$$H_{3}PO_{4} \rightleftharpoons H^{+} + H_{2}PO_{4}^{-} \rightleftharpoons H^{+} + HPO_{4}^{-}$$
 $pH = pKa + log \frac{|A^{-}|}{|HA|}$
 $7 = 6.86 + log \frac{|HPO4^{-}|}{|H2PO4^{-}|}$
 $0.14 = log \frac{|HPO4^{-}|}{|H2PO4^{-}|}$
 $\frac{|HPO4^{-}|}{|H2PO4^{-}|} = 10^{0.14} = 1.38$
 $\frac{|HPO4^{-}|}{|H2PO4^{-}|} = 1.38 |H2PO4^{-}| \longrightarrow 1$
 $\frac{|HPO4^{-}|}{|H2PO4^{-}|} = 50 \text{ mM}$

Substitute by equation 01

 $2.38[H2PO4^{-}] = 50 \text{ mM}$
 $\frac{|HPO4^{-}|}{|H2PO4^{-}|} = 21 \text{ mM}$
 $\frac{|HPO4^{-}|}{|HPO4^{-}|} = 28.99 \text{ mM}$

Amount of $Na_{2}HPO_{4}^{4} = \frac{28.99 \times 0.00 \text{ m/s} \cdot 50}{1000} \times 35.149 = 519.12 \text{ mg}$
 $\frac{|A|}{|A|} = 21 \times 1.001 \times 1.000 \times 1.00$

Results/Observations:

Table 01: Observation for pH of prepared buffers

Sample	Obtained pH
50mM H ₃ PO ₃ /NaOH	2.0
50mM Na ₂ HPO ₄ / NaH ₂ PO ₄	6.9
50mM Glycine/NaOH	10.0

Discussion