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2 ENGINEERING MATHEMATICS

Since 3 D 9

3
, then 3

2

3
D 9

3
C 2

3
D 11

3

Similarly, 2
1

6
D 12

6
C 1

6
D 13

6

Thus 3
2

3
� 2

1

6
D 11

3
� 13

6
D 22

6
� 13

6
D 9

6
D 1

1
2

as obtained previously.

Problem 3. Determine the value of

4
5

8
� 3

1

4
C 1

2

5

4
5

8
� 3

1

4
C 1

2

5
D �4 � 3 C 1�C

(
5

8
� 1

4
C 2

5

)

D 2 C 5 ð 5 � 10 ð 1 C 8 ð 2

40

D 2 C 25 � 10 C 16

40

D 2 C 31

40
D 2

31
40

Problem 4. Find the value of
3

7
ð 14

15

Dividing numerator and denominator by 3 gives:
1 3

7
ð 14

15 5

D 1

7
ð 14

5
D 1 ð 14

7 ð 5

Dividing numerator and denominator by 7 gives:

1 ð 14 2

1 7 ð 5
D 1 ð 2

1 ð 5
D 2

5

This process of dividing both the numerator and
denominator of a fraction by the same factor(s) is
called cancelling.

Problem 5. Evaluate 1
3

5
ð 2

1

3
ð 3

3

7

Mixed numbers must be expressed as improper
fractions before multiplication can be performed.
Thus,

1
3

5
ð 2

1

3
ð 3

3

7

D
(

5

5
C 3

5

)
ð
(

6

3
C 1

3

)
ð
(

21

7
C 3

7

)

D 8

5
ð

1 7

1 3
ð 24 8

7 1

D 8 ð 1 ð 8

5 ð 1 ð 1

D 64

5
D 12

4
5

Problem 6. Simplify
3

7
ł 12

21

3

7
ł 12

21
D

3

7
12

21

Multiplying both numerator and denominator by the
reciprocal of the denominator gives:

3

7
12

21

D

1 3

1 7
ð 21 3

12 4
1 12

1 21
ð 21 1

12 1

D
3

4
1

D 3
4

This method can be remembered by the rule: invert
the second fraction and change the operation from
division to multiplication. Thus:

3

7
ł 12

21
D

1 3

1 7
ð 21 3

12 4

D 3
4

as obtained previously.

Problem 7. Find the value of 5
3

5
ł 7

1

3

The mixed numbers must be expressed as improper
fractions. Thus,

5
3

5
ł 7

1

3
D 28

5
ł 22

3
D
14 28

5
ð 3

22 11

D 42
55

Problem 8. Simplify

1

3
�
(

2

5
C 1

4

)
ł
(

3

8
ð 1

3

)

The order of precedence of operations for problems
containing fractions is the same as that for inte-
gers, i.e. remembered by BODMAS (Brackets, Of,
Division, Multiplication, Addition and Subtraction).
Thus,

1

3
�
(

2

5
C 1

4

)
ł
(

3

8
ð 1

3

)
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4 ENGINEERING MATHEMATICS

The total number of parts is 3 C 7 C 11, that is, 21.
Hence 21 parts correspond to 273 cm

1 part corresponds to
273

21
D 13 cm

3 parts correspond to 3 ð 13 D 39 cm

7 parts correspond to 7 ð 13 D 91 cm

11 parts correspond to 11 ð 13 D 143 cm

i.e. the lengths of the three pieces are 39 cm,
91 cm and 143 cm.

(Check: 39 C 91 C 143 D 273)

Problem 11. A gear wheel having 80 teeth
is in mesh with a 25 tooth gear. What is the
gear ratio?

Gear ratio D 80:25 D 80

25
D 16

5
D 3.2

i.e. gear ratio D 16 : 5 or 3.2 : 1

Problem 12. An alloy is made up of
metals A and B in the ratio 2.5 : 1 by mass.
How much of A has to be added to 6 kg of
B to make the alloy?

Ratio A : B: :2.5 : 1 (i.e. A is to B as 2.5 is to 1)

or
A

B
D 2.5

1
D 2.5

When B D 6 kg,
A

6
D 2.5 from which,

A D 6 ð 2.5 D 15 kg

Problem 13. If 3 people can complete a
task in 4 hours, how long will it take 5
people to complete the same task, assuming
the rate of work remains constant

The more the number of people, the more quickly
the task is done, hence inverse proportion exists.

3 people complete the task in 4 hours,

1 person takes three times as long, i.e.

4 ð 3 D 12 hours,

5 people can do it in one fifth of the time that

one person takes, that is
12

5
hours or 2 hours

24 minutes.

Now try the following exercise

Exercise 5 Further problems on ratio and
proportion

1. Divide 621 cm in the ratio of 3 to 7 to 13.
[81 cm to 189 cm to 351 cm]

2. When mixing a quantity of paints, dyes of
four different colours are used in the ratio
of 7:3:19:5. If the mass of the first dye
used is 3 1

2 g, determine the total mass of
the dyes used. [17 g]

3. Determine how much copper and how
much zinc is needed to make a 99 kg
brass ingot if they have to be in the
proportions copper : zinc: :8 : 3 by mass.

[72 kg : 27 kg]

4. It takes 21 hours for 12 men to resurface
a stretch of road. Find how many men
it takes to resurface a similar stretch of
road in 50 hours 24 minutes, assuming
the work rate remains constant. [5]

5. It takes 3 hours 15 minutes to fly from
city A to city B at a constant speed. Find
how long the journey takes if

(a) the speed is 1 1
2 times that of the

original speed and

(b) if the speed is three-quarters of the
original speed.

[(a) 2 h 10 min (b) 4 h 20 min]

1.3 Decimals

The decimal system of numbers is based on the
digits 0 to 9. A number such as 53.17 is called
a decimal fraction, a decimal point separating the
integer part, i.e. 53, from the fractional part, i.e. 0.17
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2

Indices and standard form

2.1 Indices

The lowest factors of 2000 are 2ð2ð2ð2ð5ð5ð5.
These factors are written as 24 ð 53, where 2 and 5
are called bases and the numbers 4 and 3 are called
indices.

When an index is an integer it is called a power.
Thus, 24 is called ‘two to the power of four’, and
has a base of 2 and an index of 4. Similarly, 53 is
called ‘five to the power of 3’ and has a base of 5
and an index of 3.

Special names may be used when the indices are
2 and 3, these being called ‘squared’ and ‘cubed’,
respectively. Thus 72 is called ‘seven squared’ and
93 is called ‘nine cubed’. When no index is shown,
the power is 1, i.e. 2 means 21.

Reciprocal

The reciprocal of a number is when the index is
�1 and its value is given by 1, divided by the base.
Thus the reciprocal of 2 is 2�1 and its value is 1

2
or 0.5. Similarly, the reciprocal of 5 is 5�1 which
means 1

5 or 0.2

Square root

The square root of a number is when the index is 1
2 ,

and the square root of 2 is written as 21/2 or
p

2. The
value of a square root is the value of the base which
when multiplied by itself gives the number. Since
3ð3 D 9, then

p
9 D 3. However, ��3�ð��3� D 9,

so
p

9 D �3. There are always two answers when
finding the square root of a number and this is shown
by putting both a C and a � sign in front of the
answer to a square root problem. Thus

p
9 D š3

and 41/2 D p
4 D š2, and so on.

Laws of indices

When simplifying calculations involving indices,
certain basic rules or laws can be applied, called
the laws of indices. These are given below.

(i) When multiplying two or more numbers hav-
ing the same base, the indices are added. Thus

32 ð 34 D 32C4 D 36

(ii) When a number is divided by a number having
the same base, the indices are subtracted. Thus

35

32
D 35�2 D 33

(iii) When a number which is raised to a power
is raised to a further power, the indices are
multiplied. Thus

�35�2 D 35ð2 D 310

(iv) When a number has an index of 0, its value
is 1. Thus 30 D 1

(v) A number raised to a negative power is the
reciprocal of that number raised to a positive

power. Thus 3�4 D 1

34
Similarly,

1

2�3
D 23

(vi) When a number is raised to a fractional power
the denominator of the fraction is the root of
the number and the numerator is the power.

Thus 82/3 D 3
p

82 D �2�2 D 4

and 251/2 D 2
p

251 D
p

251 D š5

(Note that
p � 2

p
)

2.2 Worked problems on indices

Problem 1. Evaluate: (a) 52 ð 53,

(b) 32 ð 34 ð 3 and (c) 2 ð 22 ð 25

From law (i):

(a) 52ð53 D 5�2C3� D 55 D 5ð5ð5ð5ð5 D 3125
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COMPUTER NUMBERING SYSTEMS 19

Table 3.1

Octal digit Natural
binary number

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

The ‘0’ on the extreme left does not signify any-
thing, thus 26.358 D 10 110.011 1012

Conversion of decimal to binary via octal is demon-
strated in the following worked problems.

Problem 7. Convert 371410 to a binary
number, via octal

Dividing repeatedly by 8, and noting the remainder
gives:

8  58 0

  0 7

7 2 0 2

8 3714 Remainder
8  464 2

8   7 2

From Table 3.1, 72028 D 111 010 000 0102

i.e. 371410 = 111 010 000 0102

Problem 8. Convert 0.5937510 to a binary
number, via octal

Multiplying repeatedly by 8, and noting the integer
values, gives:

0.59375  × 8 = 4.75
0.75   × 8 = 6.00

. 4 6

Thus 0.5937510 D 0.468

From Table 3.1, 0.468 D 0.100 1102

i.e. 0.5937510 = 0.100 112

Problem 9. Convert 5613.9062510 to a
binary number, via octal

The integer part is repeatedly divided by 8, noting
the remainder, giving:

8 5613 Remainder
8 701 5
8
8

87 5
10

8   1
  0

7
2
1

2 7 5 51

This octal number is converted to a binary number,
(see Table 3.1)

127558 D 001 010 111 101 1012

i.e. 561310 D 1 010 111 101 1012

The fractional part is repeatedly multiplied by 8, and
noting the integer part, giving:

0.90625   × 8 = 7.25
0.25    × 8 = 2.00

. 7 2

This octal fraction is converted to a binary number,
(see Table 3.1)

0.728 D 0.111 0102

i.e. 0.9062510 D 0.111 012

Thus, 5613.9062510 = 1 010 111 101 101.111 012

Problem 10. Convert 11 110 011.100 012
to a decimal number via octal

Grouping the binary number in three’s from the
binary point gives: 011 110 011.100 0102

Using Table 3.1 to convert this binary number to
an octal number gives: 363.428 and

363.428 D 3 ð 82 C 6 ð 81 C 3 ð 80

C 4 ð 8�1 C 2 ð 8�2

D 192 C 48 C 3 C 0.5 C 0.03125

D 243.5312510
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20 ENGINEERING MATHEMATICS

Now try the following exercise

Exercise 11 Further problems on con-
version between decimal and
binary numbers via octal

In Problems 1 to 3, convert the decimal
numbers given to binary numbers, via octal.

1. (a) 343 (b) 572 (c) 1265
[

(a) 1010101112 (b) 10001111002

(c) 100111100012

]

2. (a) 0.46875 (b) 0.6875 (c) 0.71875
[

(a) 0.011112 (b) 0.10112

(c) 0.101112

]

3. (a) 247.09375 (b) 514.4375

(c) 1716.78125



(a) 11110111.000112

(b) 1000000010.01112

(c) 11010110100.110012




4. Convert the following binary numbers to
decimal numbers via octal:

(a) 111.011 1 (b) 101 001.01
(c) 1 110 011 011 010.001 1

[
(a) 7.437510 (b) 41.2510

(c) 7386.187510

]

3.5 Hexadecimal numbers

The complexity of computers requires higher order
numbering systems such as octal (base 8) and hex-
adecimal (base 16), which are merely extensions
of the binary system. A hexadecimal numbering
system has a radix of 16 and uses the following 16
distinct digits:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E and F

‘A’ corresponds to 10 in the denary system, B to
11, C to 12, and so on.

To convert from hexadecimal to decimal:

For example

1A16 D 1 ð 161 C A ð 160

D 1 ð 161 C 10 ð 1 D 16 C 10 D 26

i.e. 1A16 D 2610

Similarly,

2E16 D 2 ð 161 C E ð 160

D 2 ð 161 C 14 ð 160 D 32 C 14 D 4610

and 1BF16 D 1 ð 162 C B ð 161 C F ð 160

D 1 ð 162 C 11 ð 161 C 15 ð 160

D 256 C 176 C 15 D 44710

Table 3.2 compares decimal, binary, octal and hex-
adecimal numbers and shows, for example, that

2310 D 101112 D 278 D 1716

Problem 11. Convert the following
hexadecimal numbers into their decimal
equivalents: (a) 7A16 (b) 3F16

(a) 7A16 D 7 ð 161 C A ð 160 D 7 ð 16 C 10 ð 1

D 112 C 10 D 122

Thus 7A16 = 12210

(b) 3F16 D 3 ð 161 C F ð 160 D 3 ð 16 C 15 ð 1

D 48 C 15 D 63

Thus, 3F16 = 6310

Problem 12. Convert the following
hexadecimal numbers into their decimal
equivalents: (a) C916 (b) BD16

(a) C916 D C ð 161 C 9 ð 160 D 12 ð 16 C 9 ð 1

D 192 C 9 D 201

Thus C916 = 20110

(b) BD16 D B ð 161 C D ð 160 D 11 ð 16 C 13 ð 1

D 176 C 13 D 189

Thus BD16 = 18910

Problem 13. Convert 1A4E16 into a denary
number
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COMPUTER NUMBERING SYSTEMS 21

Table 3.2

Decimal Binary Octal Hexadecimal

0 0000 0 0
1 0001 1 1
2 0010 2 2
3 0011 3 3
4 0100 4 4
5 0101 5 5
6 0110 6 6
7 0111 7 7
8 1000 10 8
9 1001 11 9

10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14
21 10101 25 15
22 10110 26 16
23 10111 27 17
24 11000 30 18
25 11001 31 19
26 11010 32 1A
27 11011 33 1B
28 11100 34 1C
29 11101 35 1D
30 11110 36 1E
31 11111 37 1F
32 100000 40 20

1A4E16

D 1 ð 163 C A ð 162 C 4 ð 161 C E ð 160

D 1 ð 163 C 10 ð 162 C 4 ð 161 C 14 ð 160

D 1 ð 4096 C 10 ð 256 C 4 ð 16 C 14 ð 1

D 4096 C 2560 C 64 C 14 D 6734

Thus, 1A4E16 = 673410

To convert from decimal to hexadecimal:

This is achieved by repeatedly dividing by 16 and
noting the remainder at each stage, as shown below
for 2610

0 1 ≡ 116

most significant bit → 1 A  ← least significant bit 

16 ≡ A16101
16 Remainder26

Hence 2610 = 1A16

Similarly, for 44710

16
16 11 ≡ B16

0 1  ≡ 116

1 B F

16

15 ≡ F16

Remainder447

27
1

Thus 44710 = 1BF16

Problem 14. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 3710 (b) 10810

(a) 16
16 = 516

0 2 = 216

most significant bit → 2   5 ← least significant bit 

Remainder
5

37
2

Hence 3710 = 2516

(b) 16
16  = C16

0  =  616

C

Remainder
12
6

6
108

6

Hence 10810 = 6C16

Problem 15. Convert the following decimal
numbers into their hexadecimal equivalents:
(a) 16210 (b) 23910

(a) 16
16 = 216

0 = A16

A

Remainder
2

10 
10

162

2

Hence 16210 = A216

(b) 16
16 =  F16

0 =  E16

E

Remainder
15
14

14
239

F

Hence 23910 = EF16

To convert from binary to hexadecimal:

The binary bits are arranged in groups of four,
starting from right to left, and a hexadecimal symbol
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CALCULATIONS AND EVALUATION OF FORMULAE 33

Assignment 1

This assignment covers the material con-
tained in Chapters 1 to 4. The marks for
each question are shown in brackets at
the end of each question.

1. Simplify (a) 2
2

3
ł 3

1

3

(b)
1(

4

7
ð 2

1

4

) ł
(

1

3
C 1

5

)
C 2

7

24
(9)

2. A piece of steel, 1.69 m long, is cut
into three pieces in the ratio 2 to 5 to
6. Determine, in centimetres, the lengths
of the three pieces. (4)

3. Evaluate
576.29

19.3

(a) correct to 4 significant figures

(b) correct to 1 decimal place (2)

4. Determine, correct to 1 decimal places,
57% of 17.64 g (2)

5. Express 54.7 mm as a percentage of
1.15 m, correct to 3 significant figures.

(3)

6. Evaluate the following:

(a)
23 ð 2 ð 22

24
(b)

	23 ð 16
2

	8 ð 2
3

(c)
(

1

42

)�1

(d) (27)� 1
3

(e)

(
3

2

)�2

� 2

9(
2

3

)2 (14)

7. Express the following in standard form:

(a) 1623 (b) 0.076 (c) 145
2

5
(3)

8. Determine the value of the following,
giving the answer in standard form:

(a) 5.9 ð 102 C 7.31 ð 102

(b) 2.75 ð 10�2 � 2.65 ð 10�3 (4)

9. Convert the following binary numbers to
decimal form:

(a) 1101 (b) 101101.0101 (5)

10. Convert the following decimal number
to binary form:

(a) 27 (b) 44.1875 (6)

11. Convert the following decimal numbers
to binary, via octal:

(a) 479 (b) 185.2890625 (6)

12. Convert (a) 5F16 into its decimal equiv-
alent (b) 13210 into its hexadecimal
equivalent (c) 1101010112 into its hex-
adecimal equivalent (6)

13. Evaluate the following, each correct to 4
significant figures:

(a) 61.222 (b)
1

0.0419
(c)

p
0.0527

(3)

14. Evaluate the following, each correct to 2
decimal places:

(a)
(

36.22 ð 0.561

27.8 ð 12.83

)3

(b)

√
14.692

p
17.42 ð 37.98

(7)

15. If 1.6 km D 1 mile, determine the speed
of 45 miles/hour in kilometres per hour.

(3)

16. Evaluate B, correct to 3 significant
figures, when W D 7.20, v D 10.0 and

g D 9.81, given that B D Wv2

2g
. (3)
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PARTIAL FRACTIONS 53

Let
3x � 1

�x � 1��x � 2�
� A

�x � 1�
C B

�x � 2�

� A�x � 2�C B�x � 1�

�x � 1��x � 2�
Equating numerators gives:

3x � 1 � A�x � 2�C B�x � 1�

Let x D 1. Then 2 D �A

i.e. A = −2

Let x D 2. Then 5 = B

Hence
3x � 1

�x � 1��x � 2�
� �2

�x � 1�
C 5

�x � 2�

Thus
x2 Y 1

x2 − 3x Y 2
≡ 1− 2

.x − 1/
Y

5
.x − 2/

Problem 4. Express
x3 � 2x2 � 4x � 4

x2 C x � 2
in

partial fractions

The numerator is of higher degree than the denom-
inator. Thus dividing out gives:

x � 3

x2 C x � 2
)
x3 � 2x2 � 4x � 4

x3 C x2 � 2x

�3x2 � 2x � 4

�3x2 � 3x C 6

x � 10

Thus

x3 � 2x2 � 4x � 4

x2 C x � 2
� x � 3 C x � 10

x2 C x � 2

� x � 3 C x � 10

�x C 2��x � 1�

Let
x � 10

�x C 2��x � 1�
� A

�x C 2�
C B

�x � 1�

� A�x � 1�C B�x C 2�

�x C 2��x � 1�

Equating the numerators gives:

x � 10 � A�x � 1�C B�x C 2�

Let x D �2. Then �12 D �3A

i.e. A = 4

Let x D 1. Then �9 D 3B

i.e. B = −3

Hence
x � 10

�x C 2��x � 1�
� 4

�x C 2�
� 3

�x � 1�

Thus
x3 − 2x2 − 4x − 4

x2 Y x − 2

≡ x − 3Y
4

.x Y 2/
−

3
.x − 1/

Now try the following exercise

Exercise 25 Further problems on partial
fractions with linear factors

Resolve the following into partial fractions:

1.
12

x2 � 9

[
2

�x � 3�
� 2

�x C 3�

]

2.
4�x � 4�

x2 � 2x � 3

[
5

�x C 1�
� 1

�x � 3�

]

3.
x2 � 3x C 6

x�x � 2��x � 1�[
3

x
C 2

�x � 2�
� 4

�x � 1�

]

4.
3�2x2 � 8x � 1�

�x C 4��x C 1��2x � 1�[
7

�x C 4�
� 3

�x C 1�
� 2

�2x � 1�

]

5.
x2 C 9x C 8

x2 C x � 6

[
1 C 2

�x C 3�
C 6

�x � 2�

]

6.
x2 � x � 14

x2 � 2x � 3

[
1 � 2

�x � 3�
C 3

�x C 1�

]

7.
3x3 � 2x2 � 16x C 20

�x � 2��x C 2�[
3x � 2 C 1

�x � 2�
� 5

�x C 2�

]
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64 ENGINEERING MATHEMATICS

Assignment 2

This assignment covers the material con-
tained in Chapters 5 to 8. The marks for
each question are shown in brackets at
the end of each question.

1. Evaluate: 3xy2z3 � 2yz when x D 4

3
,

y D 2 and z D 1

2
(3)

2. Simplify the following:

(a)
8a2b

p
c3

�2a�2
p
b
p
c

(b) 3x C 4 ł 2x C 5 ð 2 � 4x (6)

3. Remove the brackets in the following
expressions and simplify:

(a) �2x � y�2

(b) 4ab� [3f2�4a� b�C b�2 � a�g]
(5)

4. Factorise: 3x2y C 9xy2 C 6xy3 (3)

5. If x is inversely proportional to y and
x D 12 when y D 0.4, determine

(a) the value of x when y is 3, and

(b) the value of y when x D 2. (4)

6. Factorise x3 C 4x2 C x � 6 using the
factor theorem. Hence solve the equation
x3 C 4x2 C x � 6 D 0 (6)

7. Use the remainder theorem to find the
remainder when 2x3 C x2 � 7x � 6 is
divided by

(a) �x � 2� (b) �x C 1�

Hence factorise the cubic expression.
(7)

8. Simplify
6x2 C 7x � 5

2x � 1
by dividing out.

(5)

9. Resolve the following into partial frac-
tions:

(a)
x � 11

x2 � x � 2
(b)

3 � x

�x2 C 3��x C 3�

(c)
x3 � 6x C 9

x2 C x � 2
(24)

10. Solve the following equations:

(a) 3t � 2 D 5t C 4

(b) 4�k � 1�� 2�3k C 2�C 14 D 0

(c)
a

2
� 2a

5
D 1 (d)

√
sC 1

s� 1
D 2

(13)

11. A rectangular football pitch has its length
equal to twice its width and a perimeter
of 360 m. Find its length and width.
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66 ENGINEERING MATHEMATICS

Substituting y D �2 into either equation (1) or
equation (2) will give x D 3 as in method (a). The
solution x = 3, y = −2 is the only pair of values
that satisfies both of the original equations.

Problem 2. Solve, by a substitution method,
the simultaneous equations:

3x � 2y D 12 �1�

x C 3y D �7 �2�

From equation (2), x D �7 � 3y

Substituting for x in equation (1) gives:

3��7 � 3y�� 2y D 12

i.e. �21 � 9y � 2y D 12

�11y D 12 C 21 D 33

Hence y D 33

�11
D �3

Substituting y D �3 in equation (2) gives:

x C 3��3� D �7

i.e. x � 9 D �7

Hence x D �7 C 9 D 2

Thus x = 2, y = −3 is the solution of the simulta-
neous equations.
(Such solutions should always be checked by sub-
stituting values into each of the original two equa-
tions.)

Problem 3. Use an elimination method to
solve the simultaneous equations:

3x C 4y D 5 �1�

2x � 5y D �12 �2�

If equation (1) is multiplied throughout by 2 and
equation (2) by 3, then the coefficient of x will be
the same in the newly formed equations. Thus

2 ð equation (1) gives: 6x C 8y D 10 �3�

3 ð equation (2) gives: 6x � 15y D �36 �4�

Equation (3) � equation (4) gives:

0 C 23y D 46

i.e. y D 46

23
D 2

(Note C8y � �15y D 8y C 15y D 23y and
10 � ��36� D 10 C 36 D 46. Alternatively, ‘change
the signs of the bottom line and add’.)

Substituting y D 2 in equation (1) gives:

3x C 4�2� D 5

from which 3x D 5 � 8 D �3

and x D �1

Checking in equation (2), left-hand side D
2��1�� 5�2� D �2 � 10 D �12 D right-hand side.

Hence x = −1 and y = 2 is the solution of the
simultaneous equations.

The elimination method is the most common
method of solving simultaneous equations.

Problem 4. Solve:

7x � 2y D 26 �1�

6x C 5y D 29 �2�

When equation (1) is multiplied by 5 and equa-
tion (2) by 2 the coefficients of y in each equation
are numerically the same, i.e. 10, but are of opposite
sign.

5 ð equation (1) gives: 35x � 10y D 130 �3�

2 ð equation (2) gives: 12x C 10y D 58 �4�
Adding equation (3)

and (4) gives: 47x C 0 D 188

Hence x D 188

47
D 4

[Note that when the signs of common coefficients
are different the two equations are added, and when
the signs of common coefficients are the same the
two equations are subtracted (as in Problems 1
and 3).]

Substituting x D 4 in equation (1) gives:

7�4�� 2y D 26

28 � 2y D 26

28 � 26 D 2y

2 D 2y

Hence y D 1
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SIMULTANEOUS EQUATIONS 67

Checking, by substituting x D 4 and y D 1 in
equation (2), gives:

LHS D 6�4�C 5�1� D 24 C 5 D 29 D RHS

Thus the solution is x = 4, y = 1, since these
values maintain the equality when substituted in
both equations.

Now try the following exercise

Exercise 32 Further problems on simulta-
neous equations

Solve the following simultaneous equations
and verify the results.

1. aC b D 7
a� b D 3 [a D 5, b D 2]

2. 2x C 5y D 7
x C 3y D 4 [x D 1, y D 1]

3. 3sC 2t D 12
4s� t D 5 [s D 2, t D 3]

4. 3x � 2y D 13
2x C 5y D �4 [x D 3, y D �2]

5. 5x D 2y
3x C 7y D 41 [x D 2, y D 5]

6. 5c D 1 � 3d
2dC cC 4 D 0 [c D 2, d D �3]

9.3 Further worked problems on
simultaneous equations

Problem 5. Solve

3p D 2q �1�

4pC q C 11 D 0 �2�

Rearranging gives:

3p� 2q D 0 �3�

4pC q D �11 �4�

Multiplying equation (4) by 2 gives:

8pC 2q D �22 �5�

Adding equations (3) and (5) gives:

11pC 0 D �22

p D �22

11
D �2

Substituting p D �2 into equation (1) gives:

3��2� D 2q

�6 D 2q

q D �6

2
D �3

Checking, by substituting p D �2 and q D �3 into
equation (2) gives:

LHS D 4��2�C ��3�C 11 D �8 � 3 C 11

D 0 D RHS

Hence the solution is p = −2, q = −3

Problem 6. Solve

x

8
C 5

2
D y �1�

13 � y

3
D 3x �2�

Whenever fractions are involved in simultaneous
equations it is usual to firstly remove them. Thus,
multiplying equation (1) by 8 gives:

8
(x

8

)
C 8

(
5

2

)
D 8y

i.e. x C 20 D 8y �3�

Multiplying equation (2) by 3 gives:

39 � y D 9x �4�

Rearranging equations (3) and (4) gives:

x � 8y D �20 �5�

9x C y D 39 �6�

Multiplying equation (6) by 8 gives:

72x C 8y D 312 �7�

Adding equations (5) and (7) gives:

73x C 0 D 292

x D 292

73
D 4
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76 ENGINEERING MATHEMATICS

Problem 9. The final length, l2 of a piece
of wire heated through # °C is given by the
formula l2 D l1�1 C ˛#�. Make the
coefficient of expansion, ˛, the subject

Rearranging gives: l1�1 C ˛#� D l2

Removing the bracket gives: l1 C l1˛# D l2

Rearranging gives: l1˛# D l2 � l1

Dividing both sides by l1# gives:

l1˛#

l1#
D l2 � l1

l1#
i.e. a =

l2 − l1
l1q

Problem 10. A formula for the distance

moved by a body is given by: s D 1

2
�v C u�t.

Rearrange the formula to make u the subject

Rearranging gives:
1

2
�v C u�t D s

Multiplying both sides by 2 gives: �v C u�t D 2s

Dividing both sides by t gives:

�v C u�t

t
D 2s

t

i.e. v C u D 2s

t

Hence u =
2s
t

− v or u =
2s − vt

t

Problem 11. A formula for kinetic energy

is k D 1

2
mv2. Transpose the formula to make

v the subject

Rearranging gives:
1

2
mv2 D k

Whenever the prospective new subject is a
squared term, that term is isolated on the LHS, and
then the square root of both sides of the equation is
taken.

Multiplying both sides by 2 gives: mv2 D 2k

Dividing both sides by m gives:
mv2

m
D 2k

m

i.e. v2 D 2k

m

Taking the square root of both sides gives:
p

v2 D
√

2k

m

i.e. v =

√
2k
m

Problem 12. In a right angled triangle
having sides x, y and hypotenuse z,
Pythagoras’ theorem states z2 D x2 C y2.
Transpose the formula to find x

Rearranging gives: x2 C y2 D z2

and x2 D z2 � y2

Taking the square root of both sides gives:

x =
√

z 2 − y2

Problem 13. Given t D 2�

√
l

g
, find g in

terms of t, l and �

Whenever the prospective new subject is within a
square root sign, it is best to isolate that term on the
LHS and then to square both sides of the equation.

Rearranging gives: 2�

√
l

g
D t

Dividing both sides by 2� gives:

√
l

g
D t

2�

Squaring both sides gives:
l

g
D
(

t

2�

)2

D t2

4�2

Cross-multiplying, i.e. multiplying each term by
4�2g, gives:

4�2l D gt2

or gt2 D 4�2l

Dividing both sides by t2 gives:
gt2

t2
D 4�2l

t2

i.e. g =
4p2l

t2

Problem 14. The impedance of an a.c.
circuit is given by Z D p

R2 C X2. Make the
reactance, X, the subject
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11

Quadratic equations

11.1 Introduction to quadratic
equations

As stated in Chapter 8, an equation is a statement
that two quantities are equal and to ‘solve an equa-
tion’ means ‘to find the value of the unknown’.
The value of the unknown is called the root of the
equation.

A quadratic equation is one in which the highest
power of the unknown quantity is 2. For example,
x2 � 3x C 1 D 0 is a quadratic equation.

There are four methods of solving quadratic
equations.

These are: (i) by factorisation (where possible)

(ii) by ‘completing the square’

(iii) by using the ‘quadratic formula’

or (iv) graphically (see Chapter 30).

11.2 Solution of quadratic equations
by factorisation

Multiplying out �2xC1��x�3� gives 2x2�6xCx�3,
i.e. 2x2 � 5x � 3. The reverse process of moving
from 2x2 � 5x � 3 to �2x C 1��x � 3� is called
factorising.

If the quadratic expression can be factorised this
provides the simplest method of solving a quadratic
equation.

For example, if 2x2 � 5x � 3 D 0, then,

by factorising: �2x C 1��x � 3� D 0

Hence either �2x C 1� D 0 i.e. x D �1

2
or �x � 3� D 0 i.e. x D 3

The technique of factorising is often one of ‘trial
and error’.

Problem 1. Solve the equations:
(a) x2 C 2x � 8 D 0 (b) 3x2 � 11x � 4 D 0
by factorisation

(a) x2 C 2x� 8 D 0. The factors of x2 are x and x.
These are placed in brackets thus: (x )(x )

The factors of �8 are C8 and �1, or �8 and
C1, or C4 and �2, or �4 and C2. The only
combination to give a middle term of C2x is
C4 and �2, i.e.

x2 + 2x − 8 = (x + 4)(x − 2)

(Note that the product of the two inner terms
added to the product of the two outer terms
must equal the middle term, C2x in this
case.)

The quadratic equation x2 C 2x � 8 D 0 thus
becomes �x C 4��x � 2� D 0.

Since the only way that this can be true is for
either the first or the second, or both factors to
be zero, then

either �x C 4� D 0 i.e. x D �4

or �x � 2� D 0 i.e. x D 2

Hence the roots of x2 Y 2x − 8 = 0 are
x = −4 and 2

(b) 3x2 � 11x � 4 D 0

The factors of 3x2 are 3x and x. These are
placed in brackets thus: (3x )(x )

The factors of �4 are �4 and C1, or C4 and
�1, or �2 and 2.

Remembering that the product of the two inner
terms added to the product of the two outer
terms must equal �11x, the only combination
to give this is C1 and �4, i.e.

3x2 � 11x � 4 D �3x C 1��x � 4�
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12

Logarithms

12.1 Introduction to logarithms

With the use of calculators firmly established, log-
arithmic tables are now rarely used for calculation.
However, the theory of logarithms is important, for
there are several scientific and engineering laws that
involve the rules of logarithms.

If a number y can be written in the form ax, then
the index x is called the ‘logarithm of y to the base
of a’,

i.e. if y = ax then x = loga y

Thus, since 1000 D 103, then 3 D log10 1000

Check this using the ‘log’ button on your calculator.

(a) Logarithms having a base of 10 are called com-
mon logarithms and log10 is usually abbre-
viated to lg. The following values may be
checked by using a calculator:

lg 17.9 D 1.2528 . . . ,

lg 462.7 D 2.6652 . . .

and lg 0.0173 D �1.7619 . . .

(b) Logarithms having a base of e (where ‘e’ is
a mathematical constant approximately equal
to 2.7183) are called hyperbolic, Napierian
or natural logarithms, and loge is usually
abbreviated to ln.

The following values may be checked by using
a calculator:

ln 3.15 D 1.1474 . . . ,

ln 362.7 D 5.8935 . . .

and ln 0.156 D �1.8578 . . .

For more on Napierian logarithms see
Chapter 13.

12.2 Laws of logarithms

There are three laws of logarithms, which apply to
any base:

(i) To multiply two numbers:

log .A × B/ = log AY log B

The following may be checked by using a
calculator:

lg 10 D 1,

also lg 5 C lg 2 D 0.69897 . . .

C 0.301029 . . . D 1

Hence lg�5 ð 2� D lg 10 D lg 5 C lg 2

(ii) To divide two numbers:

log
(

A
B

)
= log A − log B

The following may be checked using a calcu-
lator:

ln
(

5

2

)
D ln 2.5 D 0.91629 . . .

Also ln 5 � ln 2 D 1.60943 . . .� 0.69314 . . .

D 0.91629 . . .

Hence ln
(

5

2

)
D ln 5 � ln 2

(iii) To raise a number to a power:

lg An = n log A

The following may be checked using a calcu-
lator:

lg 52 D lg 25 D 1.39794 . . .
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13

Exponential functions

13.1 The exponential function

An exponential function is one which contains ex,
e being a constant called the exponent and having
an approximate value of 2.7183. The exponent
arises from the natural laws of growth and decay
and is used as a base for natural or Napierian
logarithms.

13.2 Evaluating exponential functions

The value of ex may be determined by using:

(a) a calculator, or
(b) the power series for ex (see Section 13.3), or
(c) tables of exponential functions.

The most common method of evaluating an expo-
nential function is by using a scientific notation cal-
culator, this now having replaced the use of tables.
Most scientific notation calculators contain an ex

function which enables all practical values of ex and
e�x to be determined, correct to 8 or 9 significant
figures. For example,

e1 D 2.7182818

e2.4 D 11.023176

e�1.618 D 0.19829489
each correct to 8 significant figures.

In practical situations the degree of accuracy
given by a calculator is often far greater than is
appropriate. The accepted convention is that the
final result is stated to one significant figure greater
than the least significant measured value. Use your
calculator to check the following values:

e0.12 D 1.1275, correct to 5 significant figures

e�1.47 D 0.22993, correct to 5 decimal places

e�0.431 D 0.6499, correct to 4 decimal places

e9.32 D 11 159, correct to 5 significant figures

e�2.785 D 0.0617291, correct to 7 decimal places

Problem 1. Using a calculator, evaluate,
correct to 5 significant figures:

(a) e2.731 (b) e�3.162 (c)
5

3
e5.253

(a) e2.731 D 15.348227 . . . D 15.348, correct to 5
significant figures.

(b) e�3.162 D 0.04234097 . . . D 0.042341, correct
to 5 significant figures.

(c) 5
3 e5.253 D 5

3 �191.138825 . . .� D 318.56, correct
to 5 significant figures.

Problem 2. Use a calculator to determine
the following, each correct to 4 significant
figures:

(a) 3.72e0.18 (b) 53.2e�1.4 (c)
5

122
e7

(a) 3.72e0.18 D �3.72��1.197217 . . .� D 4.454,
correct to 4 significant figures.

(b) 53.2e�1.4 D �53.2��0.246596 . . .� D 13.12,
correct to 4 significant figures.

(c)
5

122
e7 D 5

122
�1096.6331 . . .� D 44.94, correct

to 4 significant figures.

Problem 3. Evaluate the following correct
to 4 decimal places, using a calculator:

(a) 0.0256�e5.21 � e2.49�

(b) 5
(

e0.25 � e�0.25

e0.25 C e�0.25

)

(a) 0.0256�e5.21 � e2.49�

D 0.0256�183.094058 . . . � 12.0612761 . . .�

D 4.3784, correct to 4 decimal places
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(b) ln 0.06213 D �2.7785263 . . . D −2.7785,
correct to 5 significant figures.

(c) 3.2 ln 762.923 D 3.2�6.6371571 . . .� D 21.239,
correct to 5 significant figures.

Problem 12. Use a calculator to evaluate
the following, each correct to 5 significant
figures:

(a)
1

4
ln 4.7291 (b)

ln 7.8693

7.8693

(c)
5.29 ln 24.07

e�0.1762

(a)
1

4
ln 4.7291 D 1

4
�1.5537349 . . .� D 0.38843,

correct to 5 significant figures.

(b)
ln 7.8693

7.8693
D 2.06296911 . . .

7.8693
D 0.26215,

correct to 5 significant figures.

(c)
5.29 ln 24.07

e�0.1762
D 5.29�3.18096625 . . .�

0.83845027 . . .

D 20.070, correct to 5 significant figures.

Problem 13. Evaluate the following:

(a)
ln e2.5

lg 100.5
(b)

4e2.23 lg 2.23

ln 2.23
(correct to 3

decimal places)

(a)
ln e2.5

lg 100.5
D 2.5

0.5
D 5

(b)
4e2.23 lg 2.23

ln 2.23

D 4�9.29986607 . . .��0.34830486 . . .�

0.80200158 . . .

D 16.156, correct to 3 decimal places

Problem 14. Solve the equation 7 D 4e�3x

to find x, correct to 4 significant figures

Rearranging 7 D 4e�3x gives:
7

4
D e�3x

Taking the reciprocal of both sides gives:
4

7
D 1

e�3x
D e3x

Taking Napierian logarithms of both sides gives:

ln
(

4

7

)
D ln�e3x�

Since loge e˛ D ˛, then ln
(

4

7

)
D 3x

Hence x D 1

3
ln
(

4

7

)
D 1

3
��0.55962� D −0.1865,

correct to 4 significant figures.

Problem 15. Given 20 D 60�1 � e�t/2�
determine the value of t, correct to 3
significant figures

Rearranging 20 D 60�1 � e�t/2� gives:
20

60
D 1 � e�1/2

and
e�t/2 D 1 � 20

60
D 2

3

Taking the reciprocal of both sides gives:

et/2 D 3

2
Taking Napierian logarithms of both sides gives:

ln et/2 D ln
3

2

i.e.
t

2
D ln

3

2

from which, t D 2 ln
3

2
D 0.881, correct to 3

significant figures.

Problem 16. Solve the equation

3.72 D ln
(

5.14

x

)
to find x

From the definition of a logarithm, since

3.72 D
(

5.14

x

)
then e3.72 D 5.14

x

Rearranging gives: x D 5.14

e3.72
D 5.14e�3.72

i.e. x = 0.1246,

correct to 4 significant figures
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110 ENGINEERING MATHEMATICS

For example, the sum to infinity of the GP

1 C 1

2
C 1

4
C . . . is

S1 D 1

1 � 1

2

, since a D 1 and r D 1

2
, i.e. S1 D 2

14.5 Worked problems on geometric
progressions

Problem 9. Determine the tenth term of the
series 3, 6, 12, 24, . . .

3, 6, 12, 24, . . . is a geometric progression with a
common ratio r of 2.

The n0th term of a GP is arn�1, where a is the
first term. Hence the 10th term is:

�3��2�10�1 D �3��2�9 D 3�512� D 1536

Problem 10. Find the sum of the first 7

terms of the series,
1

2
, 1

1

2
, 4

1

2
, 13

1

2
, . . .

1

2
, 1

1

2
, 4

1

2
, 13

1

2
, . . .

is a GP with a common ratio r D 3

The sum of n terms, Sn D a�rn � 1�

�r � 1�

Hence S7 D
1

2
�37 � 1�

�3 � 1�
D

1

2
�2187 � 1�

2
D 546

1
2

Problem 11. The first term of a geometric
progression is 12 and the fifth term is 55.
Determine the 8’th term and the 11’th term

The 5th term is given by ar4 D 55, where the first
term a D 12

Hence r4 D 55

a
D 55

12
and

r D 4

√
55

12
D 1.4631719 . . .

The 8th term is
ar7 D �12��1.4631719 . . .�7 D 172.3

The 11th term is

ar10 D �12��1.4631719 . . .�10 D 539.7

Problem 12. Which term of the series:

2187, 729, 243, . . . is
1

9
?

2187, 729, 243, . . . is a GP with a common ratio

r D 1

3
and first term a D 2187

The n0th term of a GP is given by: arn�1

Hence
1

9
D �2187�

(
1

3

)n�1

from which

(
1

3

)n�1

D 1

�9��2187�
D 1

3237
D 1

39
D
(

1

3

)9

Thus �n� 1� D 9, from which, n D 9 C 1 D 10

i.e.
1
9

is the 10th term of the GP

Problem 13. Find the sum of the first 9
terms of the series: 72.0, 57.6, 46.08, . . .

The common ratio,

r D ar

a
D 57.6

72.0
D 0.8

(
also

ar2

ar
D 46.08

57.6
D 0.8

)

The sum of 9 terms,

S9 D a�1 � rn�

�1 � r�
D 72.0�1 � 0.89�

�1 � 0.8�

D 72.0�1 � 0.1342�

0.2
D 311.7

Problem 14. Find the sum to infinity of the

series 3, 1,
1

3
, . . .

3, 1,
1

3
, . . . is a GP of common ratio, r D 1

3
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The sum to infinity,

S1 D a

1 � r
D 3

1 � 1

3

D 3
2

3

D 9

2
D 4

1
2

Now try the following exercise

Exercise 53 Further problems on geomet-
ric progressions

1. Find the 10th term of the series 5, 10, 20,
40, . . . . [2560]

2. Determine the sum of the first 7 terms of
the series 0.25, 0.75, 2.25, 6.75, . . . .

[273.25]

3. The first term of a geometric progression
is 4 and the 6th term is 128. Determine
the 8th and 11th terms. [512, 4096]

4. Which term of the series 3, 9, 27, . . . is
59 049? [10th]

5. Find the sum of the first 7 terms of the

series 2, 5, 12
1

2
, . . . (correct to 4 signifi-

cant figures). [812.5]

6. Determine the sum to infinity of the series
4, 2, 1, . . . . [8]

7. Find the sum to infinity of the series

2
1

2
, �1

1

4
,

5

8
, . . . .

[
1

2

3

]

14.6 Further worked problems on
geometric progressions

Problem 15. In a geometric progression the
sixth term is 8 times the third term and the
sum of the seventh and eighth terms is 192.
Determine (a) the common ratio, (b) the first
term, and (c) the sum of the fifth to eleventh
terms, inclusive

(a) Let the GP be a, ar, ar2, ar3, . . ., arn�1

The 3rd term D ar2 and the sixth term D ar5

The 6th term is 8 times the 3rd

Hence ar5 D 8 ar2 from which, r3 D 8 and
r D 3

p
8

i.e. the common ratio r = 2

(b) The sum of the 7th and 8th terms is 192. Hence
ar6 C ar7 D 192. Since r D 2, then

64aC 128a D 192

192a D 192,

from which, a , the first term = 1

(c) The sum of the 5th to 11th terms (inclusive) is
given by:

S11 � S4 D a�r11 � 1�

�r � 1�
� a�r4 � 1�

�r � 1�

D 1�211 � 1�

�2 � 1�
� 1�24 � 1�

�2 � 1�

D �211 � 1�� �24 � 1�

D 211 � 24 D 2408 � 16 D 2032

Problem 16. A hire tool firm finds that
their net return from hiring tools is
decreasing by 10% per annum. If their net
gain on a certain tool this year is £400, find
the possible total of all future profits from
this tool (assuming the tool lasts for ever)

The net gain forms a series:

£400 C £400 ð 0.9 C £400 ð 0.92 C . . . ,

which is a GP with a D 400 and r D 0.9

The sum to infinity,

S1 D a

�1 � r�
D 400

�1 � 0.9�

D £4000 = total future profits

Problem 17. If £100 is invested at
compound interest of 8% per annum,
determine (a) the value after 10 years,
(b) the time, correct to the nearest year, it
takes to reach more than £300

(a) Let the GP be a, ar, ar2, . . . arn

The first term a D £100 and
The common ratio r D 1.08
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where, for example, 4! denotes 4 ð 3 ð 2 ð 1 and is
termed ‘factorial 4’.

Thus,

5C3 D 5!

3!�5 � 3�!
D 5 ð 4 ð 3 ð 2 ð 1

�3 ð 2 ð 1��2 ð 1�

D 120

6 ð 2
D 10

For example, the five letters A, B, C, D, E can be
arranged in groups of three as follows: ABC, ABD,
ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE,
i.e. there are ten groups. The above calculation 5C3
produces the answer of 10 combinations without
having to list all of them.

A permutation is the number of ways of selecting
r 
 n objects from n distinguishable objects when
order of selection is important. A permutation is
denoted by nPr or nPr

where nPr D n�n� 1��n� 2� . . . �n� r C 1�

or nPr=
n!

.n − r/!

Thus, 4P2 D 4�3� D 12

or 4P2 D 4!

�4 � 2�!
D 4!

2!

D 4 ð 3 ð 2

2
D 12

Problem 19. Evaluate: (a) 7C4 (b) 10C6

(a) 7C4 D 7!

4!�7 � 4�!
D 7!

4!3!

D 7 ð 6 ð 5 ð 4 ð 3 ð 2

�4 ð 3 ð 2��3 ð 2�
D 35

(b) 10C6 D 10!

6!�10 � 6�!
D 10!

6!4!
D 210

Problem 20. Evaluate: (a) 6P2 (b) 9P5

(a) 6P2 D 6!

�6 � 2�!
D 6!

4!

D 6 ð 5 ð 4 ð 3 ð 2

4 ð 3 ð 2
D 30

(b) 9P5 D 9!

�9 � 5�!
D 9!

4!

D 9 ð 8 ð 7 ð 6 ð 5 ð 4!

4!
D 15 120

Now try the following exercise

Exercise 55 Further problems on permu-
tations and combinations

Evaluate the following:

1. (a) 9C6 (b) 3C1 [(a) 84 (b) 3]

2. (a) 6C2 (b) 8C5 [(a) 15 (b) 56]

3. (a) 4P2 (b) 7P4 [(a) 12 (b) 840]

4. (a) 10P3 (b) 8P5 [(a) 720 (b) 6720]
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118 ENGINEERING MATHEMATICS

Problem 10.

(a) Expand
1

�4 � x�2
in ascending powers

of x as far as the term in x3, using the
binomial theorem.

(b) What are the limits of x for which the
expansion in (a) is true?

(a)
1

�4 � x�2
D 1[

4
(

1 � x

4

)]2 D 1

42
(

1 � x

4

)2

D 1

16

(
1 � x

4

)�2

Using the expansion of �1 C x�n

1

�4 � x�2
D 1

16

(
1 � x

4

)�2

D 1

16

[
1 C ��2�

(
�x

4

)

C ��2���3�

2!

(
�x

4

)2

C ��2���3���4�

3!

(
�x

4

)3 C Ð Ð Ð
]

D 1
16

(
1Y

x
2
Y

3x2

16
Y

x3

16
Y · · ·

)

(b) The expansion in (a) is true provided
∣∣∣x
4

∣∣∣ < 1,

i.e. jx j < 4 or − 4 < x < 4

Problem 11. Use the binomial theorem to
expand

p
4 C x in ascending powers of x to

four terms. Give the limits of x for which the
expansion is valid

p
4 C x D

√
4
(

1 C x

4

)

D
p

4

√
1 C x

4

D 2
(

1 C x

4

) 1
2

Using the expansion of �1 C x�n,

2
(

1 C x

4

) 1
2

D 2
[

1 C
(

1

2

)(x
4

)
C �1/2���1/2�

2!

(x
4

)2

C �1/2� ��1/2� ��3/2�

3!

(x
4

)3 C Ð Ð Ð
]

D 2
(

1 C x

8
� x2

128
C x3

1024
� Ð Ð Ð

)

= 2Y
x
4

− x2

64
Y

x3

512
− · · ·

This is valid when
∣∣∣x
4

∣∣∣ < 1,

i.e.
∣∣∣x
4

∣∣∣ < 4 or − 4 < x < 4

Problem 12. Expand
1p

1 � 2t
in ascending

powers of t as far as the term in t3.

State the limits of t for which the expression
is valid

1p
1 � 2t

D �1 � 2t��
1
2

D 1 C
(

�1

2

)
��2t�C ��1/2� ��3/2�

2!
��2t�2

C ��1/2� ��3/2� ��5/2�

3!
��2t�3 C Ð Ð Ð

using the expansion for �1 C x�n

= 1Y t Y
3
2

t2 Y
5
2

t3 Y · · ·

The expression is valid when j2tj < 1,

i.e. jt j <
1
2

or − 1
2

< t <
1
2

Problem 13. Simplify
3

p
1 � 3x

p
1 C x(

1 C x

2

)3

given that powers of x above the first may be
neglected
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120 ENGINEERING MATHEMATICS

6. Expand �2 C 3x��6 to three terms. For
what values of x is the expansion valid?


1

64

(
1 � 9x C 189

4
x2

)

jxj < 2

3




7. When x is very small show that:

(a)
1

�1 � x�2
p

1 � x
³ 1 C 5

2
x

(b)
�1 � 2x�

�1 � 3x�4
³ 1 C 10x

(c)

p
1 C 5x

3
p

1 � 2x
³ 1 C 19

6
x

8. If x is very small such that x2 and higher
powers may be neglected, determine the
power series for

p
x C 4 3

p
8 � x

5
√
�1 C x�3

.

[
4 � 31

15
x

]

9. Express the following as power series in
ascending powers of x as far as the term
in x2. State in each case the range of x for
which the series is valid.

(a)

√
1 � x

1 C x
(b)

�1 C x� 3
p

1 � 3x2
p

1 C x2




(a) 1 � x C 1

2
x2, jxj < 1

(b) 1 � x � 7

2
x2, jxj < 1

3




15.5 Practical problems involving the
binomial theorem

Binomial expansions may be used for numerical
approximations, for calculations with small varia-
tions and in probability theory.

Problem 15. The radius of a cylinder is
reduced by 4% and its height is increased by
2%. Determine the approximate percentage
change in (a) its volume and (b) its curved
surface area, (neglecting the products of
small quantities)

Volume of cylinder D �r2h

Let r and h be the original values of radius and
height

The new values are 0.96r or (1�0.04)r and
1.02 h or (1 C 0.02)h

(a) New volume D �[�1 � 0.04�r]2[�1 C 0.02�h]

D �r2h�1 � 0.04�2�1 C 0.02�

Now �1 � 0.04�2 D 1 � 2�0.04�C �0.04�2

D �1 � 0.08�, neglecting

powers of small terms

Hence new volume

³ �r2h�1 � 0.08��1 C 0.02�

³ �r2h�1 � 0.08 C 0.02�, neglecting
products of small terms

³ �r2h�1 � 0.06� or 0.94�r2h, i.e. 94%
of the original volume

Hence the volume is reduced by approxi-
mately 6%.

(b) Curved surface area of cylinder D 2�rh.

New surface area

D 2�[�1 � 0.04�r][�1 C 0.02�h]

D 2�rh�1 � 0.04��1 C 0.02�

³ 2�rh�1 � 0.04 C 0.02�, neglecting
products of small terms

³ 2�rh�1 � 0.02� or 0.98�2�rh�,
i.e. 98% of the original surface area

Hence the curved surface area is reduced by
approximately 2%.

Problem 16. The second moment of area of
a rectangle through its centroid is given by
bl3

12
. Determine the approximate change in

the second moment of area if b is increased
by 3.5% and l is reduced by 2.5%

New values of b and l are �1 C 0.035�b and
�1 � 0.025�l respectively.
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6. Find the angles p, q, r, s and t in
Fig. 17.12(a) to (c).[

p D 105°, q D 35°, r D 142°,
s D 95°, t D 146°

]

Figure 17.12

7. Name the types of quadrilateral shown
in Fig. 17.13(i) to (iv), and determine
(a) the area, and (b) the perimeter of
each.


(i) rhombus (a) 14 cm2 (b) 16 cm
(ii) parallelogram (a) 180 cm2

(b) 80 mm
(iii) rectangle (a) 3600 mm2

(b) 300 mm
(iv) trapezium (a) 190 cm2 (b) 62.91 cm




Figure 17.13

8. Calculate the area of the steel plate
shown in Fig. 17.14. [6750 mm2]

Figure 17.14

17.4 Further worked problems on
areas of plane figures

Problem 7. Find the areas of the circles
having (a) a radius of 5 cm, (b) a diameter
of 15 mm, (c) a circumference of 70 mm

Area of a circle D +r2 or
+d2

4

(a) Area D +r2 D +$5%2 D 25+ D 78.54 cm2

(b) Area D +d2

4
D +$15%2

4
D 225+

4
D 176.7 mm2

(c) Circumference, c D 2+r, hence

r D c

2+
D 70

2+
D 35

+
mm

Area of circle D +r2 D +

(
35

+

)2

D 352

+

D 389.9 mm2 or 3.899 cm2

Problem 8. Calculate the areas of the
following sectors of circles having:

(a) radius 6 cm with angle subtended at
centre 50°

(b) diameter 80 mm with angle subtended
at centre 107°420

(c) radius 8 cm with angle subtended at
centre 1.15 radians

Area of sector of a circle D ,2

360
$+r2%

or
1

2
r2, (, in radians).

(a) Area of sector

D 50

360
$+62% D 50 ð + ð 36

360
D 5+

D 15.71 cm2

(b) If diameter D 80 mm, then radius, r D 40 mm,
and area of sector

D 107°420

360
$+402% D

107
42

60
360

$+402%

D 107.7

360
$+402%D1504 mm2 or 15.04 cm2

(c) Area of sector D 1
2r

2, D 1
2 ð 82 ð 1.15

D 36.8 cm2

Preview from Notesale.co.uk

Page 147 of 543



140 ENGINEERING MATHEMATICS

(xiii) The angle in a semicircle is a right angle
(see angle BQP in Fig. 18.3).

Problem 1. Find the circumference of a
circle of radius 12.0 cm

Circumference,

c D 2 ð � ð radius D 2�r D 2��12.0�

D 75.40 cm

Problem 2. If the diameter of a circle is
75 mm, find its circumference

Circumference,

c D � ð diameter D �d D ��75� D 235.6 mm

Problem 3. Determine the radius of a circle
if its perimeter is 112 cm

Perimeter D circumference, c D 2�r

Hence radius r D c

2�
D 112

2�
D 17.83 cm

Problem 4. In Fig. 18.4, AB is a tangent to
the circle at B. If the circle radius is 40 mm
and AB D 150 mm, calculate the length AO

A

B

O

r

Figure 18.4

x

A tangent to a circle is at right angles to a radius
drawn from the point of contact, i.e. ABO D 90°.
Hence, using Pythagoras’ theorem:

AO2 D AB2 C OB2

from which, AO D
√
AB2 C OB2

D
√

1502 C 402 D 155.2 mm

Now try the following exercise

Exercise 65 Further problems on proper-
ties of a circle

1. Calculate the length of the circumference
of a circle of radius 7.2 cm. [45.24 cm]

2. If the diameter of a circle is 82.6 mm,
calculate the circumference of the circle.

[259.5 mm]

3. Determine the radius of a circle whose
circumference is 16.52 cm. [2.629 cm]

4. Find the diameter of a circle whose peri-
meter is 149.8 cm. [47.68 cm]

18.3 Arc length and area of a sector

One radian is defined as the angle subtended at the
centre of a circle by an arc equal in length to the radius.
With reference to Fig. 18.5, for arc length s,

� radians D s/r or arc length, s = rq �1�

where � is in radians.

o

s
r

r
q

Figure 18.5

When s D whole circumference (D 2�r) then

� D s/r D 2�r/r D 2�

i.e. 2� radians D 360° or

p radians = 180°

Thus 1 rad D 180°/� D 57.30°, correct to 2 decimal
places.

Since � rad D 180°, then �/2 D 90°, �/3 D 60°,
�/4 D 45°, and so on.

Area of a sector D q

360
.pr2/

when � is in degrees

D �

2�
��r2� D 1

2
r2q �2�

when � is in radians

Problem 5. Convert to radians: (a) 125°
(b) 69°470

(a) Since 180° D � rad then 1° D �/180 rad,
therefore

125° D 125
( �

180

)c
D 2.182 radians

(Note that c means ‘circular measure’ and indi-
cates radian measure.)
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(b) 69°470 D 69
47°

60
D 69.783°

69.783° D 69.783
( �

180

)c
D 1.218 radians

Problem 6. Convert to degrees and
minutes: (a) 0.749 radians (b) 3�/4 radians

(a) Since � rad D 180° then 1 rad D 180°/�,
therefore

0.749 D 0.749
(

180

�

)°
D 42.915°

0.915° D �0.915 ð 60�0 D 550, correct to the
nearest minute, hence

0.749 radians = 42°55′

(b) Since 1 rad D
(

180

�

)°
then

3�

4
rad D 3�

4

(
180

�

)°

D 3

4
�180�° D 135°

Problem 7. Express in radians, in terms of
�, (a) 150° (b) 270° (c) 37.5°

Since 180° D � rad then 1° D 180/�, hence

(a) 150° D 150
( �

180

)
rad D 5p

6
rad

(b) 270° D 270
( �

180

)
rad D 3p

2
rad

(c) 37.5° D 37.5
( �

180

)
rad D 75�

360
rad D 5p

24
rad

Now try the following exercise

Exercise 66 Further problems on radians
and degrees

1. Convert to radians in terms of �: (a) 30°

(b) 75° (c) 225°
[
�a�

�

6
�b�

5�

12
�c�

5�

4

]

2. Convert to radians: (a) 48° (b) 84°510
(c) 232°15’

[(a) 0.838 (b) 1.481 (c) 4.054]

3. Convert to degrees: (a)
5�

6
rad (b)

4�

9
rad

(c)
7�

12
rad [(a) 150° (b) 80° (c) 105°]

4. Convert to degrees and minutes:
(a) 0.0125 rad (b) 2.69 rad (c) 7.241 rad

[(a) 0° 430 (b) 154° 80 (c) 414°530]

18.4 Worked problems on arc length
and sector of a circle

Problem 8. Find the length of arc of a
circle of radius 5.5 cm when the angle
subtended at the centre is 1.20 radians

From equation (1), length of arc, s D r�, where � is
in radians, hence

s D �5.5��1.20� D 6.60 cm

Problem 9. Determine the diameter and
circumference of a circle if an arc of length
4.75 cm subtends an angle of 0.91 radians

Since s D r� then r D s

�
D 4.75

0.91
D 5.22 cm.

Diameter D 2 ð radius D 2 ð 5.22 D 10.44 cm.

Circumference, c D �d D ��10.44� D 32.80 cm.

Problem 10. If an angle of 125° is
subtended by an arc of a circle of radius
8.4 cm, find the length of (a) the minor arc,
and (b) the major arc, correct to 3 significant
figures

Since 180° D � rad then 1° D
( �

180

)
rad

and 125° D 125
( �

180

)
rad

Length of minor arc,

s D r� D �8.4��125�
( �

180

)
D 18.3 cm

correct to 3 significant figures.
Length of major arc D (circumference � minor

arc� D 2��8.4� � 18.3 D 34.5 cm, correct to 3
significant figures.

(Alternatively, major arc
D r� D 8.4�360 � 125���/180� D 34.5 cm.)
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a height of 3.5 m, with a diameter of
15 m. Calculate the surface area of mate-
rial needed to make the marquee assum-
ing 12% of the material is wasted in the
process. [393.4 m2]

5. Determine (a) the volume and (b) the
total surface area of the following solids:

(i) a cone of radius 8.0 cm and per-
pendicular height 10 cm

(ii) a sphere of diameter 7.0 cm

(iii) a hemisphere of radius 3.0 cm

(iv) a 2.5 cm by 2.5 cm square
pyramid of perpendicular height
5.0 cm

(v) a 4.0 cm by 6.0 cm rectangular
pyramid of perpendicular height
12.0 cm

(vi) a 4.2 cm by 4.2 cm square pyra-
mid whose sloping edges are each
15.0 cm

(vii) a pyramid having an octagonal
base of side 5.0 cm and perpen-
dicular height 20 cm.




(i) (a) 670 cm3 (b) 523 cm2

(ii) (a) 180 cm3 (b) 154 cm2

(iii) (a) 56.5 cm3 (b) 84.8 cm2

(iv) (a) 10.4 cm3 (b) 32.0 cm2

(v) (a) 96.0 cm3 (b) 146 cm2

(vi) (a) 86.5 cm3 (b) 142 cm2

(vii) (a) 805 cm3 (b) 539 cm2




6. The volume of a sphere is 325 cm3.
Determine its diameter. [8.53 cm]

7. A metal sphere weighing 24 kg is melted
down and recast into a solid cone of
base radius 8.0 cm. If the density of the
metal is 8000 kg/m3 determine (a) the
diameter of the metal sphere and (b) the
perpendicular height of the cone, assum-
ing that 15% of the metal is lost in the
process. [(a) 17.9 cm (b) 38.0 cm]

8. Find the volume of a regular hexagonal
pyramid if the perpendicular height is
16.0 cm and the side of base is 3.0 cm.

[125 cm3]

9. A buoy consists of a hemisphere sur-
mounted by a cone. The diameter of the
cone and hemisphere is 2.5 m and the

slant height of the cone is 4.0 m. Deter-
mine the volume and surface area of the
buoy. [10.3 m3, 25.5 m2]

10. A petrol container is in the form of a
central cylindrical portion 5.0 m long
with a hemispherical section surmounted
on each end. If the diameters of the
hemisphere and cylinder are both 1.2 m
determine the capacity of the tank in
litres �1 litre D 1000 cm3�. [6560 litre]

11. Figure 19.9 shows a metal rod section.
Determine its volume and total surface
area. [657.1 cm3, 1027 cm2]

1.00 cm
radius

2.50 cm

1.00 m

Figure 19.9

19.4 Volumes and surface areas of
frusta of pyramids and cones

The frustum of a pyramid or cone is the portion
remaining when a part containing the vertex is cut
off by a plane parallel to the base.

The volume of a frustum of a pyramid or cone
is given by the volume of the whole pyramid or
cone minus the volume of the small pyramid or cone
cut off.

The surface area of the sides of a frustum of
a pyramid or cone is given by the surface area of
the whole pyramid or cone minus the surface area
of the small pyramid or cone cut off. This gives the
lateral surface area of the frustum. If the total surface
area of the frustum is required then the surface area
of the two parallel ends are added to the lateral
surface area.

There is an alternative method for finding the
volume and surface area of a frustum of a cone.
With reference to Fig. 19.10:

Volume = 1
3 ph.R2 Y Rr Y r2/

Curved surface area = pl.R Y r/

Total surface area = pl.R Y r/Y pr2 Y pR2
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(d)
Volume of frustum

Volume of sphere
D 311.0

904.8
ð 100%

D 34.37%

Problem 26. A spherical storage tank is
filled with liquid to a depth of 20 cm. If the
internal diameter of the vessel is 30 cm,
determine the number of litres of liquid in
the container (1 litre D 1000 cm3)

The liquid is represented by the shaded area in the
section shown in Fig. 19.19. The volume of liquid
comprises a hemisphere and a frustum of thickness
5 cm.

5 cm

15 cm
15 cm

15 cm

Figure 19.19

Hence volume of liquid

D 2

3
�r3 C �h

6
[h2 C 3r2

1 C 3r2
2 ]

where r2 D 30/2 D 15 cm and

r1 D
√

152 � 52 D 14.14 cm

Volume of liquid

D 2

3
��15�3 C � �5�

6
[52 C 3�14.14�2 C 3�15�2]

D 7069 C 3403 D 10 470 cm3

Since 1 litre D 1000 cm3, the number of litres of
liquid

D 10 470

1000
D 10.47 litres

Now try the following exercise

Exercise 72 Further problems on frus-
tums and zones of spheres

1. Determine the volume and surface area
of a frustum of a sphere of diameter
47.85 cm, if the radii of the ends of the

frustum are 14.0 cm and 22.0 cm and the
height of the frustum is 10.0 cm

[11 210 cm3, 1503 cm2]

2. Determine the volume (in cm3) and the
surface area (in cm2) of a frustum of a
sphere if the diameter of the ends are
80.0 mm and 120.0 mm and the thickness
is 30.0 mm. [259.2 cm3, 118.3 cm2]

3. A sphere has a radius of 6.50 cm.
Determine its volume and surface area. A
frustum of the sphere is formed by two
parallel planes, one through the diameter
and the other at a distance h from the
diameter. If the curved surface area of
the frustum is to be 1

5 of the surface area
of the sphere, find the height h and the
volume of the frustum.[

1150 cm3, 531 cm2,
2.60 cm, 326.7 cm3

]

4. A sphere has a diameter of 32.0 mm.
Calculate the volume (in cm3) of the
frustum of the sphere contained between
two parallel planes distances 12.0 mm
and 10.00 mm from the centre and on
opposite sides of it. [14.84 cm3]

5. A spherical storage tank is filled with
liquid to a depth of 30.0 cm. If the
inner diameter of the vessel is 45.0 cm
determine the number of litres of liquid
in the container (1litre D 1000 cm3).

[35.34 litres]

19.6 Prismoidal rule

The prismoidal rule applies to a solid of length x
divided by only three equidistant plane areas, A1,
A2 and A3 as shown in Fig. 19.20 and is merely an
extension of Simpson’s rule (see Chapter 20) — but
for volumes.

A1 A2 A3

x

x
2

x
2

Figure 19.20
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In Problems 9 to 14, determine the acute
angle in degrees (correct to 2 decimal places),
degrees and minutes, and in radians (correct
to 3 decimal places).

9. sin�1 0.2341

[13.54°, 13°320, 0.236 rad]

10. cos�1 0.8271

[34.20°, 34°120, 0.597 rad]

11. tan�1 0.8106

[39.03°, 39°20, 0.681 rad]

12. sec�1 1.6214

[51.92°, 51°550, 0.906 rad]

13. cosec�1 2.4891

[23.69°, 23°410, 0.413 rad]

14. cot�1 1.9614

[27.01°, 27°10, 0.471 rad]

In Problems 15 to 18, evaluate correct to 4
significant figures.

15. 4 cos 56°190 � 3 sin 21°570 [1.097]

16.
11.5 tan 49°110 � sin 90°

3 cos 45°
[5.805]

17.
5 sin 86°30

3 tan 14°290 � 2 cos 31°90 [�5.325]

18.
6.4 cosec 29°50 � sec 81°

2 cot 12°
[0.7199]

19. Determine the acute angle, in degrees
and minutes, correct to the nearest min-

ute, given by: sin�1
(

4.32 sin 42°160

7.86

)

[21°420]

20. If tan x D 1.5276, determine sec x,
cosec x, and cot x. (Assume x is an acute
angle) [1.8258, 1.1952, 0.6546]

In Problems 21 to 23 evaluate correct to 4
significant figures.

21.
�sin 34°270��cos 69°20�
�2 tan 53°390�

[0.07448]

22. 3 cot 14°150 sec 23°90 [12.85]

23.
cosec 27°190 C sec 45°290

1 � cosec 27°190 sec 45°290 [�1.710]

24. Evaluate correct to 4 decimal places:

(a) sine��125°� (b) tan��241°�
(c) cos��49°150�

[(a) �0.8192 (b) �1.8040 (c) 0.6528]

25. Evaluate correct to 5 significant figures:

(a) cosec��143°� (b) cot��252°�
(c) sec��67°220�
[(a) �1.6616 (b) �0.32492 (c) 2.5985]

21.8 Trigonometric approximations for
small angles

If angle x is a small angle (i.e. less than about 5°) and
is expressed in radians, then the following trigono-
metric approximations may be shown to be true:

(i) sin x ≈ x
(ii) tan x ≈ x

(iii) cos x ≈ 1 − x2

2

For example, let x D 1°, i.e. 1 ð '

180
D 0.01745

radians, correct to 5 decimal places. By calculator,
sin 1° D 0.01745 and tan 1° D 0.01746, showing
that: sin x D x ³ tan x when x D 0.01745 radians.
Also, cos 1° D 0.99985; when x D 1°, i.e. 0.001745
radians,

1 � x
2

2
D 1 � 0.017452

2
D 0.99985,

correct to 5 decimal places, showing that

cos x D 1 � x
2

2
when x D 0.01745 radians.

Similarly, let x D 5°, i.e. 5ð '

180
D 0.08727 radians,

correct to 5 decimal places.
By calculator, sin 5° D 0.08716, thus sin x ³ x,

tan 5° D 0.08749, thus tan x ³ x,
and cos 5° D 0.99619;

since x D 0.08727 radians, 1� x
2

2
D 1� 0.087272

2
D

0.99619, showing that:

cos x D 1 � x
2

2
when x D 0.0827 radians.

If sin x ³ x for small angles, then
sin x

x
≈ 1, and

this relationship can occur in engineering consider-
ations.

Preview from Notesale.co.uk

Page 193 of 543



190 ENGINEERING MATHEMATICS

If phasor OR makes one revolution (i.e. 2�
radians) in T seconds, then the angular velocity,
ω D 2�/T rad/s,

from which, T = 2p=! seconds

T is known as the periodic time.
The number of complete cycles occurring per

second is called the frequency, f

Frequency D number of cycles

second

D 1

T
D ω

2�
Hz

i.e. f =
!

2p
Hz

Hence angular velocity, ! = 2pf rad/s

Amplitude is the name given to the maximum
or peak value of a sine wave, as explained in
Section 22.4. The amplitude of the sine wave shown
in Fig. 22.26 has an amplitude of 1.

A sine or cosine wave may not always start at
0°. To show this a periodic function is represented
by y D sin�ωt š ˛� or y D cos�ωt š ˛�, where ˛
is a phase displacement compared with y D sinA
or y D cosA. A graph of y D sin�ωt � ˛� lags
y D sinωt by angle ˛, and a graph of y D sin�ωtC
˛� leads y D sinωt by angle ˛.

The angle ωt is measured in radians
[

i.e.
(
ω

rad

s

)
�t s� D ωt radians

]

hence angle ˛ should also be in radians.
The relationship between degrees and radians is:

360° D 2� radians or 180° = p radians

Hence 1 rad D 180

�
D 57.30° and, for example,

71° D 71 ð �

180
D 1.239 rad

Summarising, given a general sinusoidal function
y = A sin.!t ± a/, then:

(i) A D amplitude

(ii) ω D angular velocity D 2�f rad/s

(iii)
2�

ω
D periodic time T seconds

(iv)
ω

2�
D frequency, f hertz

(v) ˛ D angle of lead or lag (compared with
y D A sinωt)

Problem 11. An alternating current is given
by i D 30 sin�100�t C 0.27� amperes. Find
the amplitude, periodic time, frequency and
phase angle (in degrees and minutes)

iD 30 sin�100�tC0.27�A, hence amplitude = 30 A.

Angular velocity ω D 100�, hence

periodic time, T D 2�

ω
D 2�

100�
D 1

50
D 0.02 s or 20 ms

Frequency, f D 1

T
D 1

0.02
D 50 Hz

Phase angle, a D 0.27 rad D
(

0.27 ð 180

�

)°

D 15.47° or 15°28′ leading

i= 30 sin.100pt/

Problem 12. An oscillating mechanism has
a maximum displacement of 2.5 m and a
frequency of 60 Hz. At time t D 0 the
displacement is 90 cm. Express the
displacement in the general form
A sin�ωt š ˛�

Amplitude D maximum displacement D 2.5 m

Angular velocity, ω D 2�f D 2��60� D 120� rad/s

Hence displacement D 2.5 sin�120�t C ˛� m

When t D 0, displacement D 90 cm D 0.90 m

Hence, 0.90 D 2.5 sin�0 C ˛�

i.e. sin˛ D 0.90

2.5
D 0.36

Hence ˛ D sin�1 0.36 D 21.10°

D 21°60 D 0.368 rad

Thus, displacement = 2.5 sin.120pt Y 0.368/ m
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23

Cartesian and polar co-ordinates

23.1 Introduction

There are two ways in which the position of a point
in a plane can be represented. These are

(a) by Cartesian co-ordinates, i.e. (x, y), and

(b) by polar co-ordinates, i.e. (r, �), where r is a
‘radius’ from a fixed point and � is an angle
from a fixed point.

23.2 Changing from Cartesian into
polar co-ordinates

In Fig. 23.1, if lengths x and y are known, then
the length of r can be obtained from Pythagoras’
theorem (see Chapter 21) since OPQ is a right-
angled triangle.

Hence r2 D 	x2 C y2


from which, r =
√

x2 Y y2

y

O Q

P

x
x

q

r
y

Figure 23.1

From trigonometric ratios (see Chapter 21),

tan � D y

x

from which q = tan−1 y
x

r D √
x2 C y2 and � D tan�1 y

x
are the two formulae

we need to change from Cartesian to polar co-
ordinates. The angle �, which may be expressed in

degrees or radians, must always be measured from
the positive x-axis, i.e. measured from the line OQ
in Fig. 23.1. It is suggested that when changing from
Cartesian to polar co-ordinates a diagram should
always be sketched.

Problem 1. Change the Cartesian
co-ordinates (3, 4) into polar co-ordinates.

A diagram representing the point (3, 4) is shown in
Fig. 23.2.

q

Figure 23.2

From Pythagoras’ theorem, r D p
32 C 42 D 5 (note

that �5 has no meaning in this con-
text). By trigonometric ratios, � D tan�1 4

3 D
53.13° or 0.927 rad [note that
53.13° D 53.13 ð 	�/180
 rad D 0.927 rad.]

Hence (3, 4) in Cartesian co-ordinates corre-
sponds to (5, 53.13°) or (5, 0.927 rad) in polar
co-ordinates.

Problem 2. Express in polar co-ordinates
the position (�4, 3)

A diagram representing the point using the Cartesian
co-ordinates (�4, 3) is shown in Fig. 23.3.
From Pythagoras’ theorem, r D p

42 C 32 D 5

By trigonometric ratios, ˛ D tan�1 3
4 D 36.87° or

0.644 rad.

Hence � D 180° � 36.87° D 143.13°

or � D � � 0.644 D 2.498 rad .

Preview from Notesale.co.uk

Page 206 of 543



TRIANGLES AND SOME PRACTICAL APPLICATIONS 207

B

C

D

A

56°

62.3 m

39.8 m

21.4 m

42.5 m

114°

Figure 24.19

A diagonal drawn from B to D divides the quadri-
lateral into two triangles.

Area of quadrilateral ABCD
D area of triangle ABD C area of triangle BCD

D 1
2 �39.8��21.4� sin 114° C 1

2 �42.5��62.3� sin 56°

D 389.04 C 1097.5 D 1487 m2

Now try the following exercise

Exercise 92 Further problems on prac-
tical situations involving tri-
gonometry

1. Three forces acting on a fixed point are
represented by the sides of a triangle of
dimensions 7.2 cm, 9.6 cm and 11.0 cm.
Determine the angles between the lines of
action and the three forces.

[80.42°, 59.38°, 40.20°]

2. A vertical aerial AB, 9.60 m high, stands
on ground which is inclined 12° to the
horizontal. A stay connects the top of the
aerial A to a point C on the ground 10.0 m
downhill from B, the foot of the aerial.
Determine (a) the length of the stay, and
(b) the angle the stay makes with the
ground. [(a) 15.23 m (b) 38.07°]

3. A reciprocating engine mechanism is
shown in Fig. 24.20. The crank AB is
12.0 cm long and the connecting rod BC
is 32.0 cm long. For the position shown
determine the length of AC and the angle
between the crank and the connecting rod.

[40.25 cm, 126.05°]

4. From Fig. 22.20, determine how far C
moves, correct to the nearest millimetre
when angle CAB changes from 40° to
160°, B moving in an anticlockwise
direction. [19.8 cm]

A 40°

B

C

Figure 24.20

5. A surveyor, standing W 25° S of a tower
measures the angle of elevation of the top
of the tower as 46°300. From a position
E 23° S from the tower the elevation of
the top is 37°150. Determine the height of
the tower if the distance between the two
observations is 75 m. [36.2 m]

6. Calculate, correct to 3 significant figures,
the co-ordinates x and y to locate the hole
centre at P shown in Fig. 24.21.

[x D 69.3 mm, y D 142 mm]

P

x

116° 140°

100 mm

y

Figure 24.21

7. An idler gear, 30 mm in diameter, has
to be fitted between a 70 mm diameter
driving gear and a 90 mm diameter driven
gear as shown in Fig. 24.22. Determine
the value of angle & between the centre
lines. [130°]

90 mm
dia

30 mm
dia99.78 mm θ

70 mm
dia

Figure 24.22
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TRIGONOMETRIC IDENTITIES AND EQUATIONS 213

Factorising gives �5 sin tC 2��sin t� 1� D 0. Hence
5 sin tC 2 D 0, from which, sin t D � 2

5 D �0.4000,
or sin t � 1 D 0, from which, sin t D 1.
t D sin�1��0.4000� D 203.58° or 336.42°, since
sine is negative in the third and fourth quadrants, or
t D sin�1 1 D 90°. Hence

t = 90°, 203.58° or 336.42°

as shown in Fig. 25.7.

1.0

−0.4

−1.0

y

90° 270° t °360°

y = sin t

336.42°

0

203.58°

Figure 25.7

Problem 14. Solve: 18 sec2 A� 3 tanA D 21
for values of A between 0° and 360°

1 C tan2 A D sec2 A. Substituting for sec2 A in
18 sec2 A� 3 tanA D 21 gives

18�1 C tan2 A�� 3 tanA D 21

i.e. 18 C 18 tan2 A� 3 tanA� 21 D 0

18 tan2 A� 3 tanA� 3 D 0

Factorising gives �6 tanA� 3��3 tanAC 1� D 0
Hence 6 tanA� 3 D 0, from which,
tanA D 3

6 D 0.5000 or 3 tanAC 1 D 0, from which,
tanA D � 1

3 D �0.3333. Thus A D tan�1�0.5000� D
26.57° or 206.57°, since tangent is positive in the
first and third quadrants, or A D tan�1��0.3333� D
161.57° or 341.57°, since tangent is negative in the
second and fourth quadrants. Hence

A = 26.57°, 161.57°, 206.57° or 341.57°

Problem 15. Solve: 3 cosec2 � � 5 D 4 cot �
in the range 0 < � < 360°

cot2 � C 1 D cosec2 �. Substituting for cosec2 � in
3 cosec2 � � 5 D 4 cot � gives:

3�cot2 � C 1�� 5 D 4 cot �

3 cot2 � C 3 � 5 D 4 cot �

3 cot2 � � 4 cot � � 2 D 0

Since the left-hand side does not factorise the
quadratic formula is used.

Thus, cot � D ���4�š
√
��4�2 � 4�3���2�

2�3�

D 4 š p
16 C 24

6
D 4 š p

40

6

D 10.3246

6
or � 2.3246

6

Hence cot � D 1.7208 or �0.3874,
� D cot�1 1.7208 D 30.17° or 210.17°, since cotan-
gent is positive in the first and third quadrants, or
� D cot�1��0.3874� = 111.18° or 291.18°, since
cotangent is negative in the second and fourth quad-
rants.

Hence, q = 30.17°, 111.18°, 210.17° or 291.18°

Now try the following exercise

Exercise 97 Further problems on trigono-
metric equations

Solve the following equations for angles
between 0° and 360°

1. 12 sin2 � � 6 D cos �[
� D 48.18°, 138.58°,
221.42° or 311.82°

]

2. 16 sec x � 2 D 14 tan2 x

[x D 52.93° or 307.07°]

3. 4 cot2 A� 6 cosecAC 6 D 0
[A D 90°]

4. 5 sec t C 2 tan2 t D 3

[t D 107.83° or 252.17°]

5. 2.9 cos2 a� 7 sin aC 1 D 0

[a D 27.83° or 152.17°]

6. 3 cosec2 ˇ D 8 � 7 cotˇ[
ˇ D 60.17°, 161.02°,
240.17° or 341.02°

]
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Multiple choice questions on
chapters 17–26

All questions have only one correct answer (answers on page 526).

1. In the right-angled triangle ABC shown in
Figure M2.1, sine A is given by:

(a) b/a (b) c/b (c) b/c (d) a/b

a

b

C B

c

A

Figure M2.1

2. In the right-angled triangle ABC shown in
Figure M2.1, cosine C is given by:

(a) a/b (b) c/b (c) a/c (d) b/a

3. In the right-angled triangle shown in Figure
M2.1, tangent A is given by:

(a) b/c (b) a/c (c) a/b (d) c/a

4.
3�

4
radians is equivalent to:

(a) 135° (b) 270° (c) 45° (d) 67.5°

5. In the triangular template ABC shown in
Figure M2.2, the length AC is:

(a) 6.17 cm (b) 11.17 cm

(c) 9.22 cm (d) 12.40 cm

6. (�4, 3) in polar co-ordinates is:

(a) (5, 2.498 rad) (b) �7, 36.87°�

(c) �5, 36.87°� (d) �5, 323.13°�

A

B C
8.30 cm

42°

Figure M2.2

7. Correct to 3 decimal places, sin��2.6 rad) is:

(a) 0.516 (b) �0.045 (c) �0.516 (d) 0.045

8. For the right-angled triangle PQR shown in
Figure M2.3, angle R is equal to:

(a) 41.41° (b) 48.59° (c) 36.87° (d) 53.13°

Q

3 cm

4 cm R

P

Figure M2.3

9. A hollow shaft has an outside diameter of
6.0 cm and an inside diameter of 4.0 cm. The
cross-sectional area of the shaft is:
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STRAIGHT LINE GRAPHS 233

20

y

y = 4x + 3

15

10
11.8

5

−5
−3

−10

0−2 −1

−1.5

−3 1

2.2

2 3 4 x

Figure 27.4

A table of co-ordinates is produced for each graph.

(a) y D x

x �4 �3 �2 �1 0 1 2 3 4

y �4 �3 �2 �1 0 1 2 3 4

(b) y D x C 2

x �4 �3 �2 �1 0 1 2 3 4

y �2 �1 0 1 2 3 4 5 6

(c) y D x C 5

x �4 �3 �2 �1 0 1 2 3 4

y 1 2 3 4 5 6 7 8 9

(d) y D x � 3

x �4 �3 �2 �1 0 1 2 3 4

y �7 �6 �5 �4 �3 �2 �1 0 1

The co-ordinates are plotted and joined for each
graph. The results are shown in Fig. 27.5. Each of
the straight lines produced are parallel to each other,
i.e. the slope or gradient is the same for each.

To find the gradient of any straight line, say,
y D x�3 a horizontal and vertical component needs
to be constructed. In Fig. 27.5, AB is constructed
vertically at x D 4 and BC constructed horizontally
at y D �3.

The gradient of AC D AB

BC
D 1 � ��3�

4 � 0

D 4

4
D 1

i.e. the gradient of the straight line y D x � 3 is 1.
The actual positioning of AB and BC is unimportant

9

y

8

7

6

5
4

3

2

1

−1
−4 −3 −2 −1 1 2 3 4 x

D

A

E

B
C

F
−2

−3

−4

−5

−6

−7

y =
 x 

+ 5

y =
 x 

+ 2

y =
 x 

− 3

y =
 x

Figure 27.5

for the gradient is also given by, for example,

DE

EF
D �1 � ��2�

2 � 1
D 1

1
D 1

The slope or gradient of each of the straight lines
in Fig. 27.5 is thus 1 since they are all parallel to
each other.

Problem 3. Plot the following graphs on
the same axes between the values x D �3 to
x D C3 and determine the gradient and
y-axis intercept of each.
(a) y D 3x (b) y D 3x C 7
(c) y D �4x C 4 (d) y D �4x � 5

A table of co-ordinates is drawn up for each equation.

(a) y D 3x

x �3 �2 �1 0 1 2 3

y �9 �6 �3 0 3 6 9

(b) y D 3x C 7

x �3 �2 �1 0 1 2 3

y �2 1 4 7 10 13 16
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x 2 0 �3
1
2x C 2 1

2 3 1
2 2 1

2 1

y

y = −3x − 1
4

3

2

1

−1
−4 −3 −2 −1 0 1 2 3 4 x

−2

−3

−4

y =   x +1
2

5
2

Figure 27.8

The graphs are plotted as shown in Fig. 27.8.

The two straight lines are seen to intersect at
(−1, 2).

Now try the following exercise

Exercise 103 Further problems on straight
line graphs

1. Corresponding values obtained experi-
mentally for two quantities are:

x �2.0 �0.5 0 1.0 2.5 3.0 5.0

y �13.0 �5.5 �3.0 2.0 9.5 12.0 22.0

Use a horizontal scale for x of 1 cm D
1
2 unit and a vertical scale for y of
1 cm D 2 units and draw a graph of x
against y. Label the graph and each of
its axes. By interpolation, find from the
graph the value of y when x is 3.5

[14.5]

2. The equation of a line is 4y D 2x C 5.
A table of corresponding values is pro-
duced and is shown below. Complete the
table and plot a graph of y against x.
Find the gradient of the graph.

x �4 �3 �2 �1 0 1 2 3 4

y �0.25 1.25 3.25

[ 1
2

]
3. Determine the gradient and intercept on

the y-axis for each of the following
equations:
(a) y D 4x � 2 (b) y D �x
(c) y D �3x � 4 (d) y D 4[

(a) 4,�2 (b) �1, 0
(c) �3,�4 (d) 0, 4

]

4. Find the gradient and intercept on the y-
axis for each of the following equations:
(a) 2y � 1 D 4x (b) 6x � 2y D 5

(c) 3�2y � 1� D x

4[
(a) 2,

1

2
(b) 3,�2

1

2
(c)

1

24
,

1

2

]

5. Determine the gradient and y-axis inter-
cept for each of the following equations
and sketch the graphs:
(a) y D 6x � 3 (b) y D 3x (c) y D 7
(d) 2x C 3y C 5 D 0[ �a� 6, 3 (b) 3, 0

(c) 0, 7 (d) � 2

3
,�1

2

3

]

6. Determine the gradient of the straight
line graphs passing through the co-
ordinates:
(a) (2, 7) and (�3, 4)
(b) (�4, �1) and (�5, 3)

(c)
(

1

4
,�3

4

)
and

(
�1

2
,

5

8

)
[

(a)
3

5
(b) � 4 (c) � 1

5

6

]

7. State which of the following equations
will produce graphs which are parallel
to one another:
�a� y � 4 D 2x �b� 4x D ��y C 1�

�c� x D 1

2
�y C 5� �d� 1 C 1

2
y D 3

2
x

�e� 2x D 1

2
�7 � y�

[(a) and (c), (b) and (e)]

8. Draw a graph of y � 3x C 5 D 0 over
a range of x D �3 to x D 4. Hence
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28

y

24

20

16
14

S
tr

es
s 

(N
/m

m
2 )

12

C B

A

8

4

0 0.00005 0.00015
Strain

0.00025
0.000285

0.00035 x

Figure 27.12

Since 1 m2 D 106 mm2, 70 000 N/mm2

is equivalent to 70 000 ð 106 N/m2, i.e.
70 × 109 N=m2 .or Pascals/.

From Fig. 27.12:

(b) the value of the strain at a stress of 20 N/mm2

is 0.000285, and

(c) the value of the stress when the strain is
0.00020 is 14 N/mm2.

Problem 11. The following values of
resistance R ohms and corresponding voltage
V volts are obtained from a test on a
filament lamp.

R ohms 30 48.5 73 107 128

V volts 16 29 52 76 94

Choose suitable scales and plot a graph with
R representing the vertical axis and V the
horizontal axis. Determine (a) the gradient of
the graph, (b) the R axis intercept value,
(c) the equation of the graph, (d) the value of
resistance when the voltage is 60 V, and
(e) the value of the voltage when the
resistance is 40 ohms. (f) If the graph were
to continue in the same manner, what value
of resistance would be obtained at 110 V?

The co-ordinates (16, 30), (29, 48.5), and so on, are
shown plotted in Fig. 27.13 where the best straight
line is drawn through the points.

147
140

y

120

100

85
80

R
es

is
ta

nc
e 

R
 o

hm
s

60

40

20

10
C B

A

0 20 24 40 60

Voltage V volts

80 100 110 120 x

Figure 27.13

(a) The slope or gradient of the straight line AC is
given by:

AB

BC
D 135 � 10

100 � 0
D 125

100
D 1.25

(Note that the vertical line AB and the horizon-
tal line BC may be constructed anywhere along
the length of the straight line. However, calcu-
lations are made easier if the horizontal line
BC is carefully chosen, in this case, 100).

(b) The R-axis intercept is at R = 10 ohms (by
extrapolation).

(c) The equation of a straight line is y D mx C c,
when y is plotted on the vertical axis and x on
the horizontal axis. m represents the gradient
and c the y-axis intercept. In this case, R
corresponds to y, V corresponds to x, m D 1.25
and c D 10. Hence the equation of the graph
is R = .1.25 V Y 10/ Z

From Fig. 27.13,

(d) when the voltage is 60 V, the resistance is
85 Z

(e) when the resistance is 40 ohms, the voltage is
24 V, and

(f) by extrapolation, when the voltage is 110 V,
the resistance is 147 Z.

Problem 12. Experimental tests to
determine the breaking stress s of rolled
copper at various temperatures t gave the
following results.
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28

Reduction of non-linear laws to linear
form

28.1 Determination of law

Frequently, the relationship between two variables,
say x and y, is not a linear one, i.e. when x is plotted
against y a curve results. In such cases the non-
linear equation may be modified to the linear form,
y D mx C c, so that the constants, and thus the
law relating the variables can be determined. This
technique is called ‘determination of law’.

Some examples of the reduction of equations to
linear form include:

(i) y D ax2 C b compares with Y D mX C c,
where m D a, c D b and X D x2.
Hence y is plotted vertically against x2 hor-
izontally to produce a straight line graph of
gradient ‘a’ and y-axis intercept ‘b’

(ii) y D a

x
C b

y is plotted vertically against
1

x
horizontally

to produce a straight line graph of gradient ‘a’
and y-axis intercept ‘b’

(iii) y D ax2 C bx

Dividing both sides by x gives
y

x
D ax C b.

Comparing with Y D mX C c shows that
y

x
is plotted vertically against x horizontally to
produce a straight line graph of gradient ‘a’

and
y

x
axis intercept ‘b’

Problem 1. Experimental values of x and y,
shown below, are believed to be related by
the law y D ax2 C b. By plotting a suitable
graph verify this law and determine
approximate values of a and b

x 1 2 3 4 5
y 9.8 15.2 24.2 36.5 53.0

If y is plotted against x a curve results and it is
not possible to determine the values of constants a
and b from the curve. Comparing y D ax2 C b with
Y D mXC c shows that y is to be plotted vertically
against x2 horizontally. A table of values is drawn
up as shown below.

x 1 2 3 4 5

x2 1 4 9 16 25

y 9.8 15.2 24.2 36.5 53.0

A graph of y against x2 is shown in Fig. 28.1, with
the best straight line drawn through the points. Since
a straight line graph results, the law is verified.

y

50
53

40

30

20
C B

A

10
8

0 5 10 15 20 25 x2

17

Figure 28.1

From the graph, gradient

a D AB

BC
D 53 � 17

25 � 5
D 36

20
D 1.8

and the y-axis intercept,

b = 8.0

Hence the law of the graph is:

y = 1.8x2 Y 8.0
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Problem 2. Values of load L newtons and
distance d metres obtained experimentally
are shown in the following table

Load, L N 32.3 29.6 27.0 23.2

distance, d m 0.75 0.37 0.24 0.17

Load, L N 18.3 12.8 10.0 6.4

distance, d m 0.12 0.09 0.08 0.07

Verify that load and distance are related by a

law of the form L D a

d
C b and determine

approximate values of a and b. Hence
calculate the load when the distance is
0.20 m and the distance when the load is
20 N.

Comparing L D a

d
C b i.e. L D a

(
1

d

)
C b with

Y D mXC c shows that L is to be plotted vertically

against
1

d
horizontally. Another table of values is

drawn up as shown below.

L 32.3 29.6 27.0 23.2 18.3 12.8 10.0 6.4

d 0.75 0.37 0.24 0.17 0.12 0.09 0.08 0.07

1
d 1.33 2.70 4.17 5.88 8.33 11.11 12.50 14.29

A graph of L against
1

d
is shown in Fig. 28.2. A

straight line can be drawn through the points, which
verifies that load and distance are related by a law

of the form L D a

d
C b

Gradient of straight line,

a D AB

BC
D 31 � 11

2 � 12
D 20

�10
D −2

L-axis intercept,

b = 35

Hence the law of the graph is

L = − 2
d
Y 35

When the distance d D 0.20 m, load

L D �2

0.20
C 35 D 25.0 N

30
31

35

25

20L

15

B C

A

5

0 2 4 6 8 10 12 14

10
11

1
d

Figure 28.2

Rearranging L D � 2

d
C 35 gives:

2

d
D 35 � L and d D 2

35 � L

Hence when the load L D 20 N, distance

d D 2

35 � 20
D 2

15
D 0.13 m

Problem 3. The solubility s of potassium
chlorate is shown by the following table:

t°C 10 20 30 40 50 60 80 100

s 4.9 7.6 11.1 15.4 20.4 26.4 40.6 58.0

The relationship between s and t is thought
to be of the form s D 3 C at C bt2. Plot a
graph to test the supposition and use the
graph to find approximate values of a and b.
Hence calculate the solubility of potassium
chlorate at 70 °C

Rearranging s D 3 C atC bt2 gives s� 3 D atC bt2
and

s� 3

t
D a C bt or

s� 3

t
D bt C a which is of

the form Y D mX C c, showing that
s� 3

t
is to be

plotted vertically and t horizontally. Another table
of values is drawn up as shown below.

t 10 20 30 40 50 60 80 100

s 4.9 7.6 11.1 15.4 20.4 26.4 40.6 58.0

s� 3

t
0.19 0.23 0.27 0.31 0.35 0.39 0.47 0.55
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a constant. Determine (a) the value of
constant c and (b) the safe load for a span
of 3.0 m. [(a) 950 (b) 317 kN]

9. The following results give corresponding
values of two quantities x and y which
are believed to be related by a law of the
form y D ax2 C bx where a and b are
constants.

y 33.86 55.54 72.80 84.10 111.4 168.1

x 3.4 5.2 6.5 7.3 9.1 12.4

Verify the law and determine approximate
values of a and b.

Hence determine (i) the value of y when
x is 8.0 and (ii) the value of x when y is
146.5

[a D 0.4, b D 8.6 (i) 94.4 (ii) 11.2]

28.2 Determination of law involving
logarithms

Examples of reduction of equations to linear form
involving logarithms include:

(i) y D axn

Taking logarithms to a base of 10 of both sides
gives:

lg y D lg�axn� D lg aC lg xn

i.e. lg y D n lg x C lg a

by the laws of logarithms which compares
with

Y D mXC c

and shows that lg y is plotted vertically against
lg x horizontally to produce a straight line
graph of gradient n and lg y-axis intercept lg a

(ii) y D abx

Taking logarithms to a base of 10 of the both
sides gives:

lg y D lg�abx�

i.e. lg y D lg aC lg bx

i.e. lg y D x lg bC lg a

by the laws of logarithms

or lg y D �lg b�x C lg a

which compares with

Y D mXC c

and shows that lg y is plotted vertically against
x horizontally to produce a straight line graph
of gradient lg b and lg y-axis intercept lg a

(iii) y D aebx

Taking logarithms to a base of e of both sides
gives:

ln y D ln�aebx�

i.e. ln y D ln aC ln ebx

i.e. ln y D ln aC bx ln e

i.e. ln y D bx C ln a

(since ln e D 1), which compares with

Y D mXC c

and shows that ln y is plotted vertically against
x horizontally to produce a straight line graph
of gradient b and ln y-axis intercept ln a

Problem 4. The current flowing in, and the
power dissipated by, a resistor are measured
experimentally for various values and the
results are as shown below.

Current, I
amperes 2.2 3.6 4.1 5.6 6.8

Power, P
watts 116 311 403 753 1110

Show that the law relating current and power
is of the form P D RIn, where R and n are
constants, and determine the law

Taking logarithms to a base of 10 of both sides of
P D RIn gives:

lgP D lg�RIn� D lgRC lg In D lgRC n lg I

by the laws of logarithms

i.e. lgP D n lg IC lgR,
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REDUCTION OF NON-LINEAR LAWS TO LINEAR FORM 249

constants. Determine the approximate values
of I and T

Taking Napierian logarithms of both sides of
i D Iet/T gives

ln i D ln�Iet/T� D ln IC ln et/T D ln IC t

T
ln e

i.e. ln i D ln IC t

T
(since ln e D 1�

or ln i D
(

1

T

)
t C ln I

which compares with y D mx C c, showing that
ln i is plotted vertically against t horizontally. (For
methods of evaluating Napierian logarithms see
Chapter 13.) Another table of values is drawn up
as shown below

t 100 160 210 275 320 390

i 203 61.14 22.49 6.13 2.49 0.615

ln i 5.31 4.11 3.11 1.81 0.91 �0.49

A graph of ln i against t is shown in Fig. 28.7 and
since a straight line results the law i D Iet/T is
verified.

5.0 A

D(200, 3.31)

B
C

4.0

3.31

ln
 i

3.0

2.0

1.30
1.0

0

−1.0

100 200 300 400 t (ms)

Figure 28.7

Gradient of straight line,

1

T
D AB

BC
D 5.30 � 1.30

100 � 300
D 4.0

�200
D �0.02

Hence T D 1

�0.02
D −50

Selecting any point on the graph, say point D, where
t D 200 and ln i D 3.31, and substituting into

ln i D
(

1

T

)
t C ln I

gives: 3.31 D � 1

50
�200�C ln I

from which, ln I D 3.31 C 4.0 D 7.31

and I D antilog 7.31 �D e7.31� D 1495

or 1500 correct to 3 significant figures.

Hence the law of the graph is, i = 1500 e−t=50

Now try the following exercise

Exercise 106 Further problems on reduc-
ing non-linear laws to linear
form

In Problems 1 to 3, x and y are two related
variables and all other letters denote constants.
For the stated laws to be verified it is nec-
essary to plot graphs of the variables in a
modified form. State for each (a) what should
be plotted on the vertical axis, (b) what should
be plotted on the horizontal axis, (c) the gra-
dient and (d) the vertical axis intercept.

1. y D bax

[(a) lg y (b) x (c) lg a (d) lg b]

2. y D kxl

[(a) lg y (b) lg x (c) l (d) lg k]

3.
y

m
D enx

[(a) ln y (b) x (c) n (d) ln m]

4. The luminosity I of a lamp varies with
the applied voltage V and the relationship
between I and V is thought to be I D kVn.
Experimental results obtained are:

I candelas 1.92 4.32 9.72
V volts 40 60 90

I candelas 15.87 23.52 30.72
V volts 115 140 160

Verify that the law is true and determine
the law of the graph. Determine also the
luminosity when 75 V is applied across
the lamp.

[I D 0.0012 V2, 6.75 candelas]
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The law relating x and y is believed to be
y D axb, where a and b are constants.
Verify that this law is true and determine the
approximate values of a and b

If y D axb then lg y D b lg x C lg a, from above,
which is of the form Y D mX C c, showing that
to produce a straight line graph lg y is plotted
vertically against lg x horizontally. x and y may
be plotted directly on to log–log graph paper as
shown in Fig. 29.2. The values of y range from
0.45 to 82.46 and 3 cycles are needed (i.e. 0.1
to 1, 1 to 10 and 10 to 100). The values of x
range from 0.41 to 3.95 and 2 cycles are needed
(i.e. 0.1 to 1 and 1 to 10). Hence ‘log 3 cycle ð
2 cycle’ is used as shown in Fig. 29.2 where the
axes are marked and the points plotted. Since the
points lie on a straight line the law y D axb is
verified.

To evaluate constants a and b:

Method 1. Any two points on the straight line, say
points A and C, are selected, and AB and BC are
measured (say in centimetres).

Then, gradient, b D AB

BC
D 11.5 units

5 units
D 2.3

Since lg y D b lg x C lg a, when x D 1, lg x D 0 and
lg y D lg a.

The straight line crosses the ordinate x D 1.0 at
y D 3.5.

Hence lg a D lg 3.5, i.e. a = 3.5

Method 2. Any two points on the straight line, say
points A and C, are selected. A has coordinates
(2, 17.25) and C has coordinates (0.5, 0.7).

Since y D axb then 17.25 D a�2�b �1�

and 0.7 D a�0.5�b �2�

i.e. two simultaneous equations are produced and
may be solved for a and b.

Dividing equation (1) by equation (2) to eliminate
a gives:

17.25

0.7
D �2�b

�0.5�b
D
(

2

0.5

)b

i.e. 24.643 D �4�b

Taking logarithms of both sides gives
lg 24.643 D b lg 4, i.e.

b D lg 24.643

lg 4

D 2.3, correct to 2 significant figures.

Substituting b D 2.3 in equation (1) gives:
17.25 D a�2�2.3, i.e.

a D 17.25

�2�2.3
D 17.25

4.925

D 3.5, correct to 2 significant figures.

Hence the law of the graph is: y = 3.5x2.3

Problem 2. The power dissipated by a
resistor was measured for varying values of
current flowing in the resistor and the results
are as shown:

Current, I
amperes 1.4 4.7 6.8 9.1 11.2 13.1

Power, P
watts 49 552 1156 2070 3136 4290

Prove that the law relating current and power
is of the form P D RIn, where R and n are
constants, and determine the law. Hence
calculate the power when the current is 12
amperes and the current when the power is
1000 watts

Since P D RIn then lgP D n lg I C lgR, which is
of the form Y D mXC c, showing that to produce a
straight line graph lgP is plotted vertically against
lg I horizontally. Power values range from 49 to
4290, hence 3 cycles of log–log graph paper are
needed (10 to 100, 100 to 1000 and 1000 to 10 000).
Current values range from 1.4 to 11.2, hence 2
cycles of log–log graph paper are needed (1 to 10
and 10 to 100). Thus ‘log 3 cycles ð 2 cycles’ is
used as shown in Fig. 29.3 (or, if not available,
graph paper having a larger number of cycles per
axis can be used). The co-ordinates are plotted and
a straight line results which proves that the law
relating current and power is of the form P D RIn.
Gradient of straight line,

n D AB

BC
D 14 units

7 units
D 2
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30

Graphical solution of equations

30.1 Graphical solution of
simultaneous equations

Linear simultaneous equations in two unknowns
may be solved graphically by:

(i) plotting the two straight lines on the same axes,
and

(ii) noting their point of intersection.

The co-ordinates of the point of intersection give the
required solution.

Problem 1. Solve graphically the
simultaneous equations:

2x � y D 4

x C y D 5

Rearranging each equation into y D mx C c form
gives:

y D 2x � 4 �1�

y D �x C 5 �2�

Only three co-ordinates need be calculated for each
graph since both are straight lines.

x 0 1 2
y D 2x � 4 �4 �2 0

x 0 1 2
y D �x C 5 5 4 3

Each of the graphs is plotted as shown in Fig. 30.1.
The point of intersection is at (3, 2) and since this is
the only point which lies simultaneously on both lines
then x = 3, y = 2 is the solution of the simultaneous
equations.

Problem 2. Solve graphically the equations:

1.20x C y D 1.80

x � 5.0y D 8.50

−4 −3 −2 −1 10
−1

1

3

2

4

5

y

y  = −x + 5

y = 2x − 4

−2

−3

−4

2 3 4 x

Figure 30.1

Rearranging each equation into y D mx C c form
gives:

y D �1.20x C 1.80 �1�

y D x

5.0
� 8.5

5.0
i.e. y D 0.20x � 1.70 �2�

Three co-ordinates are calculated for each equation
as shown below:

x 0 1 2
y D �1.20x C 1.80 1.80 0.60 �0.60

x 0 1 2
y D 0.20x � 1.70 �1.70 �1.50 �1.30

The two lines are plotted as shown in Fig. 30.2.
The point of intersection is (2.50, �1.20). Hence the
solution of the simultaneous equation is x = 2.50,
y = −1.20.

(It is sometimes useful initially to sketch the two
straight lines to determine the region where the point
of intersection is. Then, for greater accuracy, a graph
having a smaller range of values can be drawn to
‘magnify’ the point of intersection).
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−3 −2 −1 1 2

2.50

3 4 x0

−1

1

3

y

y  = −1.20x  + 1.80

y  = 0.20x + 1.70−1.20

−2

−3

Figure 30.2

Now try the following exercise

Exercise 110 Further problems on the
graphical solution of simul-
taneous equations

In Problems 1 to 5, solve the simultaneous
equations graphically.

1. x C y D 2

3y � 2x D 1 [x D 1, y D 1]

2. y D 5 � x

x � y D 2
[
x D 3 1

2 , y D 1 1
2

]
3. 3x C 4y D 5

2x � 5y C 12 D 0 [x D �1, y D 2]

4. 1.4x � 7.06 D 3.2y
2.1x � 6.7y D 12.87

[x D 2.3, y D �1.2]

5. 3x � 2y D 0
4x C y C 11 D 0 [x D �2, y D �3]

6. The friction force F Newton’s and load
L Newton’s are connected by a law of
the form F D aL C b, where a and b are
constants. When F D 4 Newton’s, L D 6
Newton’s and when F D 2.4 Newton’s,
L D 2 Newton’s. Determine graphically
the values of a and b.

[a D 0.4, b D 1.6]

30.2 Graphical solution of quadratic
equations

A general quadratic equation is of the form
y D ax2 C bx C c, where a, b and c are constants
and a is not equal to zero.

A graph of a quadratic equation always produces
a shape called a parabola. The gradient of the curve
between 0 and A and between B and C in Fig. 30.3
is positive, whilst the gradient between A and B is
negative. Points such as A and B are called turning
points. At A the gradient is zero and, as x increases,
the gradient of the curve changes from positive just
before A to negative just after. Such a point is called
a maximum value. At B the gradient is also zero,
and, as x increases, the gradient of the curve changes
from negative just before B to positive just after.
Such a point is called a minimum value.

y

0 x
B

A
C

Figure 30.3

Quadratic graphs

(i) y = ax2

Graphs of y D x2, y D 3x2 and y D 1
2x

2 are
shown in Fig. 30.4.

y
y  = x 2

2

1

0−1 1 x

y
y = 3x 2

2

1

0−1 1 x

y

2

1

0−1 1 x

y =      x 21
2

(a) (b) (c)

Figure 30.4

All have minimum values at the origin (0, 0).

Graphs of y D �x2, y D �3x2 and y D � 1
2x

2

are shown in Fig. 30.5.

All have maximum values at the origin (0, 0).

When y D ax2,
(a) curves are symmetrical about the y-axis,
(b) the magnitude of ‘a’ affects the gradient

of the curve, and

Preview from Notesale.co.uk

Page 271 of 543



GRAPHICAL SOLUTION OF EQUATIONS 261

y

y = 4x 2 + 4x − 1512

8

4

−3 −2

−2.5

A B
−1 1 2 x0

−0.5

−4

−8

−12

−16

1.5

Figure 30.8

has a turning point at (�0.5, �16) and the nature of
the point is a minimum.
An alternative graphical method of solving
4x2 C 4x � 15 D 0 is to rearrange the equation as
4x2 D �4x C 15 and then plot two separate
graphs — in this case y D 4x2 and y D �4x C 15.
Their points of intersection give the roots of equa-
tion 4x2 D �4x C 15, i.e. 4x2 C 4x � 15 D 0. This
is shown in Fig. 30.9, where the roots are x D �2.5
and x D 1.5 as before.

y

30

25

20

15

10

5

0−3 −2 −1 1 2

1.5

3

y = −4x + 5

x

y = 4x 2

−2.5

Figure 30.9

Problem 4. Solve graphically the quadratic
equation �5x2 C 9x C 7.2 D 0 given that the
solutions lie between x D �1 and x D 3.
Determine also the co-ordinates of the
turning point and state its nature

Let y D �5x2 C9xC7.2. A table of values is drawn
up as shown below. A graph of y D �5x2 C9xC7.2

12
y

y  = − 5x 2 + 9x  + 7.2
11.25

10

8

6

4

2

0
−2

−1 1
0.9

2 3 x

−4

−6

−8

−10

−0.6 2.4

Figure 30.10

is shown plotted in Fig. 30.10. The graph crosses the
x-axis (i.e. where y D 0) at x = −0.6 and x = 2.4
and these are the solutions of the quadratic equation
�5x2 C 9x C 7.2 D 0. The turning point is a
maximum having co-ordinates (0.9, 11.25).

x �1 �0.5 0 1

�5x2 �5 �1.25 0 �5
C9x �9 �4.5 0 9
C7.2 7.2 7.2 7.2 7.2

y D �5x2 C 9x C 7.2 �6.8 1.45 7.2 11.2

x 2 2.5 3

�5x2 �20 �31.25 �45
C9x 18 22.5 27
C7.2 7.2 7.2 7.2

y D �5x2 C 9x C 7.2 5.2 �1.55 �10.8

Problem 5. Plot a graph of: y D 2x2 and
hence solve the equations: (a) 2x2 � 8 D 0
and (b) 2x2 � x � 3 D 0

A graph of y D 2x2 is shown in Fig. 30.11.

(a) Rearranging 2x2 � 8 D 0 gives 2x2 D 8
and the solution of this equation is obtained
from the points of intersection of y D 2x2
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y

10

8

6

4

2

0−1 1 1.5 2 x

D

C

A B y = 8

y =x + 3

y = 2x 2

−2

Figure 30.11

and y D 8, i.e. at co-ordinates (�2, 8) and
(2, 8), shown as A and B, respectively, in
Fig. 30.11. Hence the solutions of 2x2 � 8 D 0
are x = −2 and x = Y2

(b) Rearranging 2x2 �x�3 D 0 gives 2x2 D xC3
and the solution of this equation is obtained
from the points of intersection of y D 2x2

and y D x C 3, i.e. at C and D in Fig. 30.11.
Hence the solutions of 2x2 � x � 3 D 0 are
x = −1 and x = 1.5

Problem 6. Plot the graph of
y D �2x2 C 3x C 6 for values of x from
x D �2 to x D 4. Use the graph to find the
roots of the following equations:

�a�� 2x2 C 3x C 6 D 0

�b�� 2x2 C 3x C 2 D 0

�c�� 2x2 C 3x C 9 D 0

�d�� 2x2 C x C 5 D 0

A table of values is drawn up as shown below.

x �2 �1 0 1 2 3 4

�2x2 �8 �2 0 �2 �8 �18 �32
C3x �6 �3 0 3 6 9 12
C6 6 6 6 6 6 6 6

y �8 1 6 7 4 �3 �14

A graph of �2x2 C 3x C 6 is shown in Fig. 30.12.

(a) The parabola y D �2x2 C 3x C 6 and the
straight line y D 0 intersect at A and B, where
x = −1.13 and x = 2.63 and these are the
roots of the equation �2x2 C 3x C 6 D 0

8

y

y = 2x  + 1

y = − 2x 2 + 3x + 6

y = −3

y = 4

6

4C

A

G

E

D

H

2

−1.35 −1.13

−2 −1 −0.5
−1.5

0 1 2 3 x

B

F

−2

−4

−6

−8

1.85 2.63

Figure 30.12

(b) Comparing

y D �2x2 C 3x C 6 �1�

with 0 D �2x2 C 3x C 2 �2�

shows that if 4 is added to both sides of equa-
tion (2), the right-hand side of both equations
will be the same.
Hence 4 D �2x2 C 3x C 6. The solution
of this equation is found from the points of
intersection of the line y D 4 and the parabola
y D �2x2 C 3x C 6, i.e. points C and D in
Fig. 30.12. Hence the roots of �2x2C3xC2D0
are x = −0.5 and x = 2

(c) �2x2 C 3x C 9 D 0 may be rearranged as
�2x2 C 3x C 6 D �3, and the solution of this
equation is obtained from the points of inter-
section of the line y D �3 and the parabola
y D �2x2 C 3x C 6, i.e. at points E and F in
Fig. 30.12. Hence the roots of �2x2C3xC9D0
are x = −1.5 and x = 3

(d) Comparing

y D �2x2 C 3x C 6 �3�

with 0 D �2x2 C x C 5 �4�

shows that if 2x C 1 is added to both sides
of equation (4) the right-hand side of both
equations will be the same. Hence equation (4)
may be written as 2x C 1 D �2x2 C 3x C 6.
The solution of this equation is found from the
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Now try the following exercise

Exercise 116 Further problems on inverse
functions

Determine the inverse of the functions given
in Problems 1 to 4.

1. f�x� D x C 1 [f�1�x� D x � 1]

2. f�x� D 5x � 1
[
f�1�x� D 1

5
�x C 1�

]

3. f�x� D x3 C 1 [f�1�x� D 3
p
x � 1]

4. f�x� D 1

x
C 2

[
f�1�x� D 1

x � 2

]

Determine the principal value of the inverse
functions in problems 5 to 11.

5. arcsin��1�
[
��

2
or � 1.5708 rad

]

6. arccos 0.5
[�

3
or 1.0472 rad

]

7. arctan 1
[�

4
or 0.7854 rad

]

8. arccot 2 [0.4636 rad]

9. arccosec 2.5 [0.4115 rad]

10. arcsec 1.5 [0.8411 rad]

11. arcsin
(

1p
2

) [�
4

or 0.7854 rad
]

12. Evaluate x, correct to 3 decimal places:

x D arcsin
1

3
C arccos

4

5
� arctan

8

9

[0.257]

13. Evaluate y, correct to 4 significant figures:
y D 3 arcsec

p
2 � 4 arccosec

p
2

C 5 arccot 2 [1.533]

Answers to Exercise 114

Figure 31.33 Graphical solutions to Exercise 114, page 272.
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O

20 4 6 810

10°

82°
20°

12

Scale in m/s
a

r
b

Figure 32.6

32.3 Resolution of vectors

A vector can be resolved into two component parts
such that the vector addition of the component parts
is equal to the original vector. The two components
usually taken are a horizontal component and a
vertical component. For the vector shown as F in
Fig. 32.7, the horizontal component is F cos � and
the vertical component is F sin �.

F sin q

F cos q
q

F 

Figure 32.7

For the vectors F1 and F2 shown in Fig. 32.8, the
horizontal component of vector addition is:

H D F1 cos �1 C F2 cos �2

V

H

F2F1

q1
q2

F2 cos q2

F
2 

si
n 
q 2

F
1 

si
n 
q 1

F1 cos q2

Figure 32.8

and the vertical component of vector addition is:

V D F1 sin �1 C F2 sin �2

Having obtained H and V, the magnitude of the
resultant vector R is given by:

p
H 2 Y V 2 and its

angle to the horizontal is given by tan−1 V
H

Problem 3. Resolve the acceleration vector
of 17 m/s2 at an angle of 120° to the

horizontal into a horizontal and a vertical
component

For a vector A at angle � to the horizontal, the
horizontal component is given by A cos � and the
vertical component by A sin �. Any convention of
signs may be adopted, in this case horizontally
from left to right is taken as positive and vertically
upwards is taken as positive.
Horizontal component H D 17 cos 120° D
−8.50 m=s2, acting from left to right.
Vertical component V D 17 sin 120° D 14.72 m=s2,
acting vertically upwards.

These component vectors are shown in Fig. 32.9.

+V

−V

−H

17 m/s
2

14.72 m/s
2

8.50 m/s
2

120°
+H

Figure 32.9

Problem 4. Calculate the resultant force of
the two forces given in Problem 1

With reference to Fig. 32.4(a):

Horizontal component of force,

H D 7 cos 0° C 4 cos 45°

D 7 C 2.828 D 9.828 N

Vertical component of force,

V D 7 sin 0° C 4 sin 45°

D 0 C 2.828 D 2.828 N

The magnitude of the resultant of vector addition

D
√
H2 C V2 D

p
9.8282 C 2.8282

D
p

104.59 D 10.23 N

The direction of the resultant of vector addition

D tan�1
(
V

H

)
D tan�1

(
2.828

9.828

)
D 16.05°
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b

−F O

F a

Figure 32.11

b s

a
o

o
(a) (b)

bd

−a a

Figure 32.12

Fig. 32.12(a) shows that the second diagonal of the
‘parallelogram’ method of vector addition gives the
magnitude and direction of vector subtraction of oa
from ob.

Problem 6. Accelerations of a1 D 1.5 m/s2

at 90° and a2 D 2.6 m/s2 at 145° act at a
point. Find a1 Y a2 and a1 − a2 by:
(i) drawing a scale vector diagram and
(ii) by calculation

(i) The scale vector diagram is shown in
Fig. 32.13. By measurement,

a1 Y a2 = 3.7 m=s2 at 126°

a1 − a2 = 2.1 m=s2 at 0°

a1 + a2

a1 − a2

Scale in m/s2

2.6 m/s2

1.5 m/s2

145° 126°

0 1 2 3

a2

a1

−a2

Figure 32.13

(ii) Resolving horizontally and vertically gives:
Horizontal component of a1 Y a2,

H D 1.5 cos 90° C 2.6 cos 145° D �2.13

Vertical component of a1 Y a2,

V D 1.5 sin 90° C 2.6 sin 145° D 2.99

Magnitude of

a1 Y a2 D
√
��2.13
2 C 2.992

D 3.67 m=s2

Direction of a1 Y a2 D tan�1

(
2.99

�2.13

)
and

must lie in the second quadrant since H is
negative and V is positive.

tan�1

(
2.99

�2.13

)
D �54.53°, and for this to be

in the second quadrant, the true angle is 180°
displaced, i.e. 180° � 54.53° or 125.47°

Thus a1 Y a2 = 3.67 m=s2 at 125.47°.

Horizontal component of a1 − a2, that is,
a1 Y .−a2/

D 1.5 cos 90° C 2.6 cos�145° � 180°


D 2.6 cos��35°
 D 2.13

Vertical component of a1 − a2, that is,
a1 Y .−a2/

D 1.5 sin 90° C 2.6 sin��35°
 D 0

Magnitude of a1 − a2 D p
2.132 C 02

D 2.13 m/s2

Direction of a1 − a2 D tan�1

(
0

2.13

)
D 0°

Thus a1 − a2 = 2.13 m/s2 at 0°

Problem 7. Calculate the resultant of
(i) v1 − v2 Y v3 and (ii) v2 − v1 − v3 when
v1 D 22 units at 140°, v2 D 40 units at 190°
and v3 D 15 units at 290°

(i) The vectors are shown in Fig. 32.14.

+V

15

22

40
−H +H

−V

190°

290°

140°

Figure 32.14
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The horizontal component of v1 − v2 Y v3

D �22 cos 140°
� �40 cos 190°


C �15 cos 290°


D ��16.85
� ��39.39
C �5.13


D 27.67 units

The vertical component of v1 − v2 Y v3

D �22 sin 140°
� �40 sin 190°


C �15 sin 290°


D �14.14
� ��6.95
C ��14.10


D 6.99 units

The magnitude of the resultant, R, which can
be represented by the mathematical symbol for
‘the modulus of’ as jv1 � v2 C v3j is given by:

jRj D
√

27.672 C 6.992 D 28.54 units

The direction of the resultant, R, which can be
represented by the mathematical symbol for
‘the argument of’ as arg �v1 � v2 C v3
 is
given by:

arg R D tan�1
(

6.99

27.67

)
D 14.18°

Thus v1 − v2 Y v3 = 28.54 units at 14.18°

(ii) The horizontal component of v2 − v1 − v3

D �40 cos 190°
� �22 cos 140°


� �15 cos 290°


D ��39.39
� ��16.85
� �5.13


D −27.67 units

The vertical component of v2 − v1 − v3

D �40 sin 190°
� �22 sin 140°


� �15 sin 290°


D ��6.95
� �14.14
� ��14.10


D −6.99 units

Let R D v2 � v1 � v3 then
jRj D

√
��27.67
2 C ��6.99
2 D 28.54 units

and arg R D tan�1
( �6.99

�27.67

)

and must lie in the third quadrant since both
H and V are negative quantities.

tan�1
( �6.99

�27.67

)
D 14.18°,

hence the required angle is 180° C 14.18° D
194.18°

Thus v2 − v1 − v3 = 28.54 units at 194.18°

This result is as expected, since v2 − v1 − v3
= − .v1 − v2 Y v3/ and the vector 28.54 units
at 194.18° is minus times the vector
28.54 units at 14.18°

Now try the following exercise

Exercise 118 Further problems on vectors
subtraction

1. Forces of F1 D 40 N at 45° and
F2 D 30 N at 125° act at a point. Deter-
mine by

drawing and by calculation (a) F1 Y F2
(b) F1 − F2 [

(a) 54.0 N at 78.16°

(b) 45.64 N at 4.66°

]

2. Calculate the resultant of (a) v1 Y v2 − v3
(b) v3 − v2 Y v1 when v1 D 15 m/s at
85°, v2 D 25 m/s at 175° and
v3 D 12 m/s at 235°[

(a) 31.71 m/s at 121.81°

(b) 19.55 m/s at 8.63°

]
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(a) use of the cosine rule (and then sine rule to
calculate angle 
), or

(b) determining horizontal and vertical compo-
nents of lengths oa and ab in Fig. 33.5, and
then using Pythagoras’ theorem to calculate ob.

In the above example, by calculation, yR D 6.083
and angle 
 D 25.28° or 0.441 rad. Thus the
resultant may be expressed in sinusoidal form as
yR D 6.083 sin�ωt � 0.441�. If the resultant phasor,
yR D y1 �y2 is required, then y2 is still 3 units long
but is drawn in the opposite direction, as shown in
Fig. 33.7, and yR is determined by calculation.

f

Figure 33.7

Resolution of phasors by calculation is demon-
strated in worked problems 4 to 6.

Problem 4. Given y1 D 2 sinωt and
y2 D 3 sin�ωt C 	/4�, obtain an
expression for the resultant yR D y1 C y2,
(a) by drawing, and (b) by calculation

(a) When time t D 0 the position of phasors y1
and y2 are as shown in Fig. 33.8(a). To obtain
the resultant, y1 is drawn horizontally, 2 units
long, y2 is drawn 3 units long at an angle
of 	/4 rads or 45° and joined to the end of
y1 as shown in Fig. 33.8(b). yR is measured
as 4.6 units long and angle 
 is measured as
27° or 0.47 rad. Alternatively, yR is the diag-
onal of the parallelogram formed as shown in
Fig. 33.8(c).

Hence, by drawing, yR = 4.6 sin.!t Y 0.47/

(b) From Fig. 33.8(b), and using the cosine rule:

y2
R D 22 C 32 � [2�2��3� cos 135°]

D 4 C 9 � [�8.485] D 21.49

y2 = 3

y2 = 3

y2 = 3

yR

yR

y1 = 2

y1 = 2

y1 = 2

(a)

(b)

(c)

p /4 or 45°

f

f

135°
45°

Figure 33.8

Hence yR D
p

21.49 D 4.64

Using the sine rule:
3

sin

D 4.64

sin 135°
from

which sin 
 D 3 sin 135°

4.64
D 0.4572

Hence 
Dsin�1 0.4572 D 27.21° or 0.475 rad.

By calculation, yR = 4.64 sin.!t Y 0.475/

Problem 5. Two alternating voltages are
given by v1 D 15 sinωt volts and
v2 D 25 sin�ωt � 	/6� volts. Determine a
sinusoidal expression for the resultant
vR D v1 C v2 by finding horizontal and
vertical components

The relative positions of v1 and v2 at time t D 0
are shown in Fig. 33.9(a) and the phasor diagram is
shown in Fig. 33.9(b).
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Z D 2 C j3 lies in the first quadrant as shown in
Fig. 34.5.

Modulus, jZj D r D p
22 C 32 D p

13 or 3.606,
correct to 3 decimal places.

Argument, argZ D � D tan�1 3

2

D 56.31° or 56°19′

In polar form, 2 C j3 is written as 3.6066 6 56.31° or
3.6066 6 56°19′

r

0 2 Real axis

j3

Imaginary
axis

q

Figure 34.5

Problem 10. Express the following
complex numbers in polar form:

(a) 3 C j4 (b) �3 C j4

(c) �3 � j4 (d) 3 � j4

(a) 3 + j4 is shown in Fig. 34.6 and lies in the first
quadrant.

Modulus, r D p
32 C 42 D 5 and argument

� D tan�1 4

3
D 53.13° or 53°80

Hence 3Y j 4 = 56 6 53.13°

(b) �3 C j4 is shown in Fig. 34.6 and lies in the
second quadrant.

Modulus, r D 5 and angle ˛ D 53.13°, from
part (a).

Argument D 180° � 53.13° D 126.87° (i.e. the
argument must be measured from the positive
real axis).

Hence −3Y j 4 = 56 6 126.87°

(c) �3 � j4 is shown in Fig. 34.6 and lies in the
third quadrant.

Modulus, r D 5 and ˛ D 53.13°, as above.

1 2−1−2

−j

−j2

−j3

−4

j

j2

j3

j4 (3 + j4)(−3 + j4)

(− 3 − j4) (3 − j4)

3−3

r

r

r

Real axis

Imaginary
axis

r

q

aa

a

Figure 34.6

Hence the argument D 180° C 53.13° =
233.13°, which is the same as �126.87°

Hence.−3 −j 4/ = 56 6 233.13° or 56 6 −126.87°

(By convention the principal value is nor-
mally used, i.e. the numerically least value,
such that �� < � < �).

(d) 3 � j4 is shown in Fig. 34.6 and lies in the
fourth quadrant.

Modulus, r D 5 and angle ˛ D 53.13°, as
above.

Hence .3 − j 4/ = 56 6 − 53.13°

Problem 11. Convert (a) 46 30°
(b) 76 � 145° into aC jb form, correct to 4
significant figures

(a) 46 30° is shown in Fig. 34.7(a) and lies in the
first quadrant.

Using trigonometric ratios,
x D 4 cos 30° D 3.464 and y D 4 sin 30°

D 2.000

Hence 46 6 30° = 3.464Y j 2.000

(b) 76 � 145° is shown in Fig. 34.7(b) and lies in
the third quadrant.

Angle ˛ D 180° � 145° D 35°

Hence x D 7 cos 35° D 5.734

and y D 7 sin 35° D 4.015
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(b)

(a)

4
30°

0 Real axisx

jy

Imaginary
axis

Real axis

7
145°

x

jy

a

Figure 34.7

Hence 76 6 − 145° = −5.734 − j 4.015

Alternatively

76 �145° D 7 cos��145°�C j7 sin��145°�

D −5.734 − j 4.015

34.7 Multiplication and division in
polar form

If Z1 D r1 6 �1 and Z2 D r2 6 �2 then:

(i) Z1Z2 D r1r2 6 ��1 C �2� and

(ii)
Z1

Z2
D r1
r2

6 ��1 � �2�

Problem 12. Determine, in polar form:

(a) 86 25° ð 46 60°

(b) 36 16° ð 56 �44° ð 26 80°

(a) 86 25°ð46 60° D �8ð4�6 �25°C60°� D 326 6 85°

(b) 36 16° ð 56 � 44° ð 26 80°

D �3ð5ð2�6 [16°C��44°�C80°] D 306 6 52°

Problem 13. Evaluate in polar form:

(a)
166 75°

26 15°
(b)

106 �
4

ð 126 �
2

66 ��
3

(a)
166 75°

26 15°
D 16

2
6 �75° � 15°� D 86 6 60°

(b)
106 �

4
ð 126 �

2

66 ��
3

D 10 ð 12

6
6
(�

4
C �

2
�
(

��
3

))

D 206 6 13p

12
or 206 6 −11p

12
or

206 6 195° or 206 6 −165°

Problem 14. Evaluate, in polar form:
26 30° C 56 � 45° � 46 120°

Addition and subtraction in polar form is not pos-
sible directly. Each complex number has to be con-
verted into Cartesian form first.

26 30° D 2�cos 30° C j sin 30°�

D 2 cos 30° C j2 sin 30° D 1.732 Cj1.000

56 �45° D 5�cos��45°�C j sin��45°��

D 5 cos��45°�C j5 sin��45°�

D 3.536 � j3.536

46 120° D 4�cos 120° C j sin 120°�

D 4 cos 120° C j4 sin 120°

D �2.000 C j3.464

Hence 26 30° C 56 �45° � 46 120°

D �1.732 C j1.000�C �3.536 � j3.536�

� ��2.000 C j3.464�

D 7.268 � j6.000, which lies in the
fourth quadrant

D
√

7.2682 C 6.0002 6 tan�1
(�6.000

7.268

)

D 9.4256 6 −39.54° or 9.4256 6 −39°320

Now try the following exercise

Exercise 124 Further problems on polar
form

1. Determine the modulus and argument of
(a) 2 C j4 (b) �5 � j2 (c) j�2 � j�.[ (a) 4.472, 63.43° (b) 5.385, �158.20°

(c) 2.236, 63.43°

]
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De Moivre’s theorem

35.1 Introduction

From multiplication of complex numbers in
polar form,

�r 6 ��ð �r 6 �� D r2 6 2�

Similarly, �r 6 ��ð�r 6 ��ð�r 6 �� D r3 6 3�, and so on.

In general, de Moivre’s theorem states:

[r 6 6 q]n = rn 6 6 nq

The theorem is true for all positive, negative and
fractional values of n. The theorem is used to deter-
mine powers and roots of complex numbers.

35.2 Powers of complex numbers

For example, [36 20°]4 D 34 6 �4 ð 20°� D 816 80° by
de Moivre’s theorem.

Problem 1. Determine, in polar form:

(a) [26 35°]5 (b) ��2 C j3�6

(a) [26 35°]5 D 25 6 �5 ð 35°�,

from De Moivre’s theorem

D 326 6 175°

(b) ��2 C j3� D
√
��2�2 C �3�2 6 tan

3

�2

D
p

136 123.69°, since � 2 C j3

lies in the second quadrant

��2 C j3�6 D [
p

136 123.69°]6

D
p

136 6 �6 ð 123.69°�,

by De Moivre’s theorem

D 21976 742.14°

D 21976 382.14°

�since 742.14 � 742.14° � 360° D 382.14°�

D 21976 6 22.14°

�since 382.14° � 382.14° � 360° D 22.14°�

Problem 2. Determine the value of
��7 C j5�4, expressing the result in polar
and rectangular forms

��7 C j5� D
√
��7�2 C 52 6 tan�1 5

�7

D
p

746 144.46°

(Note, by considering the Argand diagram, �7 C j5
must represent an angle in the second quadrant and
not in the fourth quadrant).

Applying de Moivre’s theorem:

��7 C j5�4 D [
p

746 144.46°]4

D
p

744 6 4 ð 144.46°

D 54766 577.84°

D 54766 6 217.84° or

54766 6 217°15′ in polar form.

Since r 6 � D r cos � C jr sin �,

54766 217.84° D 5476 cos 217.84°

C j5476 sin 217.84°

D �4325 � j3359

i.e. .−7Y j 5/4 = −4325 − j 3359
in rectangular form.

Now try the following exercise

Exercise 126 Further problems on powers
of complex numbers

1. Determine in polar form (a) [1.56 15°]5

(b) �1 C j2�6

[(a) 7.5946 75° (b) 125 6 20.62°]
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2. Determine in polar and Cartesian forms
(a) [36 41°]4 (b) ��2 � j�5[

(a) 816 164°,�77.86 C j22.33

(b) 55.906 � 47.17°, 38 � j41

]

3. Convert (3�j) into polar form and hence
evaluate �3 � j�7, giving the answer in
polar form.

[
p

10 6 � 18.43°, 31626 � 129.03°]

In Problems 4 to 7, express in both polar and
rectangular forms:

4. �6 C j5�3

[476.46 119.42°, �234 C j415]

5. �3 � j8�5

[45 530 6 12.78°, 44 400 C j10 070]

6. ��2 C j7�4

[2809 6 63.78°, 1241 C j2520]

7. ��16 � j9�6
[
�38.27 ð 106�6 176.15°,

106��38.18 C j2.570�

]

35.3 Roots of complex numbers

The square root of a complex number is determined
by letting n D 1

2 in De Moivre’s theorem,

i.e.
p
r 6 � D [r 6 �]1/2 D r1/2 6 1

2
� D p

r 6 �
2

There are two square roots of a real number, equal
in size but opposite in sign.

Problem 3. Determine the two square roots
of the complex number �5 C j12� in polar
and Cartesian forms and show the roots on
an Argand diagram

�5 C 112� D
√

52 C 122 6 tan�1 12

5
D 136 67.38°

When determining square roots two solutions result.
To obtain the second solution one way is to
express 136 67.38° also as 136 �67.38° C 360°�, i.e.
136 427.38°. When the angle is divided by 2 an angle
less than 360° is obtained.

Hence√
52 C 122 D

p
136 67.38° and

p
136 427.38°

D [136 67.38°]1/2 and [13 6 427.38°]1/2

D 131/2 6 ( 1
2 ð 67.38°

)
and

131/2 6 ( 1
2 ð 427.38°

)
D

p
136 33.69° and

p
136 213.69°

D 3.616 33.69° and 3.616 213.69°

Thus, in polar form, the two roots are:
3.616 6 33.69° and 3.616 6 − 146.31°

p
136 33.69° D

p
13�cos 33.69° C j sin 33.69°�

D 3.0 C j2.0
p

136 213.69° D
p

13�cos 213.69° C j sin 213.69°�

D �3.0 � j2.0

Thus, in Cartesian form the two roots are:
±.3.0Y j 2.0/.

Imaginary axis

j2

213.69°
33.69°

3.61

3.61

−j2

−3 3 Real axis

Figure 35.1

From the Argand diagram shown in Fig. 35.1 the
two roots are seen to be 180° apart, which is always
true when finding square roots of complex numbers.

In general, when finding the nth root of a com-
plex number, there are n solutions. For example,
there are three solutions to a cube root, five solu-
tions to a fifth root, and so on. In the solutions to
the roots of a complex number, the modulus, r, is
always the same, but the arguments, �, are differ-
ent. It is shown in Problem 3 that arguments are
symmetrically spaced on an Argand diagram and

are
360°

n
apart, where n is the number of the roots

required. Thus if one of the solutions to the cube
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(d) The amount of money spent on food can only
be expressed correct to the nearest pence, the
amount being counted. Hence, these data are
discrete.

Now try the following exercise

Exercise 128 Further problems on dis-
crete and continuous data

In Problems 1 and 2, state whether data
relating to the topics given are discrete or
continuous.

1. (a) The amount of petrol produced daily,
for each of 31 days, by a refinery.

(b) The amount of coal produced daily by
each of 15 miners.

(c) The number of bottles of milk deliv-
ered daily by each of 20 milkmen.

(d) The size of 10 samples of rivets pro-
duced by a machine.[

(a) continuous (b) continuous
(c) discrete (d) continuous

]

2. (a) The number of people visiting an
exhibition on each of 5 days.

(b) The time taken by each of 12 athletes
to run 100 metres.

(c) The value of stamps sold in a day by
each of 20 post offices.

(d) The number of defective items pro-
duced in each of 10 one-hour periods
by a machine.[

(a) discrete (b) continuous
(c) discrete (d) discrete

]

36.2 Presentation of ungrouped data

Ungrouped data can be presented diagrammatically
in several ways and these include:

(a) pictograms, in which pictorial symbols are
used to represent quantities (see Problem 2),

(b) horizontal bar charts, having data represented
by equally spaced horizontal rectangles (see
Problem 3), and

(c) vertical bar charts, in which data are rep-
resented by equally spaced vertical rectangles
(see Problem 4).

Trends in ungrouped data over equal periods of time
can be presented diagrammatically by a percentage

component bar chart. In such a chart, equally
spaced rectangles of any width, but whose height
corresponds to 100%, are constructed. The rectan-
gles are then subdivided into values corresponding
to the percentage relative frequencies of the mem-
bers (see Problem 5).

A pie diagram is used to show diagrammatically
the parts making up the whole. In a pie diagram, the
area of a circle represents the whole, and the areas
of the sectors of the circle are made proportional to
the parts which make up the whole (see Problem 6).

Problem 2. The number of television sets
repaired in a workshop by a technician in
six, one-month periods is as shown below.
Present these data as a pictogram.

Month January February March
Number

repaired 11 6 15

Month April May June
Number

repaired 9 13 8

Each symbol shown in Fig. 36.1 represents two
television sets repaired. Thus, in January, 5 1

2 sym-
bols are used to represent the 11 sets repaired, in
February, 3 symbols are used to represent the 6 sets
repaired, and so on.

Figure 36.1

Problem 3. The distance in miles travelled
by four salesmen in a week are as shown
below.

Salesmen P Q R S
Distance

traveled (miles) 413 264 597 143

Use a horizontal bar chart to represent these
data diagrammatically
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Equally spaced horizontal rectangles of any width,
but whose length is proportional to the distance
travelled, are used. Thus, the length of the rectangle
for salesman P is proportional to 413 miles, and so
on. The horizontal bar chart depicting these data is
shown in Fig. 36.2.
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Figure 36.2

Problem 4. The number of issues of tools
or materials from a store in a factory is
observed for seven, one-hour periods in a
day, and the results of the survey are as
follows:

Period 1 2 3 4 5 6 7
Number of

issues 34 17 9 5 27 13 6

Present these data on a vertical bar chart.

In a vertical bar chart, equally spaced vertical rectan-
gles of any width, but whose height is proportional
to the quantity being represented, are used. Thus the
height of the rectangle for period 1 is proportional to
34 units, and so on. The vertical bar chart depicting
these data is shown in Fig. 36.3.
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Figure 36.3

Problem 5. The numbers of various types
of dwellings sold by a company annually
over a three-year period are as shown below.
Draw percentage component bar charts to
present these data.

Year 1 Year 2 Year 3

4-roomed bungalows 24 17 7
5-roomed bungalows 38 71 118
4-roomed houses 44 50 53
5-roomed houses 64 82 147
6-roomed houses 30 30 25

A table of percentage relative frequency values,
correct to the nearest 1%, is the first requirement.
Since,

percentage relative frequency

D frequency of member ð 100

total frequency

then for 4-roomed bungalows in year 1:

percentage relative frequency

D 24 ð 100

24 C 38 C 44 C 64 C 30
D 12%

The percentage relative frequencies of the other
types of dwellings for each of the three years are
similarly calculated and the results are as shown in
the table below.

Year 1 Year 2 Year 3
4-roomed bungalows 12% 7% 2%
5-roomed bungalows 19% 28% 34%
4-roomed houses 22% 20% 15%
5-roomed houses 32% 33% 42%
6-roomed houses 15% 12% 7%

The percentage component bar chart is produced
by constructing three equally spaced rectangles of
any width, corresponding to the three years. The
heights of the rectangles correspond to 100% rela-
tive frequency, and are subdivided into the values
in the table of percentages shown above. A key is
used (different types of shading or different colour
schemes) to indicate corresponding percentage val-
ues in the rows of the table of percentages. The per-
centage component bar chart is shown in Fig. 36.4.

Problem 6. The retail price of a product
costing £2 is made up as follows: materials
10 p, labour 20 p, research and development
40 p, overheads 70 p, profit 60 p. Present
these data on a pie diagram

A circle of any radius is drawn, and the area of the
circle represents the whole, which in this case is
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37

Measures of central tendency and
dispersion

37.1 Measures of central tendency

A single value, which is representative of a set of
values, may be used to give an indication of the gen-
eral size of the members in a set, the word ‘average’
often being used to indicate the single value.

The statistical term used for ‘average’ is the
arithmetic mean or just the mean. Other measures
of central tendency may be used and these include
the median and the modal values.

37.2 Mean, median and mode for
discrete data

Mean

The arithmetic mean value is found by adding
together the values of the members of a set and
dividing by the number of members in the set. Thus,
the mean of the set of numbers: f4, 5, 6, 9g is:

4 C 5 C 6 C 9

4
, i.e. 6

In general, the mean of the set: fx1, x2, x3, . . . , xng is

x D x1 C x2 C x3 C Ð Ð Ð C xn
n

,written as

∑
x

n

where
∑

is the Greek letter ‘sigma’ and means ‘the
sum of’, and x (called x-bar) is used to signify a
mean value.

Median

The median value often gives a better indication of
the general size of a set containing extreme values.
The set: f7, 5, 74, 10g has a mean value of 24, which
is not really representative of any of the values
of the members of the set. The median value is
obtained by:

(a) ranking the set in ascending order of magni-
tude, and

(b) selecting the value of the middle member for
sets containing an odd number of members, or
finding the value of the mean of the two middle
members for sets containing an even number
of members.

For example, the set: f7, 5, 74, 10g is ranked as
f5, 7, 10, 74g, and since it contains an even number
of members (four in this case), the mean of 7 and 10
is taken, giving a median value of 8.5. Similarly, the
set: f3, 81, 15, 7, 14g is ranked as f3, 7, 14, 15, 81g
and the median value is the value of the middle
member, i.e. 14.

Mode

The modal value, or mode, is the most commonly
occurring value in a set. If two values occur with
the same frequency, the set is ‘bi-modal’. The set:
f5, 6, 8, 2, 5, 4, 6, 5, 3g has a modal value of 5, since
the member having a value of 5 occurs three times.

Problem 1. Determine the mean, median
and mode for the set:

f2, 3, 7, 5, 5, 13, 1, 7, 4, 8, 3, 4, 3g

The mean value is obtained by adding together the
values of the members of the set and dividing by
the number of members in the set.

Thus, mean value,

x D
2 C 3 C 7 C 5 C 5 C 13 C 1

C7 C 4 C 8 C 3 C 4 C 3
13

D 65

13
D 5

To obtain the median value the set is ranked, that is,
placed in ascending order of magnitude, and since
the set contains an odd number of members the value
of the middle member is the median value. Ranking
the set gives:

f1, 2, 3, 3, 3, 4, 4, 5, 5, 7, 7, 8, 13g
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The middle term is the seventh member, i.e. 4, thus
the median value is 4.

The modal value is the value of the most com-
monly occurring member and is 3, which occurs
three times, all other members only occurring once
or twice.

Problem 2. The following set of data refers
to the amount of money in £s taken by a
news vendor for 6 days. Determine the
mean, median and modal values of the set:

f27.90, 34.70, 54.40, 18.92, 47.60, 39.68g

Mean value D
27.90 C 34.70 C 54.40

C18.92 C 47.60 C 39.68
6

D £37.20

The ranked set is:

f18.92, 27.90, 34.70, 39.68, 47.60, 54.40g
Since the set has an even number of members, the
mean of the middle two members is taken to give
the median value, i.e.

median value D 34.70 C 39.68

2
D £37.19

Since no two members have the same value, this set
has no mode.

Now try the following exercise

Exercise 131 Further problems on mean,
median and mode for dis-
crete data

In Problems 1 to 4, determine the mean,
median and modal values for the sets given.

1. f3, 8, 10, 7, 5, 14, 2, 9, 8g
[mean 7.33, median 8, mode 8]

2. f26, 31, 21, 29, 32, 26, 25, 28g
[mean 27.25, median 27, mode 26]

3. f4.72, 4.71, 4.74, 4.73, 4.72, 4.71, 4.73,
4.72g
[mean 4.7225, median 4.72, mode 4.72]

4. f73.8, 126.4, 40.7, 141.7, 28.5, 237.4,
157.9g

[mean 115.2, median 126.4, no mode]

37.3 Mean, median and mode for
grouped data

The mean value for a set of grouped data is found
by determining the sum of the (frequency ð class
mid-point values) and dividing by the sum of the
frequencies,

i.e. mean value x D f1x1 C f2x2 C Ð Ð Ð C fnxn
f1 C f2 C Ð Ð Ð C fn

D
∑
�fx�∑
f

where f is the frequency of the class having a mid-
point value of x, and so on.

Problem 3. The frequency distribution for
the value of resistance in ohms of 48
resistors is as shown. Determine the mean
value of resistance.

20.5–20.9 3, 21.0–21.4 10, 21.5–21.9 11,

22.0–22.4 13, 22.5–22.9 9, 23.0–23.4 2

The class mid-point/frequency values are:

20.7 3, 21.2 10, 21.7 11, 22.2 13,

22.7 9 and 23.2 2

For grouped data, the mean value is given by:

x D
∑
�fx�∑
f

where f is the class frequency and x is the class
mid-point value. Hence mean value,

x D
�3 ð 20.7�C �10 ð 21.2�C �11 ð 21.7�
C �13 ð 22.2�C �9 ð 22.7�C �2 ð 23.2�

48

D 1052.1

48
D 21.919 . . .

i.e. the mean value is 21.9 ohms, correct to 3
significant figures.
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Probability

38.1 Introduction to probability

The probability of something happening is the like-
lihood or chance of it happening. Values of proba-
bility lie between 0 and 1, where 0 represents an
absolute impossibility and 1 represents an absolute
certainty. The probability of an event happening
usually lies somewhere between these two extreme
values and is expressed either as a proper or decimal
fraction. Examples of probability are:

that a length of copper wire
has zero resistance at 100 °C 0

that a fair, six-sided dice
will stop with a 3 upwards 1

6 or 0.1667

that a fair coin will land
with a head upwards 1

2 or 0.5

that a length of copper wire
has some resistance at 100 °C 1

If p is the probability of an event happening and q
is the probability of the same event not happening,
then the total probability is p C q and is equal to
unity, since it is an absolute certainty that the event
either does or does not occur, i.e. p Y q = 1

Expectation

The expectation, E, of an event happening is
defined in general terms as the product of the prob-
ability p of an event happening and the number of
attempts made, n, i.e. E = pn .

Thus, since the probability of obtaining a 3
upwards when rolling a fair dice is 1

6 , the expec-
tation of getting a 3 upwards on four throws of the
dice is 1

6 ð 4, i.e. 2
3

Thus expectation is the average occurrence of an
event.

Dependent event

A dependent event is one in which the probabil-
ity of an event happening affects the probability of
another ever happening. Let 5 transistors be taken
at random from a batch of 100 transistors for test

purposes, and the probability of there being a defec-
tive transistor, p1, be determined. At some later
time, let another 5 transistors be taken at random
from the 95 remaining transistors in the batch and
the probability of there being a defective transistor,
p2, be determined. The value of p2 is different from
p1 since batch size has effectively altered from 100
to 95, i.e. probability p2 is dependent on probabil-
ity p1. Since transistors are drawn, and then another
5 transistors drawn without replacing the first 5,
the second random selection is said to be without
replacement.

Independent event

An independent event is one in which the probability
of an event happening does not affect the probability
of another event happening. If 5 transistors are
taken at random from a batch of transistors and the
probability of a defective transistor p1 is determined
and the process is repeated after the original 5 have
been replaced in the batch to give p2, then p1 is
equal to p2. Since the 5 transistors are replaced
between draws, the second selection is said to be
with replacement.

Conditional probability

Conditional probability is concerned with the prob-
ability of say event B occurring, given that event
A has already taken place. If A and B are indepen-
dent events, then the fact that event A has already
occurred will not affect the probability of event B. If
A and B are dependent events, then event A having
occurred will effect the probability of event B.

38.2 Laws of probability

The addition law of probability

The addition law of probability is recognized by
the word ‘or’ joining the probabilities. If pA is
the probability of event A happening and pB is the
probability of event B happening, the probability of
event A or event B happening is given by pA C pB
(provided events A and B are mutually exclusive,
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3. (a) Find the probability of having a 2
upwards when throwing a fair 6-sided
dice. (b) Find the probability of having
a 5 upwards when throwing a fair 6-
sided dice. (c) Determine the probability
of having a 2 and then a 5 on two succes-
sive throws of a fair 6-sided dice.[

(a)
1

6
(b)

1

6
(c)

1

36

]

4. The probability of event A happening is
3
5 and the probability of event B hap-
pening is 2

3 . Calculate the probabilities
of (a) both A and B happening, (b) only
event A happening, i.e. event A happen-
ing and event B not happening, (c) only
event B happening, and (d) either A, or B,
or A and B happening.[

(a)
2

5
(b)

1

5
(c)

4

15
(d)

13

15

]

5. When testing 1000 soldered joints, 4 fai-
led during a vibration test and 5 failed
due to having a high resistance. Deter-
mine the probability of a joint failing
due to (a) vibration, (b) high resistance,
(c) vibration or high resistance and (d) vi-
bration and high resistance.


(a)

1

250
(b)

1

200

(c)
9

1000
(d)

1

50000




38.4 Further worked problems on
probability

Problem 6. A batch of 40 components
contains 5 which are defective. A component
is drawn at random from the batch and tested
and then a second component is drawn.
Determine the probability that neither of the
components is defective when drawn (a) with
replacement, and (b) without replacement.

(a) With replacement

The probability that the component selected on

the first draw is satisfactory is
35

40
, i.e.

7

8
. The

component is now replaced and a second draw is
made. The probability that this component is also

satisfactory is
7

8
. Hence, the probability that both

the first component drawn and the second compo-
nent drawn are satisfactory is:

7

8
ð 7

8
D 49

64
or 0.7656

(b) Without replacement

The probability that the first component drawn is sat-

isfactory is
7

8
. There are now only 34 satisfactory

components left in the batch and the batch number
is 39. Hence, the probability of drawing a satisfac-

tory component on the second draw is
34

39
. Thus

the probability that the first component drawn and
the second component drawn are satisfactory, i.e.
neither is defective, is:

7

8
ð 34

39
D 238

312
or 0.7628

Problem 7. A batch of 40 components
contains 5 that are defective. If a component
is drawn at random from the batch and tested
and then a second component is drawn at
random, calculate the probability of having
one defective component, both with and
without replacement.

The probability of having one defective component
can be achieved in two ways. If p is the proba-
bility of drawing a defective component and q is
the probability of drawing a satisfactory component,
then the probability of having one defective compo-
nent is given by drawing a satisfactory component
and then a defective component or by drawing a
defective component and then a satisfactory one, i.e.
by qð pC pð q

With replacement:

p D 5

40
D 1

8
and q D 35

40
D 7

8

Hence, probability of having one defective compo-
nent is:

1

8
ð 7

8
C 7

8
ð 1

8
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(Note that the order of the letters matter in permu-
tations, i.e. YX is a different permutation from XY).
In general, nPr D n	n � 1
	n � 2
 . . . 	n � r C 1


or nPr =
n!

.n − r/!
as stated in Chapter 14

For example, 5P4 D 5	4
	3
	2
 D 120 or
5P4 D 5!

	5 � 4
!
D 5!

1!
D 	5
	4
	3
	2
 D 120

Also, 3P3 D 6 from above; using nPr D n!

	n� r
!

gives 3P3 D 3!

	3 � 3
!
D 6

0!
. Since this must equal

6, then 0! = 1 (check this with your calculator).

Combinations

If selections of the three letters X,Y, Z are made
without regard to the order of the letters in each
group, i.e. XY is now the same as YX for exam-
ple, then each group is called a combination. The
number of possible combinations is denoted by nCr ,
where n is the total number of items and r is the
number in each selection.
In general,

nCr D n!

r!.n − r/!

For example,

5C4 D 5!

4!	5 � 4
!
D 5!

4!

D 5 ð 4 ð 3 ð 2 ð 1

4 ð 3 ð 2 ð 1
D 5

Problem 11. Calculate the number of
permutations there are of: (a) 5 distinct
objects taken 2 at a time, (b) 4 distinct
objects taken 2 at a time.

(a) 5P2 D 5!

	5 � 2
!
D 5!

3!
D 5 ð 4 ð 3 ð 2

3 ð 2
D 20

(b) 4P2 D 4!

	4 � 2
!
D 4!

2!
D 12

Problem 12. Calculate the number of
combinations there are of: (a) 5 distinct
objects taken 2 at a time, (b) 4 distinct
objects taken 2 at a time.

(a) 5C2 D 5!

2!	5 � 2
!
D 5!

2! 3!

D 5 ð 4 ð 3 ð 2 ð 1

	2 ð 1
	3 ð 2 ð 1

D 10

(b) 4C2 D 4!

2!	4 � 2
!
D 4!

2! 2!
D 6

Problem 13. A class has 24 students. 4 can
represent the class at an exam board. How
many combinations are possible when
choosing this group.

Number of combinations possible,

nCr D n!

r!	n� r
!

i.e. 24C4 D 24!

4!	24 � 4
!
D 24!

4! 20!
= 10 626

Problem 14. In how many ways can a team
of eleven be picked from sixteen possible
players?

Number of ways D nCr D 16C11

D 16!

11!	16 � 11
!
D 16!

11! 5!
D 4368

Now try the following exercise

Exercise 137 Further problems on per-
mutations and combinations

1. Calculate the number of permutations
there are of: (a) 15 distinct objects taken
2 at a time, (b) 9 distinct objects taken 4
at a time. [(a) 210 (b) 3024]

2. Calculate the number of combinations
there are of: (a) 12 distinct objects taken
5 at a time, (b) 6 distinct objects taken 4
at a time. [(a) 792 (b) 15]

3. In how many ways can a team of six be
picked from ten possible players?

[210]

4. 15 boxes can each hold one object. In how
many ways can 10 identical objects be
placed in the boxes? [3003]
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that (a) no blocks and (b) more than two
blocks will fail to meet the specification
in a batch of 9 blocks.

[(a) 0.2316 (b) 0.1408]

3. The average number of employees absent
from a firm each day is 4%. An office
within the firm has seven employees.
Determine the probabilities that (a) no
employee and (b) three employees will be
absent on a particular day.

[(a) 0.7514 (b) 0.0019]

4. A manufacturer estimates that 3% of his
output of a small item is defective. Find
the probabilities that in a sample of 10
items (a) less than two and (b) more than
two items will be defective.

[(a) 0.9655 (b) 0.0028]

5. Five coins are tossed simultaneously.
Determine the probabilities of having 0,
1, 2, 3, 4 and 5 heads upwards, and draw
a histogram depicting the results.


Vertical adjacent rectangles,
whose heights are proportional to
0.0313, 0.1563, 0.3125, 0.3125,
0.1563 and 0.0313




6. If the probability of rain falling during
a particular period is 2/5, find the
probabilities of having 0, 1, 2, 3, 4, 5,
6 and 7 wet days in a week. Show these
results on a histogram.




Vertical adjacent rectangles,
whose heights are proportional
to 0.0280, 0.1306, 0.2613,
0.2903, 0.1935, 0.0774,
0.0172 and 0.0016




7. An automatic machine produces, on aver-
age, 10% of its components outside of
the tolerance required. In a sample of 10
components from this machine, determine
the probability of having three compo-
nents outside of the tolerance required by
assuming a binomial distribution.

[0.0574]

39.2 The Poisson distribution

When the number of trials, n, in a binomial distri-
bution becomes large (usually taken as larger than
10), the calculations associated with determining the
values of the terms become laborious. If n is large
and p is small, and the product np is less than 5, a
very good approximation to a binomial distribution
is given by the corresponding Poisson distribution,
in which calculations are usually simpler.

The Poisson approximation to a binomial distri-
bution may be defined as follows:

‘the probabilities that an event will happen 0, 1, 2,
3, . . ., n times in n trials are given by the successive
terms of the expression

e�

(

1 C 
C 
2

2!
C 
3

3!
C Ð Ð Ð

)

taken from left to right’

The symbol 
 is the expectation of an event hap-
pening and is equal to np.

Problem 6. If 3% of the gearwheels
produced by a company are defective,
determine the probabilities that in a sample
of 80 gearwheels (a) two and (b) more than
two will be defective.

The sample number, n, is large, the probability of a
defective gearwheel, p, is small and the product np
is 80 ð 0.03, i.e. 2.4, which is less than 5. Hence
a Poisson approximation to a binomial distribution
may be used. The expectation of a defective gear-
wheel, 
 D np D 2.4

The probabilities of 0, 1, 2, . . . defective gear-
wheels are given by the successive terms of the
expression

e�

(

1 C 
C 
2

2!
C 
3

3!
C Ð Ð Ð

)

taken from left to right, i.e. by

e�
, 
e�
,

2e�


2!
, . . . Thus:

probability of no defective gearwheels is

e�
 D e�2.4 D 0.0907

probability of 1 defective gearwheel is


e�
 D 2.4e�2.4 D 0.2177
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Assignment 10

This assignment covers the material in
Chapters 36 to 39.
The marks for each question are shown
in brackets at the end of each question.

1. A company produces five products in the
following proportions:

Product A 24 Product B 16 Product C 15
Product D 11 Product E 6

Present these data visually by drawing (a)
a vertical bar chart (b) a percentage bar
chart (c) a pie diagram. (13)

2. The following lists the diameters of 40
components produced by a machine, each
measured correct to the nearest hundredth
of a centimetre:

1.39 1.36 1.38 1.31 1.33 1.40 1.28
1.40 1.24 1.28 1.42 1.34 1.43 1.35
1.36 1.36 1.35 1.45 1.29 1.39 1.38
1.38 1.35 1.42 1.30 1.26 1.37 1.33
1.37 1.34 1.34 1.32 1.33 1.30 1.38
1.41 1.35 1.38 1.27 1.37

(a) Using 8 classes form a frequency distri-
bution and a cumulative frequency distri-
bution.

(b) For the above data draw a histogram, a
frequency polygon and an ogive. (21)

3. Determine for the 10 measurements of
lengths shown below:

(a) the arithmetic mean, (b) the median,
(c) the mode, and (d) the standard devia-
tion.

28 m, 20 m, 32 m, 44 m, 28 m, 30 m,
30 m, 26 m, 28 m and 34 m (9)

4. The heights of 100 people are measured
correct to the nearest centimetre with the
following results:

150–157 cm 5 158–165 cm 18
166–173 cm 42 174–181 cm 27
182–189 cm 8

Determine for the data (a) the mean height
and (b) the standard deviation. (10)

5. Determine the probabilities of:

(a) drawing a white ball from a bag con-
taining 6 black and 14 white balls

(b) winning a prize in a raffle by buying
6 tickets when a total of 480 tickets
are sold

(c) selecting at random a female from a
group of 12 boys and 28 girls

(d) winning a prize in a raffle by buying
8 tickets when there are 5 prizes and
a total of 800 tickets are sold. (8)

6. In a box containing 120 similar transistors
70 are satisfactory, 37 give too high a gain
under normal operating conditions and the
remainder give too low a gain.

Calculate the probability that when draw-
ing two transistors in turn, at random, with
replacement, of having (a) two satisfac-
tory, (b) none with low gain, (c) one with
high gain and one satisfactory, (d) one
with low gain and none satisfactory.

Determine the probabilities in (a), (b) and
(c) above if the transistors are drawn
without replacement. (14)

7. A machine produces 15% defective
components. In a sample of 5, drawn
at random, calculate, using the binomial
distribution, the probability that:

(a) there will be 4 defective items

(b) there will be not more than 3 defec-
tive items

(c) all the items will be non-defective
(13)

8. 2% of the light bulbs produced by a
company are defective. Determine, using
the Poisson distribution, the probability
that in a sample of 80 bulbs:

(a) 3 bulbs will be defective, (b) not more
than 3 bulbs will be defective, (c) at least
2 bulbs will be defective. (12)

Preview from Notesale.co.uk

Page 351 of 543



342 ENGINEERING MATHEMATICS

Problem 1. The mean height of 500 people
is 170 cm and the standard deviation is
9 cm. Assuming the heights are normally
distributed, determine the number of people
likely to have heights between 150 cm and
195 cm

The mean value, x, is 170 cm and corresponds to
a normal standard variate value, z, of zero on the
standardised normal curve. A height of 150 cm has

a z-value given by z D x � x

�
standard deviations,

i.e.
150 � 170

9
or �2.22 standard deviations. Using

a table of partial areas beneath the standardised
normal curve (see Table 40.1), a z-value of �2.22
corresponds to an area of 0.4868 between the mean
value and the ordinate z D �2.22. The negative
z-value shows that it lies to the left of the z D 0
ordinate.

This area is shown shaded in Fig. 40.3(a). Simi-

larly, 195 cm has a z-value of
195 � 170

9
that is 2.78

standard deviations. From Table 40.1, this value of z
corresponds to an area of 0.4973, the positive value
of z showing that it lies to the right of the z D 0
ordinate. This area is shown shaded in Fig. 40.3(b).
The total area shaded in Fig. 40.3(a) and (b) is
shown in Fig. 40.3(c) and is 0.4868 C 0.4973, i.e.
0.9841 of the total area beneath the curve.

However, the area is directly proportional to prob-
ability. Thus, the probability that a person will have
a height of between 150 and 195 cm is 0.9841. For
a group of 500 people, 500 ð 0.9841, i.e. 492 peo-
ple are likely to have heights in this range. The
value of 500 ð 0.9841 is 492.05, but since answers
based on a normal probability distribution can only
be approximate, results are usually given correct to
the nearest whole number.

Problem 2. For the group of people given
in Problem 1, find the number of people
likely to have heights of less than 165 cm

A height of 165 cm corresponds to
165 � 170

9
, i.e.

�0.56 standard deviations. The area between z D 0
and z D �0.56 (from Table 40.1) is 0.2123, shown
shaded in Fig. 40.4(a). The total area under the
standardised normal curve is unity and since the
curve is symmetrical, it follows that the total area
to the left of the z D 0 ordinate is 0.5000. Thus
the area to the left of the z D �0.56 ordinate

0 z-value−2.22
(a)

0 z-value2.78
(b)

0 z-value2.78−2.22
(c)

Figure 40.3

(‘left’ means ‘less than’, ‘right’ means ‘more than’)
is 0.5000 � 0.2123, i.e. 0.2877 of the total area,
which is shown shaded in Fig. 40.4(b). The area
is directly proportional to probability and since the
total area beneath the standardised normal curve is
unity, the probability of a person’s height being less
than 165 cm is 0.2877. For a group of 500 people,
500 ð 0.2877, i.e. 144 people are likely to have
heights of less than 165 cm.

Problem 3. For the group of people given
in Problem 1 find how many people are
likely to have heights of more than 194 cm

194 cm correspond to a z-value of
194 � 170

9
that

is, 2.67 standard deviations. From Table 40.1, the
area between z D 0, z D 2.67 and the stan-
dardised normal curve is 0.4962, shown shaded in
Fig. 40.5(a). Since the standardised normal curve is
symmetrical, the total area to the right of the z D 0
ordinate is 0.5000, hence the shaded area shown in
Fig. 40.5(b) is 0.5000 � 0.4962, i.e. 0.0038. This
area represents the probability of a person having a
height of more than 194 cm, and for 500 people, the

Preview from Notesale.co.uk

Page 354 of 543



THE NORMAL DISTRIBUTION 345

Class mid-point
value (kg) 29.5 30.5 31.5 32.5 33.5
Frequency 2 4 6 8 9

Class mid-point
value (kg) 34.5 35.5 36.5 37.5 38.5
Frequency 8 6 4 2 1

To test the normality of a distribution, the upper
class boundary/percentage cumulative frequency
values are plotted on normal probability paper. The
upper class boundary values are: 30, 31, 32, . . ., 38,
39. The corresponding cumulative frequency values
(for ‘less than’ the upper class boundary values) are:
2, �4C2� D 6, �6C4C2� D 12, 20, 29, 37, 43, 47, 49
and 50. The corresponding percentage cumulative

frequency values are
2

50
ð100 D 4,

6

50
ð100 D 12,

24, 40, 58, 74, 86, 94, 98 and 100%.
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Figure 40.6

The co-ordinates of upper class boundary/percen-
tage cumulative frequency values are plotted as
shown in Fig. 40.6. When plotting these values, it
will always be found that the co-ordinate for the
100% cumulative frequency value cannot be plotted,
since the maximum value on the probability scale is
99.99. Since the points plotted in Fig. 40.6 lie very
nearly in a straight line, the data is approximately
normally distributed.

The mean value and standard deviation can be
determined from Fig. 40.6. Since a normal curve
is symmetrical, the mean value is the value of
the variable corresponding to a 50% cumulative
frequency value, shown as point P on the graph.
This shows that the mean value is 33.6 kg. The
standard deviation is determined using the 84%
and 16% cumulative frequency values, shown as
Q and R in Fig. 40.6. The variable values for Q
and R are 35.7 and 31.4 respectively; thus two
standard deviations correspond to 35.7 � 31.4, i.e.
4.3, showing that the standard deviation of the

distribution is approximately
4.3

2
i.e. 2.15 standard

deviations.
The mean value and standard deviation of the dis-

tribution can be calculated using mean, x D
∑
fx∑
f

and standard deviation, � D
√∑

[f�x � x�2]∑
f

where

f is the frequency of a class and x is the class
mid-point value. Using these formulae gives a mean
value of the distribution of 33.6 (as obtained graphi-
cally) and a standard deviation of 2.12, showing that
the graphical method of determining the mean and
standard deviation give quite realistic results.

Problem 6. Use normal probability paper to
determine whether the data given below is
normally distributed. Use the graph and
assume a normal distribution whether this is
so or not, to find approximate values of the
mean and standard deviation of the
distribution.

Class mid-point
Values 5 15 25 35 45
Frequency 1 2 3 6 9

Class mid-point
Values 55 65 75 85 95
Frequency 6 2 2 1 1
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360 ENGINEERING MATHEMATICS

the parameter may be considered to lie is called
an interval estimate. Thus if an estimate is made
of the length of an object and the result is quoted
as 150 cm, this is a point estimate. If the result is
quoted as 150 š 10 cm, this is an interval estimate
and indicates that the length lies between 140 and
160 cm. Generally, a point estimate does not indi-
cate how close the value is to the true value of the
quantity and should be accompanied by additional
information on which its merits may be judged. A
statement of the error or the precision of an esti-
mate is often called its reliability. In statistics, when
estimates are made of population parameters based
on samples, usually interval estimates are used. The
word estimate does not suggest that we adopt the
approach ‘let’s guess that the mean value is about..’,
but rather that a value is carefully selected and the
degree of confidence which can be placed in the
estimate is given in addition.

Confidence intervals

It is stated in Section 43.3 that when samples are
taken from a population, the mean values of these
samples are approximately normally distributed, that
is, the mean values forming the sampling distribu-
tion of means is approximately normally distributed.
It is also true that if the standard deviation of each
of the samples is found, then the standard devi-
ations of all the samples are approximately nor-
mally distributed, that is, the standard deviations
of the sampling distribution of standard deviations
are approximately normally distributed. Parameters
such as the mean or the standard deviation of a sam-
pling distribution are called sampling statistics, S.
Let �S be the mean value of a sampling statistic
of the sampling distribution, that is, the mean value
of the means of the samples or the mean value of
the standard deviations of the samples. Also, let �S
be the standard deviation of a sampling statistic of
the sampling distribution, that is, the standard devi-
ation of the means of the samples or the standard
deviation of the standard deviations of the samples.
Because the sampling distribution of the means and
of the standard deviations are normally distributed, it
is possible to predict the probability of the sampling
statistic lying in the intervals:

mean š 1 standard deviation,

mean š 2 standard deviations,

or mean š 3 standard deviations,

by using tables of the partial areas under the
standardised normal curve given in Table 40.1 on

page 341. From this table, the area corresponding
to a z-value of C1 standard deviation is 0.3413,
thus the area corresponding to C1 standard deviation
is 2 ð 0.3413, that is, 0.6826. Thus the percentage
probability of a sampling statistic lying between the
mean š1 standard deviation is 68.26%. Similarly,
the probability of a sampling statistic lying between
the mean š2 standard deviations is 95.44% and
of lying between the mean š3 standard deviations
is 99.74%

The values 68.26%, 95.44% and 99.74% are
called the confidence levels for estimating a sam-
pling statistic. A confidence level of 68.26% is
associated with two distinct values, these being,
S� (1 standard deviation), i.e. S � �S and
S C 
1 standard deviation), i.e. S C �S. These two
values are called the confidence limits of the esti-
mate and the distance between the confidence lim-
its is called the confidence interval. A confidence
interval indicates the expectation or confidence of
finding an estimate of the population statistic in that
interval, based on a sampling statistic. The list in
Table 43.1 is based on values given in Table 40.1,
and gives some of the confidence levels used in
practice and their associated z-values; (some of the
values given are based on interpolation). When the
table is used in this context, z-values are usually
indicated by ‘zC’ and are called the confidence co-
efficients.

Table 43.1

Confidence level, Confidence coefficient,

% zc

99 2.58
98 2.33
96 2.05
95 1.96
90 1.645
80 1.28
50 0.6745

Any other values of confidence levels and their
associated confidence coefficients can be obtained
using Table 40.1.

Problem 3. Determine the confidence
coefficient corresponding to a confidence
level of 98.5%

98.5% is equivalent to a per unit value of 0.9850.
This indicates that the area under the standardised
normal curve between �zC and CzC, i.e. corre-
sponding to 2zC, is 0.9850 of the total area. Hence
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364 ENGINEERING MATHEMATICS

population may be estimated by using expres-
sion (7), i.e. sš zC�S D 0.60 š 
1.751�
0.12�

D 0.60 š 0.21 µF
Thus, the 92% confidence interval for the esti-

mate of the standard deviation for the batch is
from 0.39 µF to 0.81 µF.

Now try the following exercise

Exercise 145 Further problems on the
estimation of population
parameters based on a large
sample size

1. Measurements are made on a random
sample of 100 components drawn from a
population of size 1546 and having
a standard deviation of 2.93 mm. The
mean measurement of the components in
the sample is 67.45 mm. Determine the
95% and 99% confidence limits for an
estimate of the mean of the population.[ 66.89 and 68.01 mm,

66.72 and 68.18 mm

]

2. The standard deviation of the masses of
500 blocks is 150 kg. A random sample
of 40 blocks has a mean mass of 2.40 Mg.

(a) Determine the 95% and 99%
confidence intervals for estimating
the mean mass of the remaining 460
blocks.

(b) With what degree of confidence can
it be said that the mean mass of the
remaining 460 blocks is
2.40 š 0.035 Mg?[

(a) 2.355 Mg to 2.445 Mg;
2.341 Mg to 2.459 Mg

(b) 86%

]

3. In order to estimate the thermal expansion
of a metal, measurements of the change of
length for a known change of temperature
are taken by a group of students. The
sampling distribution of the results has
a mean of 12.81 ð 10�4 m 0C�1 and
a standard error of the means of
0.04 ð 10�4 m 0C�1. Determine the 95%
confidence interval for an estimate of the
true value of the thermal expansion of the
metal, correct to two decimal places.[ 12.73 ð 10�4 m 0C�1 to

12.89 ð 10�4 m 0C�1

]

4. The standard deviation of the time to
failure of an electronic component is
estimated as 100 hours. Determine how
large a sample of these components must
be, in order to be 90% confident that the
error in the estimated time to failure will
not exceed (a) 20 hours, and (b) 10 hours.

[(a) at least 68 (b) at least 271]

5. The time taken to assemble a servo-
mechanism is measured for 40 opera-
tives and the mean time is 14.63 minutes
with a standard deviation of 2.45 minutes.
Determine the maximum error in estimat-
ing the true mean time to assemble the
servo-mechanism for all operatives, based
on a 95% confidence level.

[45.6 seconds]

43.5 Estimating the mean of a
population based on a small
sample size

The methods used in Section 43.4 to estimate the
population mean and standard deviation rely on a
relatively large sample size, usually taken as 30 or
more. This is because when the sample size is large
the sampling distribution of a parameter is approx-
imately normally distributed. When the sample size
is small, usually taken as less than 30, the tech-
niques used for estimating the population parameters
in Section 43.4 become more and more inaccurate as
the sample size becomes smaller, since the sampling
distribution no longer approximates to a normal dis-
tribution. Investigations were carried out into the
effect of small sample sizes on the estimation the-
ory by W. S. Gosset in the early twentieth century
and, as a result of his work, tables are available
which enable a realistic estimate to be made, when
sample sizes are small. In these tables, the t-value
is determined from the relationship

t D 
x � ��

s

p
N� 1

where x is the mean value of a sample, � is the
mean value of the population from which the sample
is drawn, s is the standard deviation of the sample
and N is the number of independent observations
in the sample. He published his findings under the
pen name of ‘Student’, and these tables are often
referred to as the ‘Student’s t distribution’.
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Part 8 Differential Calculus

44

Introduction to differentiation

44.1 Introduction to calculus

Calculus is a branch of mathematics involving or
leading to calculations dealing with continuously
varying functions.
Calculus is a subject that falls into two parts:

(i) differential calculus (or differentiation) and
(ii) integral calculus (or integration).

Differentiation is used in calculations involving
velocity and acceleration, rates of change and max-
imum and minimum values of curves.

44.2 Functional notation

In an equation such as y D 3x2 C2x�5, y is said to
be a function of x and may be written as y D f�x�.

An equation written in the form
f�x� D 3x2 C 2x� 5 is termed functional notation.
The value of f�x� when x D 0 is denoted by f�0�,
and the value of f�x� when x D 2 is denoted by f�2�
and so on. Thus when f�x� D 3x2 C 2x � 5, then

f�0� D 3�0�2 C 2�0�� 5 D �5

and f�2� D 3�2�2 C 2�2�� 5 D 11 and so on.

Problem 1. If f�x� D 4x2 � 3x C 2 find:
f�0�, f�3�, f��1� and f�3�� f��1�

f�x� D 4x2 � 3x C 2

f�0� D 4�0�2 � 3�0�C 2 D 2

f�3� D 4�3�2 � 3�3�C 2

D 36 � 9 C 2 D 29

f��1� D 4��1�2 � 3��1�C 2

D 4 C 3 C 2 D 9

f�3�� f��1� D 29 � 9 D 20

Problem 2. Given that f�x� D 5x2 C x � 7
determine:

(i) f�2�ł f�1� (iii) f�3 C a�� f�3�

(ii) f�3 C a� (iv)
f�3 C a�� f�3�

a

f�x� D 5x2 C x � 7

(i) f�2� D 5�2�2 C 2 � 7 D 15

f�1� D 5�1�2 C 1 � 7 D �1

f�2�ł f�1� D 15

�1
D −15

(ii) f�3 C a� D 5�3 C a�2 C �3 C a�� 7

D 5�9 C 6aC a2�C �3 C a�� 7

D 45 C 30aC 5a2 C 3 C a� 7

D 41Y 31a Y 5a2

(iii) f�3� D 5�3�2 C 3 � 7 D 41

f�3 C a�� f�3� D �41 C 31aC 5a2�� �41�

D 31a Y 5a2

(iv)
f�3 C a�� f�3�

a
D 31aC 5a2

a
D 31Y 5a
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45

Methods of differentiation

45.1 Differentiation of common
functions

The standard derivatives summarised below were
derived in Chapter 44 and are true for all real values
of x.

y or f�x�
dy

dx
or f0�x�

axn anxn�1

sin ax a cos ax
cos ax �a sin ax
eax aeax

ln ax
1

x

The differential coefficient of a sum or difference
is the sum or difference of the differential coeffi-
cients of the separate terms.
Thus, if f�x� D p�x�C q�x�� r�x�, (where f, p, q
and r are functions), then f0�x� D p0�x�Cq0�x�–r0�x�
Differentiation of common functions is demon-
strated in the following worked problems.

Problem 1. Find the differential coefficients

of: (a) y D 12x3 (b) y D 12

x3

If y D axn then
dy

dx
D anxn�1

(a) Since y D 12x3, a D 12 and n D 3 thus
dy

dx
D �12��3�x3�1 D 36x2

(b) y D 12

x3
is rewritten in the standard axn form

as y D 12x�3 and in the general rule a D 12
and n D �3

Thus
dy

dx
D �12���3�x�3�1

D �36x�4 D −
36
x4

Problem 2. Differentiate: (a) y D 6
(b) y D 6x

(a) y D 6 may be written as y D 6x0, i.e. in the
general rule a D 6 and n D 0.

Hence
dy

dx
D �6��0�x0�1 D 0

In general, the differential coefficient of a
constant is always zero.

(b) Since y D 6x, in the general rule a D 6 and
n D 1

Hence
dy

dx
D �6��1�x1�1 D 6x0 D 6

In general, the differential coefficient of kx,
where k is a constant, is always k.

Problem 3. Find the derivatives of:

(a) y D 3
p
x (b) y D 5

3
p
x4

(a) y D 3
p
x is rewritten in the standard differen-

tial form as y D 3x1/2

In the general rule, a D 3 and n D 1

2

Thus
dy

dx
D �3�

(
1

2

)
x

1
2 �1 D 3

2
x� 1

2

D 3

2x1/2
D 3

2
p

x

(b) y D 5
3

p
x4

D 5

x4/3
D 5x�4/3 in the standard

differential form.

In the general rule, a D 5 and n D �4

3

Thus
dy

dx
D �5�

(
�4

3

)
x��4/3��1

D �20

3
x�7/3 D �20

3x7/3
D −20

3 3
p

x7
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Problem 4. Differentiate:

y D 5x4 C 4x � 1

2x2
C 1p

x
� 3 with respect

to x

y D 5x4 C 4x � 1

2x2
C 1p

x
� 3 is rewritten as

y D 5x4 C 4x � 1

2
x�2 C x�1/2 � 3

When differentiating a sum, each term is differenti-
ated in turn.

Thus
dy

dx
D �5��4�x4�1 C �4��1�x1�1 � 1

2
��2�x�2�1

C �1�
(

�1

2

)
x��1/2��1 � 0

D 20x3 C 4 C x�3 � 1

2
x�3/2

i.e
dy
dx

= 20x3 Y 4 − 1
x3

− 1

2
p

x3

Problem 5. Find the differential coefficients
of: (a) y D 3 sin 4x (b) f�t� D 2 cos 3t with
respect to the variable

(a) When y D 3 sin 4x then
dy

dx
D �3��4 cos 4x�

D 12 cos 4x

(b) When f�t� D 2 cos 3t then
f0�t� D �2���3 sin 3t� D −6 sin 3t

Problem 6. Determine the derivatives of:

(a) y D 3e5x (b) f��� D 2

e3�
(c) y D 6 ln 2x

(a) When y D 3e5x then
dy

dx
D �3��5�e5x

D 15e5x

(b) f��� D 2

e3�
D 2e�3� , thus

f0��� D �2���3�e�3� D �6e�3� D −6
e3q

(c) When y D 6 ln 2x then
dy

dx
D 6

(
1

x

)
D 6

x

Problem 7. Find the gradient of the curve
y D 3x4 � 2x2 C 5x � 2 at the points (0, �2)
and (1, 4)

The gradient of a curve at a given point is given
by the corresponding value of the derivative. Thus,
since y D 3x4 � 2x2 C 5x � 2 then the

gradient D dy

dx
D 12x3 � 4x C 5

At the point (0, �2), x D 0.
Thus the gradient D 12�0�3 � 4�0�C 5 D 5

At the point (1, 4), x D 1.
Thus the gradient D 12�1�3 � 4�1�C 5 D 13

Problem 8. Determine the co-ordinates of
the point on the graph y D 3x2 � 7x C 2
where the gradient is �1

The gradient of the curve is given by the derivative.

When y D 3x2 � 7x C 2 then
dy

dx
D 6x � 7

Since the gradient is �1 then 6x � 7 D �1, from
which, x D 1
When x D 1, y D 3�1�2 � 7�1�C 2 D �2
Hence the gradient is −1 at the point (1, −2)

Now try the following exercise

Exercise 153 Further problems on differ-
entiating common functions

In Problems 1 to 6 find the differential coef-
ficients of the given functions with respect to
the variable.

1. (a) 5x5 (b) 2.4x3.5 (c)
1

x[
(a) 25x4 (b) 8.4x2.5 (c) � 1

x2

]

2. (a)
�4

x2
(b) 6 (c) 2x[

(a)
8

x3
(b) 0 (c) 2

]

3. (a) 2
p
x (b) 3 3

p
x5 (c)

4p
x[

(a)
1p
x

(b) 5 3
p
x2 (c) � 2p

x3

]

4. (a)
�3

3
p
x

(b) �x � 1�2 (c) 2 sin 3x

[
(a)

1
3

p
x4

(b) 2�x � 1� (c) 6 cos 3x
]
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d

d

Figure 46.3

The acceleration a of the car is defined as the
rate of change of velocity. A velocity/time graph is
shown in Fig. 46.3. If υv is the change in v and υt

the corresponding change in time, then a D υv

υt
. As

υt ! 0, the chord CD becomes a tangent, such that

at point C, the acceleration is given by: a D dv

d t
Hence the acceleration of the car at any instant is

given by the gradient of the velocity/time graph. If
an expression for velocity is known in terms of time
t then the acceleration is obtained by differentiating
the expression.

Acceleration a D dv

d t
.

However, v D dx

d t

Hence a D d

d t

(
dx

d t

)
D d2x

dx2

The acceleration is given by the second differential
coefficient of distance x with respect to time t

Summarising, if a body moves a distance x
metres in a time t seconds then:

(i) distance x = f .t/

(ii) velocity v D f ′.t/ or
dx
dt

, which is the gradi-

ent of the distance/time graph

(iii) acceleration a =
dv

dt
= f ′′ or

d2x
d t2

, which

is the gradient of the velocity/time graph.

Problem 5. The distance x metres moved
by a car in a time t seconds is given by:
x D 3t3 � 2t2 C 4t � 1. Determine the
velocity and acceleration when (a) t D 0, and
(b) t D 1.5 s

Distance x D 3t3 � 2t2 C 4t � 1 m.

Velocity v D dx

d t
D 9t2 � 4t C 4 m/s

Acceleration a D d2x

dx2
D 18t � 4 m/s2

(a) When time t D 0,
velocity v D 9�0�2 � 4�0�C 4 D 4 m=s
and acceleration a D 18�0� � 4 D −4 m=s2

(i.e. a deceleration)

(b) When time t D 1.5 s,
velocity v D 9�1.5�2 �4�1.5�C4 D 18.25 m=s
and acceleration a D 18�1.5�� 4 D 23 m=s2

Problem 6. Supplies are dropped from a
helicopter and the distance fallen in a time t
seconds is given by: x D 1

2gt
2, where

g D 9.8 m/s2. Determine the velocity and
acceleration of the supplies after it has fallen
for 2 seconds

Distance x D 1

2
gt2 D 1

2
�9.8�t2 D 4.9t2m

Velocity v D dv

d t
D 9.8 t m/s

and acceleration a D d2x

dx2
D 9.8 m/s2

When time t D 2 s,
velocity v D �9.8��2� D 19.6 m=s
and acceleration a = 9.8 m=s2 (which is accelera-
tion due to gravity).

Problem 7. The distance x metres travelled
by a vehicle in time t seconds after the
brakes are applied is given by:

x D 20t � 5

3
t2. Determine (a) the speed of

the vehicle (in km/h) at the instant the brakes
are applied, and (b) the distance the car
travels before it stops

(a) Distance, x D 20t � 5

3
t2.

Hence velocity v D dx

d t
D 20 � 10

3
t

At the instant the brakes are applied, time D 0

Hence

velocity v D 20 m/s D 20 ð 60 ð 60

1000
km/h

D 72 km=h
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Let the dimensions of the rectangle be x and y. Then
the perimeter of the rectangle is (2x C 2y). Hence
2x C 2y D 40, or x C y D 20 (1)
Since the rectangle is to enclose the maximum
possible area, a formula for area A must be obtained
in terms of one variable only.
Area A D xy. From equation (1), x D 20 � y

Hence, area A D �20 � y�y D 20y � y2

dA

dy
D 20 � 2y D 0 for a turning point, from which,

y D 10 cm.

d2A

dy2
D �2, which is negative, giving a maximum

point.
When y D 10 cm, x D 10 cm, from equation (1).
Hence the length and breadth of the rectangle
are each 10 cm, i.e. a square gives the maximum
possible area. When the perimeter of a rectangle
is 40 cm, the maximum possible area is 10 ð 10 D
100 cm2.

Problem 16. A rectangular sheet of metal
having dimensions 20 cm by 12 cm has
squares removed from each of the four
corners and the sides bent upwards to form
an open box. Determine the maximum
possible volume of the box

The squares to be removed from each corner are
shown in Fig. 46.8, having sides x cm. When the
sides are bent upwards the dimensions of the box
will be: length (20 � 2x) cm, breadth (12 � 2x) cm
and height, x cm.

xx

x

x

x

x

xx

20 cm

(20−2x)12 cm
(12−2x)

Figure 46.8

Volume of box, V D �20 � 2x��12 � 2x��x�
D 240x � 64x2 C 4x3

dV

dx
D 240 � 128 x C 12x2 D 0 for a turning point.

Hence 4�60�32xC3x2� D 0, i.e. 3x2�32xC60 D 0

Using the quadratic formula,

x D 32 š
√
��32�2 � 4�3��60�

2�3�
D 8.239 cm or 2.427 cm.

Since the breadth is (12 � 2x) cm then
x D 8.239 cm is not possible and is neglected.
Hence x D 2.427 cm.

d2V

dx2
D �128 C 24x.

When x D 2.427,
d2V

dx2
is negative, giving a maxi-

mum value.
The dimensions of the box are:
length D 20 � 2�2.427� D 15.146 cm,
breadth D 12 � 2�2.427� D 7.146 cm, and
height D 2.427 cm.

Maximum volume D �15.146��7.146��2.427�

D 262.7 cm3

Problem 17. Determine the height and
radius of a cylinder of volume 200 cm3

which has the least surface area

Let the cylinder have radius r and perpendicular
height h.

Volume of cylinder, V D �r2h D 200 �1�

Surface area of cylinder, A D 2�rh C 2�r2

Least surface area means minimum surface area
and a formula for the surface area in terms of one
variable only is required.

From equation (1), h D 200

�r2
(2)

Hence surface area,

A D 2�r
(

200

�r2

)
C 2�r2

D 400

r
C 2�r2 D 400r�1 C 2�r2

dA

dr
D �400

r2
C 4�r D 0, for a turning point.

Hence 4�r D 400

r2

and r3 D 400

4�
,

from which, r D 3

√
100

�
D 3.169 cm.

d2A

dr2
D 800

r3
C 4�.
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7.
∫ 1

0
2 tan2 2t d t [�4.185]

8.
∫ �/3

�/6
cot2 
 d
 [0.3156]

49.3 Worked problems on powers of
sines and cosines

Problem 5. Determine:
∫

sin5 
 d


Since cos2 
C sin2 
 D 1 then sin2 
 D �1 � cos2 
�.

Hence
∫

sin5 
 d


D
∫

sin 
�sin2 
�2 d
 D
∫

sin 
�1 � cos2 
�2 d


D
∫

sin 
�1 � 2 cos2 
 C cos4 
� d


D
∫
�sin 
 � 2 sin 
 cos2 
 C sin 
 cos4 
� d


D −cosqY
2cos3q

3
− cos5q

5
Y c

[Whenever a power of a cosine is multiplied by a
sine of power 1, or vice-versa, the integral may be
determined by inspection as shown.

In general,
∫

cosn 
 sin 
 d
 D � cosnC1 


�nC 1�
C c

and
∫

sinn 
 cos 
 d
 D sinnC1 


�nC 1�
C c]

Alternatively, an algebraic substitution may be used
as shown in Problem 6, chapter 50, page 415].

Problem 6. Evaluate:
∫ �

2

0
sin2 x cos3 x dx

∫ �
2

0
sin2 x cos3 x dx D

∫ �
2

0
sin2 x cos2 x cos x dx

D
∫ �

2

0
�sin2 x��1 � sin2 x��cos x� dx

D
∫ �

2

0
�sin2 x cos x � sin4 x cos x� dx

D
[

sin3 x

3
� sin5 x

5

]�
2

0

D



(

sin
�

2

)3

3
�
(

sin
�

2

)5

5


� [0 � 0]

D 1

3
� 1

5
D 2

15
or 0.1333

Problem 7. Evaluate:
∫ �

4

0
4 cos4 
 d
,

correct to 4 significant figures

∫ �
4

0
4 cos4 
 d
 D 4

∫ �
4

0
�cos2 
�2 d


D 4
∫ �

4

0

[
1

2
�1 C cos 2
�

]2

d


D
∫ �

4

0
�1 C 2 cos 2
 C cos2 2
� d


D
∫ �

4

0

[
1 C 2 cos 2
 C 1

2
�1 C cos 4
�

]
d


D
∫ �

4

0

(
3

2
C 2 cos 2
 C 1

2
cos 4


)
d


D
[

3


2
C sin 2
 C sin 4


8

]�
4

0

D
[

3

2

(�
4

)
C sin

2�

4
C sin 4��/4�

8

]
� [0]

D 3�

8
C 1

D 2.178, correct to 4 significant figures.

Problem 8. Find:
∫

sin2 t cos4 t d t
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5. Evaluate:
∫ 4

0

1p
16 � x2

dx

[�
2

or 1.571
]

6. Evaluate:
∫ 1

0

√
9 � 4x2 dx [2.760]

49.6 Worked problems on integration
using the tan q substitution

Problem 17. Determine:
∫

1

�a2 C x2�
dx

Let x D a tan 
 then
dx

d

D a sec2 
 and

dx D a sec2 
d


Hence
∫

1

�a2 C x2�
dx

D
∫

1

�a2 C a2 tan2 
�
�a sec2 
 d
�

D
∫

a sec2 
 d


a2�1 C tan2 
�

D
∫
a sec2 
 d


a2 sec2 

, since 1 C tan2 
 D sec2 


D
∫

1

a
d
 D 1

a
�
�C c

Since x D a tan 
, 
 D tan�1 x

a

Hence
∫

1
.a2 Y x2/

dx =
1
a

tan−1 x
a
Y c

Problem 18. Evaluate:
∫ 2

0

1

�4 C x2�
dx

From Problem 17,
∫ 2

0

1

�4 C x2�
dx

D 1

2

[
tan�1 x

2

]2
0

since a D 2

D 1

2
�tan�1 1 � tan�1 0� D 1

2

(�
4

� 0
)

D p

8
or 0.3927

Problem 19. Evaluate:
∫ 1

0

5

�3 C 2x2�
dx,

correct to 4 decimal places

∫ 1

0

5

�3 C 2x2�
dx D

∫ 1

0

5

2[�3/2�C x2]
dx

D 5

2

∫ 1

0

1

[
p

3/2]2 C x2
dx

D 5

2

[
1p
3/2

tan�1 xp
3/2

]1

0

D 5

2

√
2

3

[
tan�1

√
2

3
� tan�1 0

]

D �2.0412�[0.6847 � 0]

D 1.3976, correct to 4 decimal places.

Now try the following exercise

Exercise 172 Further problems on inte-
gration using the tan q sub-
stitution

1. Determine:
∫

3

4 C t2
d t

[
3

2
tan�1 x

2
C c

]

2. Determine:
∫

5

16 C 9
2
d


[
5

12
tan�1 3


4
C c

]

3. Evaluate:
∫ 1

0

3

1 C t2
d t [2.356]

4. Evaluate:
∫ 3

0

5

4 C x2
dx [2.457]
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1.
∫
xe2x dx

[
e2x

2

(
x � 1

2

)
C c

]

2.
∫

4x

e3x
dx

[
�4

3
e�3x

(
x C 1

3

)
C c

]

3.
∫
x sin x dx [�x cos x C sin x C c]

4.
∫

5� cos 2� d�[
5

2

(
� sin 2� C 1

2
cos 2�

)
C c

]

5.
∫

3t2e2t d t

[
3

2
e2t
(
t2 � t C 1

2

)
C c

]

Evaluate the integrals in Problems 6 to 9,
correct to 4 significant figures.

6.
∫ 2

0
2xex dx [16.78]

7.
∫ 


4

0
x sin 2x dx [0.2500]

8.
∫ 


2

0
t2 cos t d t [0.4674]

9.
∫ 2

1
3x2e

x
2 dx [15.78]

52.3 Further worked problems on
integration by parts

Problem 6. Find:
∫
x ln x dx

The logarithmic function is chosen as the ‘u part’

Thus when u D ln x, then
du

dx
D 1

x
, i.e. du D dx

x

Letting dv D x dx gives v D
∫
x dx D x2

2
Substituting into

∫
u dv D uv � ∫ v du gives:∫

x ln x dx D �ln x�
(
x2

2

)
�
∫ (

x2

2

)
dx

x

D x2

2
ln x � 1

2

∫
x dx

D x2

2
ln x � 1

2

(
x2

2

)
C c

Hence
∫
x ln x dx=

x2

2

(
ln x − 1

2

)
Y c

or
x2

4
.2 ln x − 1/Y c

Problem 7. Determine:
∫

ln x dx

∫
ln x dx is the same as

∫
�1� ln x dx

Let u D ln x, from which,
du

dx
D 1

x
, i.e. du D dx

x
and let dv D 1 dx, from which, v D ∫

1 dx D x

Substituting into
∫
u dv D uv � ∫ v du gives:∫

ln x dx D �ln x��x��
∫
x

dx

x

D x ln x �
∫

dx D x ln x � x C c

Hence
∫

ln x dx = x.ln x − 1/Y c

Problem 8. Evaluate:
∫ 9

1

p
x ln x dx,

correct to 3 significant figures

Let u D ln x, from which du D dx

x

and let dv D p
x dx D x

1
2 dx, from which,

v D
∫
x

1
2 dx D 2

3
x

3
2

Substituting into
∫
u dv D uv � ∫ v du gives:

∫ p
x ln x dx D �ln x�

(
2

3
x

3
2

)

�
∫ (

2

3
x

3
2

)(
dx

x

)

D 2

3

p
x3 ln x � 2

3

∫
x

1
2 dx

D 2

3

p
x3 ln x � 2

3

(
2

3
x

3
2

)
C c

D 2

3

p
x3

[
ln x � 2

3

]
C c

Hence
∫ 9

1

p
x ln x dx D

[
2

3

p
x3

(
ln x � 2

3

)]9

1
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Problem 4. Use the mid-ordinate rule with
(a) 4 intervals, (b) 8 intervals, to evaluate∫ 3

1

2p
x

dx, correct to 3 decimal places

(a) With 4 intervals, each will have a width of
3 � 1

4
, i.e. 0.5 and the ordinates will occur

at 1.0, 1.5, 2.0, 2.5 and 3.0. Hence the mid-
ordinates y1, y2, y3 and y4 occur at 1.25, 1.75,
2.25 and 2.75

Corresponding values of
2p
x

are shown in the

following table:

x
2p
x

1.25 1.7889

1.75 1.5119

2.25 1.3333

2.75 1.2060

From equation (2):

∫ 3

1

2p
x

dx ³ �0.5�[1.7889 C 1.5119

C 1.3333 C 1.2060]

D 2.920, correct to 3
decimal places

(b) With 8 intervals, each will have a width of
0.25 and the ordinates will occur at 1.00, 1.25,
1.50, 1.75, . . . and thus mid-ordinates at 1.125,
1.375, 1.625, 1.875 . . . . Corresponding values

of
2p
x

are shown in the following table:

x
2p
x

1.125 1.8856

1.375 1.7056

1.625 1.5689

1.875 1.4606

2.125 1.3720

2.375 1.2978

2.625 1.2344

2.875 1.1795

From equation (2):

∫ 3

1

2p
x

dx ³ �0.25�[1.8856 C 1.7056

C 1.5689 C 1.4606 C 1.3720

C 1.2978 C 1.2344 C 1.1795]

D 2.926, correct to 3

decimal places

As previously, the greater the number of intervals
the nearer the result is to the true value of 2.928,
correct to 3 decimal places.

Problem 5. Evaluate
∫ 2.4

0
e�x2/3 dx, correct

to 4 significant figures, using the mid-
ordinate rule with 6 intervals

With 6 intervals each will have a width of
2.4 � 0

6
,

i.e. 0.40 and the ordinates will occur at 0, 0.40, 0.80,
1.20, 1.60, 2.00 and 2.40 and thus mid-ordinates at
0.20, 0.60, 1.00, 1.40, 1.80 and 2.20.

Corresponding values of e�x2/3 are shown in the
following table:

x e
�x2

3

0.20 0.98676

0.60 0.88692

1.00 0.71653

1.40 0.52031

1.80 0.33960

2.20 0.19922

From equation (2):

∫ 2.4

0
e

�x2

3 dx ³ �0.40�[0.98676 C 0.88692

C 0.71653 C 0.52031

C 0.33960 C 0.19922]

D 1.460, correct to 4
significant figures.
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0,
�

18
,
�

9
,
�

6
,

2�

9
,

5�

18
and

�

3

Corresponding values of

√
1 � 1

3
sin2 � are

shown in the table below:

� 0
�

18

�

9

�

6
(or 10°) (or 20°) (or 30°)√

1 � 1

3
sin2 � 1.0000 0.9950 0.9803 0.9574

�
2�

9

5�

18

�

3
(or 40°) (or 50°) (or 60°)√

1 � 1

3
sin2 � 0.9286 0.8969 0.8660

From equation (5):

∫ �
3

0

√
1 � 1

3
sin2 � d�

³ 1

3

( �
18

) [
�1.0000 C 0.8660�C 4�0.9950

C 0.9574 C 0.8969�

C 2�0.9803 C 0.9286�
]

D 1

3

( �
18

)
[1.8660 C 11.3972 C 3.8178]

D 0.994, correct to 3 decimal places.

Problem 8. An alternating current i has the
following values at equal intervals of 2.0
milliseconds:

Time (ms) 0 2.0 4.0 6.0 8.0 10.0 12.0

Current i
(A) 0 3.5 8.2 10.0 7.3 2.0 0

Charge, q, in millicoulombs, is given by
q D ∫ 12.0

0 i d t. Use Simpson’s rule to
determine the approximate charge in the
12 ms period

From equation (5):

Charge, q D
∫ 12.0

0
i d t

³ 1

3
�2.0� [�0 C 0�C 4�3.5 C 10.0

C 2.0�C 2�8.2 C 7.3�]

D 62 mC

Now try the following exercise

Exercise 182 Further problems on Simp-
son’s rule

In Problems 1 to 5, evaluate the definite
integrals using Simpson’s rule, giving the
answers correct to 3 decimal places.

1.
∫ �/2

0

p
sin x dx (Use 6 intervals)

[1.187]

2.
∫ 1.6

0

1

1 C �4
d� (Use 8 intervals)

[1.034]

3.
∫ 1.0

0.2

sin �

�
d� (Use 8 intervals)

[0.747]

4.
∫ �/2

0
x cos x dx (Use 6 intervals)

[0.571]

5.
∫ �/3

0
ex

2
sin 2x dx (Use 10 intervals)

[1.260]

In Problems 6 and 7 evaluate the definite inte-
grals using (a) integration, (b) the trapezoidal
rule, (c) the mid-ordinate rule, (d) Simpson’s
rule. Give answers correct to 3 decimal places.

6.
∫ 4

1

4

x3
dx (Use 6 intervals)

[ (a) 1.875 (b) 2.107
(c) 1.765 (d) 1.916

]

7.
∫ 6

2

1p
2x � 1

dx (Use 8 intervals)

[ (a) 1.585 (b) 1.588
(c) 1.583 (d) 1.585

]
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In Problems 8 and 9 evaluate the definite
integrals using (a) the trapezoidal rule, (b) the
mid-ordinate rule, (c) Simpson’s rule. Use 6
intervals in each case and give answers correct
to 3 decimal places.

8.
∫ 3

0

√
1 C x4 dx

[(a) 10.194 (b) 10.007 (c) 10.070]

9.
∫ 0.7

0.1

1√
1 � y2

dy

[(a) 0.677 (b) 0.674 (c) 0.675]

10. A vehicle starts from rest and its velocity
is measured every second for 8 seconds,
with values as follows:

time t (s) velocity v (ms�1)

0 0
1.0 0.4
2.0 1.0
3.0 1.7
4.0 2.9
5.0 4.1
6.0 6.2
7.0 8.0
8.0 9.4

The distance travelled in 8.0 seconds is
given by

∫ 8.0
0 v d t.

Estimate this distance using Simpson’s
rule, giving the answer correct to 3 sig-
nificant figures. [28.8 m]

11. A pin moves along a straight guide so
that its velocity v (m/s) when it is a dis-
tance x (m) from the beginning of the
guide at time t (s) is given in the table
below:

t (s) v (m/s)

0 0
0.5 0.052
1.0 0.082
1.5 0.125
2.0 0.162
2.5 0.175
3.0 0.186
3.5 0.160
4.0 0

Use Simpson’s rule with 8 intervals to
determine the approximate total distance
travelled by the pin in the 4.0 second
period.

[0.485 m]
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D
(

8 sin
�

4

)
� �8 sin 0�

D 5.657 square units

Problem 8. Determine the area bounded by
the curve y D 3et/4, the t-axis and ordinates
t D �1 and t D 4, correct to 4 significant
figures

A table of values is produced as shown.

t �1 0 1 2 3 4
y D 3et/4 2.34 3.0 3.85 4.95 6.35 8.15

Since all the values of y are positive the area
required is wholly above the t-axis.

Hence area D
∫ 4

1
y d t

D
∫ 4

1
3et/4 d t D

[
3( 1
4

)et/4
]4

�1

D 12[et/4]4
�1 D 12�e1 � e�1/4�

D 12�2.7183 � 0.7788�

D 12�1.9395� D 23.27 square units

Problem 9. Sketch the curve y D x2 C 5
between x D �1 and x D 4. Find the area
enclosed by the curve, the x-axis and the
ordinates x D 0 and x D 3. Determine also,
by integration, the area enclosed by the curve
and the y-axis, between the same limits

A table of values is produced and the curve
y D x2 C 5 plotted as shown in Fig. 54.9.

x �1 0 1 2 3
y 6 5 6 9 14

Shaded area D
∫ 3

0
y dx D

∫ 3

0
�x2 C 5� dx

D
[
x3

3
C 5x

]3

0

D 24 square units

When x D 3, y D 32 C 5 D 14, and when x D 0,
y D 5.

5

0 1 2 3 4 x

10

14
15

20

y

y = x 2 + 5A

C

QP

B

−1

Figure 54.9

Since y D x2 C 5 then x2 D y � 5 and
x D p

y � 5
The area enclosed by the curve y D x2 C 5 (i.e.

x D p
y � 5�, the y-axis and the ordinates y D 5

and y D 14 (i.e. area ABC of Fig. 54.9) is given by:

Area D
∫ yD14

yD5
x dy D

∫ 14

5

√
y � 5 dy

D
∫ 14

5
�y � 5�1/2 dy

Let u D y � 5, then
du

dy
D 1 and dy D du

Hence
∫
�y � 5�1/2 dy D

∫
u1/2 du D 2

3
u3/2 (for

algebraic substitutions, see Chapter 48)
Since u D y � 5 then

∫ 14

5

√
y � 5 dy D 2

3
[�y � 5�3/2]14

5

D 2

3
[
p

93 � 0]

D 18 square units

(Check: From Fig. 54.9, area BCPQ C area ABC
D 24 C 18 D 42 square units, which is the area
of rectangle ABQP.)

Problem 10. Determine the area between
the curve y D x3 � 2x2 � 8x and the x-axis

y D x3 � 2x2 � 8x D x�x2 � 2x � 8�

D x�x C 2��x � 4�

When y D 0, then x D 0 or �x C 2� D 0 or
�x�4� D 0, i.e. when y D 0, x D 0 or �2 or 4, which
means that the curve crosses the x-axis at 0, �2 and
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MEAN AND ROOT MEAN SQUARE VALUES 459

3. The speed v of a vehicle is given by:
v D �4t C 3� m/s, where t is the time in
seconds. Determine the average value of
the speed from t D 0 to t D 3 s. [9 m/s]

4. Find the mean value of the curve
y D 6Cx�x2 which lies above the x-axis
by using an approximate method. Check
the result using integration. [4.17]

5. The vertical height h km of a missile
varies with the horizontal distance d km,
and is given by h D 4d � d2. Determine
the mean height of the missile from d D 0
to d D 4 km. [2.67 km]

6. The velocity v of a piston moving with
simple harmonic motion at any time t
is given by: v D c sinωt, where c is
a constant. Determine the mean velocity

between t D 0 and t D 	

ω
.

[
2c

	

]

55.2 Root mean square values

The root mean square value of a quantity is ‘the
square root of the mean value of the squared values
of the quantity’ taken over an interval. With refer-
ence to Fig. 53.1, the r.m.s. value of y D f�x� over
the range x D a to x D b is given by:

r.m.s. value D
√

1

b� a

∫ b

a
y2 dx

One of the principal applications of r.m.s. values is
with alternating currents and voltages. The r.m.s.
value of an alternating current is defined as that
current which will give the same heating effect as
the equivalent direct current.

Problem 5. Determine the r.m.s. value of
y D 2x2 between x D 1 and x D 4

R.m.s. value

D
√

1

4 � 1

∫ 4

1
y2 dx D

√
1

3

∫ 4

1
�2x2�2 dx

D
√

1

3

∫ 4

1
4x4 dx D

√
4

3

[
x5

5

]4

1

D
√

4

15
�1024 � 1� D

p
272.8 D 16.5

Problem 6. A sinusoidal voltage has a
maximum value of 100 V. Calculate its
r.m.s. value

A sinusoidal voltage v having a maximum value of
10 V may be written as: v D 10 sin �. Over the range
� D 0 to � D 	,

r.m.s. value

D
√

1

	 � 0

∫ 	

0
v2 d�

D
√

1

	

∫ 	

0
�100 sin ��2 d�

D
√

10 000

	

∫ 	

0
sin2 � d�

which is not a ‘standard’ integral. It is shown in
Chapter 26 that cos 2A D 1 � 2 sin2 A and this for-
mula is used whenever sin2 A needs to be integrated.

Rearranging cos 2A D 1 � 2 sin2 A gives
sin2 A D 1

2 �1 � cos 2A�

Hence

√
10 000

	

∫ 	

0
sin2 � d�

D
√

10 000

	

∫ 	

0

1

2
�1 � cos 2�� d�

D
√

10 000

	

1

2

[
� � sin 2�

2

]	
0

D
√

10 000

	

1

2

[(
	� sin 2	

2

)
�
(

0 � sin 0

2

)]

D
√

10 000

	

1

2
[	] D

√
10 000

2

D 100p
2

D 70.71 volts
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D

∫ 5

0
	5x2 � x3� dx

∫ 5

0
	5x � x2� dx

D

[
5x3

3
� x4

4

]5

0[
5x2

2
� x3

3

]5

0

D
625

3
� 625

4
125

2
� 125

3

D
625

12
125

6

D
(

625

12

)(
6

125

)
D 5

2
D 2.5

y D
1

2

∫ 5

0
y2 dx

∫ 5

0
y dx

D
1

2

∫ 5

0
	5x � x2�2 dx

∫ 5

0
	5x � x2� dx

D
1

2

∫ 5

0
	25x2 � 10x3 C x4� dx

125

6

D
1

2

[
25x3

3
� 10x4

4
C x5

5

]5

0
125

6

D
1

2

(
25	125�

3
� 6250

4
C 625

)

125

6

D 2.5

Figure 57.6

Hence the centroid of the area lies at (2.5, 2.5)
(Note from Fig. 57.6 that the curve is symmetrical
about x D 2.5 and thus x could have been deter-
mined ‘on sight’).

Problem 5. Locate the centroid of the area
enclosed by the curve y D 2x2, the y-axis
and ordinates y D 1 and y D 4, correct to 3
decimal places

From Section 57.4,

x D
1

2

∫ 4

1
x2 dy

∫ 4

1
x dy

D
1

2

∫ 4

1

y

2
dy

∫ 4

1

√
y

2
dy

D
1

2

[
y2

4

]4

1[
2y3/2

3
p

2

]4

1

D
15

8
14

3
p

2

D 0.568

and y D

∫ 4

1
xy dy

∫ 4

1
x dy

D

∫ 4

1

√
y

2
	y� dy

14

3
p

2

D

∫ 4

1

y3/2

p
2

dy

14

3
p

2

D

1p
2


y5/2

5

2




4

1
14

3
p

2

D
2

5
p

2
	31�

14

3
p

2

D 2.657

Hence the position of the centroid is at
(0.568, 2.657)

Problem 6. Locate the position of the
centroid enclosed by the curves y D x2 and
y2 D 8x

Figure 57.7 shows the two curves intersecting at
(0, 0) and (2, 4). These are the same curves as
used in Problem 12, Chapter 54, where the shaded
area was calculated as 2 2

3 square units. Let the co-
ordinates of centroid C be x and y.
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By integration, x D

∫ 2

0
xy dx

∫ 2

0
y dx

y

y = x2
y2 = 8x
(or y = √8x)

y

y

4

3

2

1

0 1 2 x

C

x2

2

Figure 57.7

The value of y is given by the height of the typical
strip shown in Fig. 55.7, i.e. y D p

8x� x2. Hence,

x D

∫ 2

0
x
(p

8x � x2
)

dx

2
2

3

D

∫ 2

0
	
p

8 x3/2 � x3�

2
2

3

D


p

8
x5/2

5

2

� x4

4




2

0

2
2

3

D




p
8

p
25

5

2

� 4

2
2

3




D
2

2

5

2
2

3

D 0.9

Care needs to be taken when finding y in such
examples as this. From Fig. 57.7, y D p

8x�x2 and
y

2
D 1

2
(
p

8x�x2). The perpendicular distance from

centroid C of the strip to Ox is
1

2
	
p

8x � x2�C x2.

Taking moments about Ox gives:

(total area) 	y�D ∑xD2
xD0 (area of strip) (perpendicu-

lar distance of centroid of strip to Ox)

Hence (area) 	y�

D
∫ [p

8x � x2
] [1

2
	
p

8x � x2�C x2
]

dx

i.e.
(

2
2

3

)
	y� D

∫ 2

0

[p
8x � x2

](p
8x

2
C x2

2

)
dx

D
∫ 2

0

(
8x

2
� x4

2

)
dx D

[
8x2

4
� x5

10

]2

0

D
(

8 � 3
1

5

)
� 	0� D 4

4

5

Hence y D
4

4

5

2
2

3

D 1.8

Thus the position of the centroid of the shaded
area in Fig. 55.7 is at (0.9, 1.8)

Now try the following exercise

Exercise 191 Further problems on cen-
troids of simple shapes

1. Determine the position of the centroid of
a sheet of metal formed by the curve
y D 4x � x2 which lies above the x-axis.

[(2, 1.6)]

2. Find the coordinates of the centroid of the
area that lies between the curve

y

x
D x�2

and the x-axis. [(1, �0.4)]

3. Determine the coordinates of the centroid
of the area formed between the curve
y D 9 � x2 and the x-axis. [(0, 3.6)]

4. Determine the centroid of the area lying
between y D 4x2, the y-axis and the
ordinates y D 0 and y D 4.

[(0.375, 2.40]

5. Find the position of the centroid of the
area enclosed by the curve y D p

5x, the
x-axis and the ordinate x D 5.

[(3.0, 1.875)]

6. Sketch the curve y2 D 9x between the
limits x D 0 and x D 4. Determine the
position of the centroid of this area.

[(2.4, 0)]
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SECOND MOMENTS OF AREA 479

Problem 7. Determine the second moment
of area and radius of gyration of a
rectangular lamina of length 40 mm and
width 15 mm about an axis through one
corner, perpendicular to the plane of the
lamina

The lamina is shown in Fig. 58.11.

Figure 58.11

From the perpendicular axis theorem:

IZZ D IXX C IYY

IXX D lb3

3
D �40
�15
3

3
D 45 000 mm4

and IYY D bl3

3
D �15
�40
3

3
D 320 000 mm4

Hence IZZ D 45 000 C 320 000

D 365 000 mm4 or 36.5 cm4

Radius of gyration,

kZZ D
√

IZZ
area

D
√

365 000

�40
�15


D 24.7 mm or 2.47 cm

Now try the following exercise

Exercise 193 Further problems on second
moments of area of regular
sections

1. Determine the second moment of area and
radius of gyration for the rectangle shown
in Fig. 58.12 about (a) axis AA (b) axis
BB, and (c) axis CC.


(a) 72 cm4, 1.73 cm

(b) 128 cm4, 2.31 cm

(c) 512 cm4, 4.62 cm




Figure 58.12

2. Determine the second moment of area and
radius of gyration for the triangle shown
in Fig. 58.13 about (a) axis DD (b) axis
EE, and (c) an axis through the centroid
of the triangle parallel to axis DD.

 �a
 729 mm4, 3.67 mm
�b
 2187 mm4, 6.36 mm
�c
 243 mm4, 2.12 mm




E E

D D
12.0 cm

9.0 cm

Figure 58.13

3. For the circle shown in Fig. 58.14, find
the second moment of area and radius
of gyration about (a) axis FF, and (b)
axis HH. [

�a
 201 cm4, 2.0 cm
�b
 1005 cm4, 4.47 cm

]

Figure 58.14

4. For the semicircle shown in Fig. 58.15,
find the second moment of area and radius
of gyration about axis JJ.

[3927 mm4, 5.0 mm]

Figure 58.15
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480 ENGINEERING MATHEMATICS

5. For each of the areas shown in Fig. 58.16
determine the second moment of area and
radius of gyration about axis LL, by using
the parallel axis theorem.


�a
 335 cm4, 4.73 cm

�b
 22 030 cm4, 14.3 cm

�c
 628 cm4, 7.07 cm




L L

5.0 cm

3.0 cm

2.0 cm 10 cm

(a) (b) (c)

15 cm 15 cm

5 cm18 cm

Dia=4.0 cm

Figure 58.16

6. Calculate the radius of gyration of a rect-
angular door 2.0 m high by 1.5 m wide
about a vertical axis through its hinge.

[0.866 m]

7. A circular door of a boiler is hinged
so that it turns about a tangent. If its
diameter is 1.0 m, determine its second
moment of area and radius of gyration
about the hinge.

[0.245 m4, 0.559 m]

8. A circular cover, centre 0, has a radius
of 12.0 cm. A hole of radius 4.0 cm and
centre X, where OX D 6.0 cm, is cut in
the cover. Determine the second moment
of area and the radius of gyration of
the remainder about a diameter through
0 perpendicular to OX.

[14 280 cm4, 5.96 cm]

58.7 Worked problems on second
moments of areas of composite
areas

Problem 8. Determine correct to 3
significant figures, the second moment of
area about axis XX for the composite area
shown in Fig. 58.17

X X
1.0 cm

8.0 cm

6.0 cm
TT

2.0 cm

CT

4.0
 cm

1.0 cm

2.0 cm

Figure 58.17

For the semicircle, IXX D �r4

8
D ��4.0
4

8
D 100.5 cm4

For the rectangle, IXX D bl3

3
D �6.0
�8.0
3

3
D 1024 cm4

For the triangle, about axis TT through centroid CT,

ITT D bh3

36
D �10
�6.0
3

36
D 60 cm4

By the parallel axis theorem, the second moment of
area of the triangle about axis XX

D 60 C [ 1
2 �10
�6.0


] [
8.0 C 1

3 �6.0

]2 D 3060 cm4.

Total second moment of area about XX
D 100.5 C 1024 C 3060 D 4184.5 D 4180 cm4,
correct to 3 significant figures

Problem 9. Determine the second moment
of area and the radius of gyration about axis
XX for the I-section shown in Fig. 58.18

Figure 58.18

Preview from Notesale.co.uk

Page 492 of 543



Part 10 Further Number and
Algebra

59

Boolean algebra and logic circuits

59.1 Boolean algebra and switching
circuits

A two-state device is one whose basic elements can
only have one of two conditions. Thus, two-way
switches, which can either be on or off, and the
binary numbering system, having the digits 0 and
1 only, are two-state devices. In Boolean algebra,
if A represents one state, then A, called ‘not-A’,
represents the second state.

The or-function

In Boolean algebra, the or-function for two elements
A and B is written as ACB, and is defined as ‘A, or
B, or both A and B’. The equivalent electrical circuit
for a two-input or-function is given by two switches
connected in parallel. With reference to Fig. 59.1(a),
the lamp will be on when A is on, when B is on,
or when both A and B are on. In the table shown
in Fig. 59.1(b), all the possible switch combinations
are shown in columns 1 and 2, in which a 0 repre-
sents a switch being off and a 1 represents the switch
being on, these columns being called the inputs. Col-
umn 3 is called the output and a 0 represents the
lamp being off and a 1 represents the lamp being
on. Such a table is called a truth table.

The and-function

In Boolean algebra, the and-function for two ele-
ments A and B is written as A Ð B and is defined as
‘both A and B’. The equivalent electrical circuit for

a two-input and-function is given by two switches
connected in series. With reference to Fig. 59.2(a)
the lamp will be on only when both A and B are
on. The truth table for a two-input and-function is
shown in Fig. 59.2(b).

Figure 59.1

Figure 59.2
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Hence the required switching circuit is as shown in
Fig. 59.7. The corresponding truth table is shown in
Table 59.4.

Table 59.4

1 2 3 4 5 6 7 8 9

A B C C A Ð C A A Ð B A Ð B ÐC Z D A ÐCC A Ð BC A Ð B Ð C

0 0 0 1 0 1 0 0 0
0 0 1 0 0 1 0 0 0
0 1 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 1
1 0 0 1 1 0 0 0 1
1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 1
1 1 1 0 0 0 0 0 0

Column 4 is C, i.e. the opposite to column 3

Column 5 is A Ð C, obtained by applying the and-
function to columns 1 and 4

Column 6 is A, the opposite to column 1

Column 7 is A Ð B, obtained by applying the and-
function to columns 2 and 6

Column 8 is A Ð B Ð C, obtained by applying the
and-function to columns 4 and 7

Column 9 is the output, obtained by applying the
or-function to columns 5, 7 and 8

Problem 4. Derive the Boolean expression
and construct the switching circuit for the
truth table given in Table 59.5.

Table 59.5

A B C Z

1 0 0 0 1
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 1
7 1 1 0 0
8 1 1 1 0

Examination of the truth table shown in Table 59.5
shows that there is a 1 output in the Z-column in
rows 1, 3, 4 and 6. Thus, the Boolean expression

and switching circuit should be such that a 1 output
is obtained for row 1 or row 3 or row 4 or row 6.
In row 1, A is 0 and B is 0 and C is 0 and this
corresponds to the Boolean expression A Ð B Ð C. In
row 3, A is 0 and B is 1 and C is 0, i.e. the Boolean
expression in A Ð B Ð C. Similarly in rows 4 and 6,
the Boolean expressions are A Ð B Ð C and A Ð B Ð C
respectively. Hence the Boolean expression is:

Z= A · B · C Y A · B · C

Y A · B · C Y A · B · C

The corresponding switching circuit is shown in
Fig. 59.8. The four terms are joined by or-functions,
�C�, and are represented by four parallel circuits.
Each term has three elements joined by an and-
function, and is represented by three elements con-
nected in series.

Figure 59.8

Now try the following exercise

Exercise 195 Further problems on Boo-
lean algebra and switching
circuits

In Problems 1 to 4, determine the Boolean
expressions and construct truth tables for the
switching circuits given.

1. The circuit shown in Fig. 59.9[
C Ð �A Ð BC A Ð B�;
see Table 59.6, col. 4

]

Figure 59.9
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9. F ÐG ÐHCF ÐG ÐHCF ÐG ÐHCF ÐG ÐH
[G]

10. F ÐG ÐHCF ÐG ÐHCF ÐG ÐHCF ÐG ÐH
[F ÐHCG ÐH]

11. R Ð �P Ð QC P Ð Q�C R Ð �P Ð QC P Ð Q�
[P Ð RC P Ð R]

12. R Ð�P ÐQCP ÐQCP ÐQ�CP Ð�Q ÐRCQ ÐR�
[PC Q Ð R]

59.4 De Morgan’s laws

De Morgan’s laws may be used to simplify not-
functions having two or more elements. The laws
state that:

AC B D A Ð B and A · B = AY B
and may be verified by using a truth table (see
Problem 11). The application of de Morgan’s laws
in simplifying Boolean expressions is shown in
Problems 12 and 13.

Problem 11. Verify that AC B D A Ð B

A Boolean expression may be verified by using a
truth table. In Table 59.9, columns 1 and 2 give all
the possible arrangements of the inputs A and B.
Column 3 is the or-function applied to columns 1
and 2 and column 4 is the not-function applied to
column 3. Columns 5 and 6 are the not-function
applied to columns 1 and 2 respectively and column
7 is the and-function applied to columns 5 and 6.

Table 59.9

1 2 3 4 5 6 7

A B AC B AC B A B A Ð B
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 0

Since columns 4 and 7 have the same pattern of 0’s
and 1’s this verifies that AC B D A Ð B.

Problem 12. Simplify the Boolean
expression �A Ð B�C �AC B� by using de
Morgan’s laws and the rules of Boolean
algebra.

Applying de Morgan’s law to the first term gives:

A Ð B D AC B D AC B since A D A

Applying de Morgan’s law to the second term gives:

AC B D A Ð B D A Ð B
Thus, �A Ð B�C �AC B� D �AC B�C A Ð B
Removing the bracket and reordering gives:
AC A Ð BC B
But, by rule 15, Table 59.8, ACA ÐB D A. It follows
that: AC A Ð B D A

Thus: .A · B/Y .AY B/ = AY B

Problem 13. Simplify the Boolean
expression �A Ð BC C� Ð �AC B ÐC� by using
de Morgan’s laws and the rules of Boolean
algebra.

Applying de Morgan’s laws to the first term gives:

A Ð BC C D A Ð B ÐC D �AC B� Ð C
D �AC B� ÐC D A ÐCC B Ð C

Applying de Morgan’s law to the second term gives:

AC B ÐC D AC �B CC� D AC �B C C�

Thus �A Ð BCC� Ð �AC B ÐC�
D �A ÐCC B ÐC� Ð �AC BCC�

D A Ð A ÐCC A Ð B Ð CC A ÐC ÐC
C A Ð B ÐCC B Ð B ÐCC B Ð C ÐC

But from Table 59.8, AÐA D A and CÐC D BÐB D 0

Hence the Boolean expression becomes:

A ÐCC A Ð B ÐCC A Ð B Ð C
D A ÐC�1 C BC B�

D A ÐC�1 C B�

D A ÐC
Thus: .A · B Y C / · .AY B · C / = A · C
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the techniques introduced in Sections 59.3 to 59.5,
resulting in the cost of the circuit being reduced.
Any of the techniques can be used, and in this case,
the rules of Boolean algebra (see Table 59.8) are
used.

Z D A Ð B ÐCC A Ð B ÐCC A Ð B ÐC
D A Ð [B ÐCC B ÐCC B ÐC]

D A Ð [B ÐCC B�CC C�] D A Ð [B ÐCC B]

D A Ð [BC B ÐC] D A · [B Y C ]

The logic circuit to give this simplified expression
is shown in Fig. 59.26.

Figure 59.26

Problem 23. Simplify the expression:

Z D P Ð Q Ð R Ð SC P Ð Q Ð R Ð SC P Ð Q Ð R Ð S
C P Ð Q Ð R Ð SC P Ð Q Ð R Ð S

and devise a logic circuit to give this output.

Figure 59.27

The given expression is simplified using the Kar-
naugh map techniques introduced in Section 59.5.
Two couples are formed as shown in Fig. 59.27(a)
and the simplified expression becomes:

Z D Q Ð R Ð SC P Ð R
i.e Z = R · .P Y Q · S /

The logic circuit to produce this expression is shown
in Fig. 59.27(b).

Now try the following exercise

Exercise 199 Further problems on logic
circuits

In Problems 1 to 4, devise logic systems
to meet the requirements of the Boolean
expressions given.

1. Z D AC B ÐC
[See Fig. 59.28(a)]

2. Z D A Ð BC B ÐC
[See Fig. 59.28(b)]

3. Z D A Ð B ÐCC A Ð B ÐC
[See Fig. 59.28(c)]

4. Z D �AC B� Ð �CC D�

[See Fig. 59.28(d)]

Figure 59.28

In Problems 5 to 7, simplify the expression
given in the truth table and devise a logic
circuit to meet the requirements stated.
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Following the above procedure:

(i) 3x � 4y � 12 D 0

7x C 5y � 6.5 D 0

(ii)
x∣∣∣�4 �12

5 � 6.5

∣∣∣ D �y∣∣∣ 3 �12
7 � 6.5

∣∣∣ D 1∣∣∣ 3 �4
7 5

∣∣∣
i.e.

x

��4���6.5�� ��12��5�

D �y
�3���6.5�� ��12��7�

D 1

�3��5�� ��4��7�

i.e.
x

26 C 60
D �y

�19.5 C 84
D 1

15 C 28

i.e.
x

86
D �y

64.5
D 1

43

Since
x

86
D 1

43
then x D 86

43
D 2

and since
�y
64.5

D 1

43
then y D �64.5

43
D −1.5

Problem 4. The velocity of a car,
accelerating at uniform acceleration a
between two points, is given by v D uC at,
where u is its velocity when passing the first
point and t is the time taken to pass between
the two points. If v D 21 m/s when t D 3.5 s
and v D 33 m/s when t D 6.1 s, use
determinants to find the values of u and a,
each correct to 4 significant figures.

Substituting the given values in v D uC at gives:

21 D uC 3.5a �1�

33 D uC 6.1a �2�

(i) The equations are written in the form
a1x C b1y C c1 D 0,

i.e. uC 3.5a� 21 D 0

and uC 6.1a� 33 D 0

(ii) The solution is given by

u

Du
D �a
Da

D 1

D
,

where Du is the determinant of coefficients left
when the u column is covered up,

i.e. Du D
∣∣∣ 3.5 �21
6.1 �33

∣∣∣
D �3.5���33�� ��21��6.1�

D 12.6

Similarly, Da D
∣∣∣ 1 �21
1 �33

∣∣∣
D �1���33�� ��21��1�

D �12

and D D
∣∣∣ 1 3.5
1 6.1

∣∣∣
D �1��6.1�� �3.5��1� D 2.6

Thus
u

12.6
D �a

�12
D 1

2.6

i.e. u D 12.6

2.6
D 4.846 m=s

and a D 12

2.6
D 4.615 m=s2,

each correct to 4 significant
figures

Problem 5. Applying Kirchhoff’s laws to
an electric circuit results in the following
equations:

�9 C j12�I1 � �6 C j8�I2 D 5

��6 C j8�I1 C �8 C j3�I2 D �2 C j4�

Solve the equations for I1 and I2.

Following the procedure:

(i) �9 C j12�I1 � �6 C j8�I2 � 5 D 0

��6 C j8�I1 C �8 C j3�I2 � �2 C j4� D 0

(ii)
I1∣∣∣∣��6 C j8� �5

�8 C j3� ��2 C j4�

∣∣∣∣
D �I2∣∣∣∣ �9 C j12� �5

��6 C j8� ��2 C j4�

∣∣∣∣
D 1∣∣∣∣ �9 C j12� ��6 C j8�

��6 C j8� �8 C j3�

∣∣∣∣

Preview from Notesale.co.uk

Page 529 of 543


