:
- 6.Correct reference to rate calculation;
- 7. Reference to repeats to give {mean /reliable} results / eq:
- (d) 1. Reference to {filters / gets / coloured bulbs / eq}
- 2. Reference to appropriate qualification e.g. filters placed in correct position / keeping light intensity the same / all other factors the same 2 [12]

- **19.** (a) 1. Light harvested / eq; 2. Reference to chlorophyll:
- 3. Reference to {accessory / eq} pigments;
- 4. Electrons excited / reference to higher energy level:
- 5. Reference to carriers / electron acceptors / electron transport chain;
- 6. Reference to energy release coupled to ATP production; 7. Photophosphorylation;
- 8. Reference to photolysis (as electron source);
- (b) Sucrose content increased: Correct figure manipulation:
- (c) 1.Less PGAL converted to RuBP / less RuBP reformed:
- 2. More available for {sucrose / glucose} production;
- 3. Enzymes for sucrose more active than for RuBP production; 2
- (d) 1. Higher carbohydrate yield: 2. Sweeter crop / better quality crop:
- 3. Faster growth of crop / eq; 4. Increased profit;
- ACCEPT round / oval clear diagram with a smooth, clear, complete outline.
- 3. grana / thylakoids shown as at least two stacks joined by one line:
- 4. correctly labelled position of light dependent and independent reactions;
- (b) 1. {light absorbed / energy absorbed / electrons excited / eq}
- in {photosystem /PS I / PS II / pigment system / P680 / P700};
- 3. electron from PSII pass along {chain of electron carriers / eq} to PSI;
- 4. ATP generated / eg; 5. electron from PS1 to NADP to form NADPH + H / eg;
- using {H⁺ / eq} from {photolysis /eq}; 7. oxygen formed;
- (c) 1. oxygen {diffuses out (of leaf / photosynthetic tissue) / used in respiration}:
- 2. ATP and NADPH + H {enter Calvin Cycle / enter light independent stage / used in synthesis of carbohydrate / used to reduce CO₂ / eq); 2 [10]
- 21. (a) 1. absorption spectrum shows wavelengths where light is absorbed by pigments / eg: 2, action spectrum shows activity at different wavelengths / eg:
- 3, reference to the link between peak absorption for a pigment and the photosynthetic rate: 4. indicates that pigments are involved in {photosynthesis / eg};
- 5. correct comparison between graphs (using whole range of wavelengths); max 3 (b) thylakoid (membrane) / granum / grana; 1
- (c) 1. use of {chromatography paper / (silica) gel plates / eq};
- 2. using {solvent / named example} to {move / separate} pigments;
- 3. left to run until solvent {reaches / near to} {top / other end} of {paper / plate};
- 4. origin and solvent front marked;
- 5. reference to use of Rf values to identify pigments; max 4
- (d) 1. (magnesium) {component / used in formation / eq} of chlorophyll;
- 2. less chlorophyll formed if magnesium deficient / eq:
- 3. {other pigments / carotenoids} still present / eq; max 2 [10]