Contents

1 Board work		rd work	1
	1.1	Tuesday, 29 September 2015 \ldots	1
	1.2	Wednesday, 30 September 2015	2
	1.3	Thursday, 1 October 2015	3
	1.4	Tuesday, 6 October 2015 \ldots	5
	1.5	Wednesday, 7 October 2015	7
	1.6	Thursday, 8 October 2015	$\overline{7}$
	1.7	Tuesday, 13 October 2015 \ldots	9
	1.8	Wednesday, 14 October 2015	10

Board work 1

1.1

Tuesday, 29 September 2015
For a cluster point every deleted neighter proof actually has infinitely many points of A.

Example. Let $Obc : Custer point of A. Chen there must be a point <math>a \in$ A such that $h \in D_1(0)$. Since $D_{a|}(0)$ s also a deleted neighbourhood ind, here must be a point $e \in A$ such that $b \in D_{|a|}(0)$. Next there must be a point $e \in 0$ with $c \in D_{|b|}(0)$. And so on.

- 2. Sequence. Think of a sequence as a collection of a first term, a second term,..., an n^{th} term,..., ad infinitum.
- 3. Tail. A tail of a sequence is new sequence obtained by removing finitely many initial terms of the given sequence. Thus $x_N, x_{N+1}, x_{N+2}, \ldots$ is a tail of the sequence x_1, x_2, x_3, \ldots
- 4. Finite vs Infinite. Inside vs Outside.

 x_n converges to x if and only if for every $\epsilon > 0$ the number of terms of (x_n) outside $B_{\epsilon}(x)$ is finite. (In which case the number of terms of (x_n) inside $B_{\epsilon}(x)$ will automatically be infinity).

5. Note that (i) \Leftrightarrow (ii) \Leftrightarrow (iii) where

- (i) (x_n) has finitely many terms outside $B_{\epsilon}(x)$,
- (ii) (x_n) has a tail with zero terms outside $B_{\epsilon}(x)$, and
- (iii) (x_n) has a tail with all terms inside $B_{\epsilon}(x)$.

It follows that (x_n) converges to a limit l if and only if given any $\epsilon > 0$ there is a tail of (x_n) with all terms of the tail inside $B_{\epsilon}(l)$.

- 6. It follows that if for some $\epsilon > 0$ the number of terms of (x_n) outside $B_{\epsilon}(x)$ is infinity then x_n cannot converge to x.
- 7. Every convergent sequence is bounded. Assume $x_n \to l$. Then a tail of (x_n) is entirely contained in $B_1(l)$. So every element of the tail is bounded by |l| + 1. What about the terms of the sequence that precede the tail? Are they bounded also? There are only finitely many terms in the sequence (x_n) which do not belong to the tail. Since the maximum of finitely many finite numbers is also finite, we get a microbound for the entire sequence.

1.2

Wednesday, 30 by tember 2014 3 and with the order $a_n \leq b_n \leq c_n$ with $a_n \to l$ and $a_n \to l \text{ and } c_n \to l.$ Then $b_n \to l.$ 1. Sandwich trorem re'

Since $a_n \to l$, there exists n_a such that $l - \epsilon < a_n$ for all $n > n_a$. Since $c_n \to l$, there exists n_c such that $c_n < l + \epsilon$ for all $n > n_c$. Therefore $b_n \in B_{\epsilon}(l)$ whenever n greater than both n_a and n_b . (In other words, every $B_{\epsilon}(l)$ contains a tail of (b_n) .)

2. If $a_n \to a$ the $ca_n \to ca$ for every $c \in \mathbb{R}$.

Trivial for c = 0.

For $c \neq 0$ there exists n_0 such that $a_n \in B_{\epsilon/|c|}(a)$ for all $n > n_0$. So $ca_n \in B_{\epsilon}(a)$ for all $n > n_0$. (In other words, an arbitrary neighbourhood of *ca* and contains a tail of the sequence (ca_n) .)

3. $a_n \to a$ and $b_n \to b$ implies that $a_n + b_n \to a + b$.

Given arbitrary $\epsilon > 0$ there exists n_a such that

$$|a-a_n| < \epsilon/2$$
 for all $n > n_a$.