Comparison of DNA and RNA

Comparison	DNA	RNA
Name	DeoxyriboNucleic Acid	RiboNucleic Acid
Function	Long-term storage of genetic information; transmission of genetic information to make other cells and new organisms.	Used to transfer the genetic code from the nucleus to the ribosomes to make proteins. RNA is used to transmit genetic information in some organisms and may have been the molecule used to store genetic blueprints in primitive organisms.
Structural Features	B-form double helix. DNA is a double-stranded molecule consisting of a long chain of nucleotides.	A-form helix. RNA usually is a single-strand helix consisting of shorter change of nucleations
Composition of Bases and Sugars	deoxyribose Suga phosphate backbone donine, guanine coocide, thymine bases	ribose sugar phosphate backbone adenine, guanine, cytosine, uracil bases
Propagation	DNA is self-replicating.	RNA is synthesized from DNA on an as-needed basis.
Base Pairing	AT (adenine-thymine) GC (guanine-cytosine)	AU (adenine-uracil) GC (guanine-cytosine)
Reactivity	The C-H bonds in DNA make it fairly stable, plus the body destroys enzymes that would attack DNA. The small grooves in the helix also serve as protection, providing minimal space for enzymes to attach.	The O-H bond in the ribose of RNA makes the molecule more reactive, compared with DNA. RNA is not stable under alkaline conditions, plus the large grooves in the molecule make it susceptible to enzyme attack. RNA is constantly