Basic Concepts Behind the Binary System

To understand binary numbers, begin by recalling elementary school math. When we first learned about numbers, we were taught that, in the decimal system, things are organized into columns:

```
H | T | O
1 | 9 | 3
```

such that "H" is the hundreds column, "T" is the tens column, and "O" is the ones column. So the number "193" is 1-hundreds plus 9-tens plus 3-ones.

Years later, we learned that the ones column meant 10^{0} , the tens column meant 10^{1} , the hundreds column 10^{2} and so on, such that

```
the number 193 is really \{(1*10^2)+(9*10^1)+(3*10^0)\}.
```

As you know, the decimal system uses the digits 0-9 to represent numbers. If we wanted to put a larger number in column 10ⁿ (e.g., 10) we would have to multiply 10*10ⁿ, which would give 10⁽ⁿ⁺¹⁾, and be satisfied a column to the left. For example, putting ten in the 10⁰ column is impossible solve put a 1 in the 10¹ column, and a 0 in the 10⁶ column, thus using two columns. Twelve would be 12*10⁰, or 10⁶ (2+1), or 10¹+2*10⁰, which also uses an additional column to the left 12.

The binary system works under the exact same principles as the decimal system, only it operates in base 2 rather than base 10. In other words, instead of columns being

```
10^2|10^1|10^0
they are
2^2|2^1|2^0
```

Instead of using the digits 0-9, we only use 0-1 (again, if we used anything larger it would be like multiplying $2*2^n$ and getting 2^n+1 , which would not fit in the 2^n column. Therefore, it would shift you one column to the left. For example, "3" in binary cannot be put into one column. The first column we fill is the right-most column, which is 2^n , or 1. Since 3>1, we need to use an extra column to the left, and indicate it as "11" in binary ($1*2^n$) + ($1*2^n$).

Examples: What would the binary number 1011 be in decimal notation?

Try a few examples of binary addition:

Click here to return to the question

Using the regular algorithm for binary adition, add (5+12) (5+12), (2+2), (2+5), and (12+-12) in each system. Then convert back to decire a unders. Signed Magnitude:

5+12	-5+12	012-5	of 14-2
00000101 0000 1-D r C	10001100 00001100	10001100 01000101	00001100 10001100
00010001	10010001	00010000	10011000
17	-17	16	-24
One' Compleme	ent:		
00000101 00001100	11111010 00001100	11110011 11111010	00001100 11110011
00010001	00000110	11101101	11111111
17	6	-18	0
Two's Compler	nent:		
00000101 00001100	11111011 00001100	11110100 11111011	00001100 11110100
00010001	00000111	11101111	00000000
17	7	-17	0

Signed Magnitude: