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1 Right Triangle Trigonometry

Trigonometry is the study of the relations between the sides and angles of triangles. The

word “trigonometry” is derived from the Greek words trigono (τρίγωνo), meaning “triangle”,

and metro (µǫτρώ), meaning “measure”. Though the ancient Greeks, such as Hipparchus

and Ptolemy, used trigonometry in their study of astronomy between roughly 150 B.C. - A.D.

200, its history is much older. For example, the Egyptian scribe Ahmes recorded some rudi-

mentary trigonometric calculations (concerning ratios of sides of pyramids) in the famous

Rhind Papyrus sometime around 1650 B.C.1

Trigonometry is distinguished from elementary geometry in part by its extensive use of

certain functions of angles, known as the trigonometric functions. Before discussing those

functions, we will review some basic terminology about angles.

1.1 Angles

Recall the following definitions from elementary geometry:

(a) An angle is acute if it is between 0◦ and 90◦.

(b) An angle is a right angle if it equals 90◦.

(c) An angle is obtuse if it is between 90◦ and 180◦.

(d) An angle is a straight angle if it equals 180◦.

(a) acute angle (b) right angle (c) obtuse angle (d) straight angle

Figure 1.1.1 Types of angles

In elementary geometry, angles are always considered to be positive and not larger than

360◦. For now we will only consider such angles.2 The following definitions will be used

throughout the text:

1Ahmes claimed that he copied the papyrus from a work that may date as far back as 3000 B.C.
2Later in the text we will discuss negative angles and angles larger than 360◦.

1
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4 Chapter 1 • Right Triangle Trigonometry §1.1

A C

B

b

a
c

Figure 1.1.4

In a right triangle, the side opposite the right angle is called the hy-

potenuse, and the other two sides are called its legs. For example, in

Figure 1.1.4 the right angle is C, the hypotenuse is the line segment

AB, which has length c, and BC and AC are the legs, with lengths a

and b, respectively. The hypotenuse is always the longest side of a right

triangle (see Exercise 11).

By knowing the lengths of two sides of a right triangle, the length of

the third side can be determined by using the Pythagorean Theorem:

Theorem 1.1. Pythagorean Theorem: The square of the length of the hypotenuse of a

right triangle is equal to the sum of the squares of the lengths of its legs.

Thus, if a right triangle has a hypotenuse of length c and legs of lengths a and b, as in

Figure 1.1.4, then the Pythagorean Theorem says:

a2 + b2 = c2 (1.1)

Let us prove this. In the right triangle △ABC in Figure 1.1.5(a) below, if we draw a line

segment from the vertex C to the point D on the hypotenuse such that CD is perpendicular

to AB (that is, CD forms a right angle with AB), then this divides △ABC into two smaller

triangles △CBD and △ACD, which are both similar to △ABC.

A C

B

b

a

c

D
d

c−
d

(a) △ABC

C D

B

d
a

(b) △CBD

A D

C

c−d

b

(c) △ACD

Figure 1.1.5 Similar triangles △ABC, △CBD, △ACD

Recall that triangles are similar if their corresponding angles are equal, and that similarity

implies that corresponding sides are proportional. Thus, since △ABC is similar to △CBD,

by proportionality of corresponding sides we see that

AB is to CB (hypotenuses) as BC is to BD (vertical legs) ⇒
c

a
=

a

d
⇒ cd = a2 .

Since △ABC is similar to △ACD, comparing horizontal legs and hypotenuses gives

b

c−d
=

c

b
⇒ b2 = c2 − cd = c2 − a2 ⇒ a2 + b2 = c2 . QED

Note: The symbols ⊥ and ∼ denote perpendicularity and similarity, respectively. For exam-

ple, in the above proof we had CD ⊥ AB and △ABC ∼△CBD ∼△ACD.
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Trigonometric Functions of an Acute Angle • Section 1.2 11

We now know the lengths of all sides of the triangle △ABC, so we have:

cos A =
adjacent

hypotenuse
=

p
5

3
tan A =

opposite

adjacent
=

2
p
5

csc A =
hypotenuse

opposite
=

3

2
sec A =

hypotenuse

adjacent
=

3
p
5

cot A =
adjacent

opposite
=

p
5

2

You may have noticed the connections between the sine and cosine, secant and cosecant,

and tangent and cotangent of the complementary angles in Examples 1.5 and 1.7. General-

izing those examples gives us the following theorem:

Theorem 1.2. Cofunction Theorem: If A and B are the complementary acute angles in a

right triangle △ABC, then the following relations hold:

sin A = cos B sec A = csc B tan A = cot B

sin B = cos A sec B = csc A tan B = cot A

We say that the pairs of functions { sin,cos }, { sec,csc }, and { tan,cot } are cofunctions.

So sine and cosine are cofunctions, secant and cosecant are cofunctions, and tangent and

cotangent are cofunctions. That is how the functions cosine, cosecant, and cotangent got the

“co” in their names. The Cofunction Theorem says that any trigonometric function of an

acute angle is equal to its cofunction of the complementary angle.

Example 1.9

Write each of the following numbers as trigonometric functions of an angle less than 45◦: (a) sin 65◦;
(b) cos 78◦; (c) tan 59◦.

Solution: (a) The complement of 65◦ is 90◦ −65◦ = 25◦ and the cofunction of sin is cos, so by the

Cofunction Theorem we know that sin 65◦ = cos 25◦.
(b) The complement of 78◦ is 90◦−78◦ = 12◦ and the cofunction of cos is sin, so cos 78◦ = sin 12◦.
(c) The complement of 59◦ is 90◦−59◦ = 31◦ and the cofunction of tan is cot, so tan 59◦ = cot 31◦.

a

a
a
p
2

45◦
45◦

(a) 45−45−90

a
p
3

a
2a

30◦

60◦

(b) 30−60−90

Figure 1.2.2 Two general right triangles (any a> 0)

The angles 30◦, 45◦, and 60◦ arise often in applications. We can use the Pythagorean

Theorem to generalize the right triangles in Examples 1.6 and 1.7 and see what any 45−
45−90 and 30−60−90 right triangles look like, as in Figure 1.2.2 above.
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16 Chapter 1 • Right Triangle Trigonometry §1.3

Example 1.15

O
A

B

α

As another application of trigonometry to astronomy, we will find the distance

from the earth to the sun. Let O be the center of the earth, let A be a point

on the equator, and let B represent an object (e.g. a star) in space, as in the

picture on the right. If the earth is positioned in such a way that the angle

∠OAB= 90◦, then we say that the angle α=∠OBA is the equatorial parallax

of the object. The equatorial parallax of the sun has been observed to be ap-

proximately α= 0.00244◦. Use this to estimate the distance from the center of

the earth to the sun.

Solution: Let B be the position of the sun. We want to find the length of OB.

We will use the actual radius of the earth, mentioned at the end of Example

1.14, to get OA = 3956.6 miles. Since ∠OAB= 90◦, we have

OA

OB
= sin α ⇒ OB =

OA

sin α
=

3956.6

sin 0.00244◦
= 92908394 ,

so the distance from the center of the earth to the sun is approximately 93 million miles .

Note: The earth’s orbit around the sun is an ellipse, so the actual distance to the sun varies.

In the above example we used a very small angle (0.00244◦). A degree can be divided into

smaller units: aminute is one-sixtieth of a degree, and a second is one-sixtieth of a minute.

The symbol for a minute is ′ and the symbol for a second is ′′. For example, 4.5◦ = 4◦ 30′. And

4.505◦ = 4◦ 30′ 18′′:

4◦ 30′ 18′′ = 4 +
30

60
+

18

3600
degrees = 4.505◦

In Example 1.15 we used α = 0.00244◦ ≈ 8.8′′, which we mention only because some angle

measurement devices do use minutes and seconds.

Example 1.16

E S

A

B

32′ 4′′

An observer on earth measures an angle of 32′ 4′′ from one visible

edge of the sun to the other (opposite) edge, as in the picture on the

right. Use this to estimate the radius of the sun.

Solution: Let the point E be the earth and let S be the center of

the sun. The observer’s lines of sight to the visible edges of the sun

are tangent lines to the sun’s surface at the points A and B. Thus,

∠EAS =∠EBS = 90◦. The radius of the sun equals AS. Clearly AS =BS. So since EB=EA (why?),

the triangles △EAS and △EBS are similar. Thus, ∠AES =∠BES = 1
2
∠AEB= 1

2
(32′ 4′′)= 16′ 2′′ =

(16/60)+ (2/3600)= 0.26722◦.
Now, ES is the distance from the surface of the earth (where the observer stands) to the cen-

ter of the sun. In Example 1.15 we found the distance from the center of the earth to the sun

to be 92,908,394 miles. Since we treated the sun in that example as a point, then we are justi-

fied in treating that distance as the distance between the centers of the earth and sun. So ES =
92908394− radius of earth= 92908394−3956.6= 92904437.4 miles. Hence,

sin (∠AES) =
AS

ES
⇒ AS = ES sin 0.26722◦ = (92904437.4) sin 0.26722◦ = 433,293 miles .

Note: This answer is close to the sun’s actual (mean) radius of 432,200 miles.
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18 Chapter 1 • Right Triangle Trigonometry §1.3

Example 1.18

A slider-crank mechanism is shown in Figure 1.3.2 below. As the piston moves downward the con-

necting rod rotates the crank in the clockwise direction, as indicated.

co
n
n
e
ctin

g
ro
d

b

A

B

O

cr
an
k

a

c

C

r

θ

piston

Figure 1.3.2 Slider-crank mechanism

The point A is the center of the connecting rod’s wrist pin and only moves vertically. The point B

is the center of the crank pin and moves around a circle of radius r centered at the point O, which

is directly below A and does not move. As the crank rotates it makes an angle θ with the line OA.

The instantaneous center of rotation of the connecting rod at a given time is the point C where the

horizontal line through A intersects the extended line through O and B. From Figure 1.3.2 we see

that ∠OAC = 90◦, and we let a = AC, b = AB, and c = BC. In the exercises you will show that for

0◦ < θ < 90◦,

c =
√

b2 − r2 (sin θ)2

cos θ
and a = r sin θ +

√
b2 − r2 (sin θ)2 tan θ .
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Applications and Solving Right Triangles • Section 1.3 21

1
2

′′

90◦

120◦
8. A ball bearing sits between two metal grooves, with the top groove having an

angle of 120◦ and the bottom groove having an angle of 90◦, as in the picture

on the right. What must the diameter of the ball bearing be for the distance

between the vertexes of the grooves to be half an inch? You may assume that

the top vertex is directly above the bottom vertex.

1.5

1.7

d

30◦

9. Themachine tool diagram on the right shows a symmetricworm

thread, in which a circular roller of diameter 1.5 inches sits.

Find the amount d that the top of the roller rises above the

top of the thread, given the information in the diagram. (Hint:

Extend the slanted sides of the thread until they meet at a point.)

10. Repeat Exercise 9 using 1.8 inches as the distance across the

top of the worm thread.

11. In Exercise 9, what would the distance across the top of the

worm thread have to be to make d equal to 0 inches?

12. For 0◦ < θ < 90◦ in the slider-crank mechanism in Example 1.18, show that

c =
√

b2 − r2 (sin θ)2

cos θ
and a = r sin θ +

√
b2 − r2 (sin θ)2 tan θ .

(Hint: In Figure 1.3.2 draw line segments from B perpendicular to OA and AC.)

r

2 1
8

′′

1 1
2

′′

54◦

13. The machine tool diagram on the right shows a symmetric die punch.

In this view, the rounded tip is part of a circle of radius r, and the slanted

sides are tangent to that circle and form an angle of 54◦. The top and

bottom sides of the die punch are horizontal. Use the information in the

diagram to find the radius r.

A

B

C

D E

a

θ

14. In the figure on the right, ∠BAC = θ and BC = a. Use this to find

AB, AC, AD, DC, CE, and DE in terms of θ and a.

(Hint: What is the angle ∠ACD ?)

A C

B

b

a
c

Figure 1.3.4

For Exercises 15-23, solve the right triangle in Figure 1.3.4 using the

given information.

15. a= 5, b= 12 16. c= 6, B= 35◦ 17. b= 2, A = 8◦

18. a= 2, c= 7 19. a= 3, A = 26◦ 20. b= 1, c= 2

21. b= 3, B= 26◦ 22. a= 2, B= 8◦ 23. c= 2, A = 45◦
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26 Chapter 1 • Right Triangle Trigonometry §1.4

Notice that in the case of an acute angle these definitions are equivalent to our earlier

definitions in terms of right triangles: draw a right triangle with angle θ such that x =
adjacent side, y= opposite side, and r =hypotenuse. For example, this would give us sin θ =
y

r
= opposite

hypotenuse
and cos θ = x

r
= adjacent

hypotenuse
, just as before (see Figure 1.4.4(a)).

x

y

0

θ

r
h
yp
ot
en
u
se

(x, y)

x

adjacent side

y

opposite side

(a) Acute angle θ

x

y

0

QI

0◦ < θ < 90◦
QII

90◦ < θ < 180◦

QIII

180◦ < θ < 270◦
QIV

270◦ < θ < 360◦

0◦

90◦

180◦

270◦

(b) Angles by quadrant

Figure 1.4.4

In Figure 1.4.4(b) we see in which quadrants or on which axes the terminal side of an angle

0◦ ≤ θ < 360◦ may fall. From Figure 1.4.3(a) and formulas (1.2) and (1.3), we see that we can

get negative values for a trigonometric function. For example, sin θ < 0 when y< 0. Figure

1.4.5 summarizes the signs (positive or negative) for the trigonometric functions based on

the angle’s quadrant:

x

y

0

QI

sin +
cos +
tan +
csc +
sec +
cot +

QII

sin +
cos −
tan −
csc +
sec −
cot −

QIII

sin −
cos −
tan +
csc −
sec −
cot +

QIV

sin −
cos +
tan −
csc −
sec +
cot −

Figure 1.4.5 Signs of the trigonometric functions by quadrant
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36 Chapter 1 • Right Triangle Trigonometry §1.5

Notice that reflection around the y-axis is equivalent to reflection around the x-axis (θ 7→
−θ) followed by a rotation of 180◦ (−θ 7→ −θ+180◦ = 180◦−θ), as in Figure 1.5.7.

x

y

θ

−θ

r

r

(x, y)

(x,−y)

(−x, y) 180◦−θ
r

Figure 1.5.7 Reflection of θ around the y-axis = 180◦−θ

It may seem that these geometrical operations and formulas are not necessary for evalu-

ating the trigonometric functions, since we could just use a calculator. However, there are

two reasons for why they are useful. First, the formulas work for any angles, so they are

often used to prove general formulas in mathematics and other fields, as we will see later

in the text. Second, they can help in determining which angles have a given trigonometric

function value.

Example 1.27

Find all angles 0◦ ≤ θ < 360◦ such that sin θ =−0.682.
Solution: Using the

✄

✂

�

✁sin−1 button on a calculator with −0.682 as the input, we get θ =−43◦, which

is not between 0◦ and 360◦.7 Since θ =−43◦ is in QIV, its reflection 180◦−θ around the y-axis will be

in QIII and have the same sine value. But 180◦−θ = 180◦− (−43◦)= 223◦ (see Figure 1.5.8). Also, we

know that −43◦ and −43◦+360◦ = 317◦ have the same trigonometric function values. So since angles

in QI and QII have positive sine values, we see that the only angles between 0◦ and 360◦ with a sine

of −0.682 are θ = 223◦ and 317◦ .

x

y

θ =−43◦

r

(x, y)(−x, y)

180◦−θ = 223◦

r

Figure 1.5.8 Reflection around the y-axis: −43◦ and 223◦

7In Chapter 5 we will discuss why the
✄

✂

�

✁sin−1 button returns that value.

Preview from Notesale.co.uk

Page 44 of 180



The Law of Sines • Section 2.1 39

Another way of stating the Law of Sines is: The sides of a triangle are proportional to the

sines of their opposite angles.

To prove the Law of Sines, let△ABC be an oblique triangle. Then△ABC can be acute, as

in Figure 2.1.1(a), or it can be obtuse, as in Figure 2.1.1(b). In each case, draw the altitude1

from the vertex at C to the side AB. In Figure 2.1.1(a) the altitude lies inside the triangle,

while in Figure 2.1.1(b) the altitude lies outside the triangle.

h
b a

cA B

C

(a) Acute triangle

h
b

a

cA B

C

180◦−B

(b) Obtuse triangle

Figure 2.1.1 Proof of the Law of Sines for an oblique triangle △ABC

Let h be the height of the altitude. For each triangle in Figure 2.1.1, we see that

h

b
= sin A (2.4)

and

h

a
= sin B (2.5)

(in Figure 2.1.1(b), h
a
= sin (180◦−B)= sin B by formula (1.19) in Section 1.5). Thus, solving

for h in equation (2.5) and substituting that into equation (2.4) gives

a sin B

b
= sin A , (2.6)

and so putting a and A on the left side and b and B on the right side, we get

a

sin A
=

b

sin B
. (2.7)

By a similar argument, drawing the altitude from A to BC gives

b

sin B
=

c

sin C
, (2.8)

so putting the last two equations together proves the theorem. QED

Note that we did not prove the Law of Sines for right triangles, since it turns out (see

Exercise 12) to be trivially true for that case.

1Recall from geometry that an altitude of a triangle is a perpendicular line segment from any vertex to the line

containing the side opposite the vertex.
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The Law of Tangents • Section 2.3 51

2.3 The Law of Tangents

We have shown how to solve a triangle in all four cases discussed at the beginning of this

chapter. An alternative to the Law of Cosines for Case 3 (two sides and the included angle)

is the Law of Tangents:

Theorem 2.3. Law of Tangents: If a triangle has sides of lengths a, b, and c opposite the

angles A, B, and C, respectively, then

a−b

a+b
=

tan 1
2
(A−B)

tan 1
2
(A+B)

, (2.17)

b− c

b+ c
=

tan 1
2
(B−C)

tan 1
2
(B+C)

, (2.18)

c−a

c+a
=

tan 1
2
(C−A)

tan 1
2
(C+A)

. (2.19)

Note that since tan (−θ)=−tan θ for any angle θ, we can switch the order of the letters in

each of the above formulas. For example, we can rewrite formula (2.17) as

b−a

b+a
=

tan 1
2
(B−A)

tan 1
2
(B+A)

, (2.20)

and similarly for the other formulas. If a > b, then it is usually more convenient to use

formula (2.17), while formula (2.20) is more convenient when b> a.

Example 2.10

b= 3 a= 5

cA B

C = 96◦Case 3: Two sides and the included angle.

Solve the triangle △ABC given a= 5, b= 3, and C = 96◦.

Solution: A+B+C = 180◦, so A+B= 180◦−C = 180◦−96◦ = 84◦. Thus, by
the Law of Tangents,

a−b

a+b
=

tan 1
2
(A−B)

tan 1
2
(A+B)

⇒
5−3

5+3
=

tan 1
2
(A−B)

tan 1
2
(84◦)

⇒ tan 1
2
(A−B) = 2

8
tan 42◦ = 0.2251

⇒ 1
2
(A−B) = 12.7◦ ⇒ A−B = 25.4◦ .

We now have two equations involving A and B, which we can solve by adding the equations:

A−B= 25.4◦

A+B= 84◦

−−−−−−−−
2A = 109.4◦ ⇒ A = 54.7◦ ⇒ B = 84◦−54.7◦ ⇒ B= 29.3◦

We can find the remaining side c by using the Law of Sines:

c =
a sin C

sin A
=

5 sin 96◦

sin 54.7◦
⇒ c= 6.09
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The Area of a Triangle • Section 2.4 55

Case 2: Three angles and any side.

Suppose that we have a triangle △ABC in which one side, say, a, and all three angles are

known.7 By the Law of Sines we know that

c =
a sin C

sin A
,

so substituting this into formula (2.24) we get:

Area = K =
a2 sin B sin C

2 sin A
(2.26)

Similar arguments for the sides b and c give us:

Area = K =
b2 sin A sin C

2 sin B

Area = K =
c2 sin A sin B

2 sin C

(2.27)

(2.28)

Example 2.14

b

a= 12

A = 115◦

C = 40◦

B= 25◦c

Find the area of the triangle △ABC given

A = 115◦, B= 25◦, C = 40◦, and a= 12.

Solution: Using formula (2.26), the area K is given by:

K =
a2 sin B sin C

2 sin A

=
122 sin 25◦ sin 40◦

2 sin 115◦

K = 21.58

Case 3: Three sides.

Suppose that we have a triangle △ABC in which all three sides are known. Then Heron’s

formula8 gives us the area:

Heron’s formula: For a triangle △ABC with sides a, b, and c, let s = 1
2
(a+ b+ c) (i.e.

2s= a+b+ c is the perimeter of the triangle). Then the area K of the triangle is

Area = K =
√

s (s−a) (s−b) (s− c) . (2.29)

To prove this, first remember that the area K is one-half the base times the height. Using

c as the base and the altitude h as the height, as before in Figure 2.4.1, we have K = 1
2
hc.

Squaring both sides gives us

K2 = 1
4
h2c2 . (2.30)

7Note that this is equivalent to knowing just two angles and a side (why?).
8Due to the ancient Greek engineer and mathematician Heron of Alexandria (c. 10-70 A.D.).
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Circumscribed and Inscribed Circles • Section 2.5 59

2.5 Circumscribed and Inscribed Circles

Recall from the Law of Sines that any triangle △ABC has a common ratio of sides to sines

of opposite angles, namely
a

sin A
=

b

sin B
=

c

sin C
.

This common ratio has a geometric meaning: it is the diameter (i.e. twice the radius) of

the unique circle in which △ABC can be inscribed, called the circumscribed circle of the

triangle. Before proving this, we need to review some elementary geometry.

A central angle of a circle is an angle whose vertex is the center O of the circle and whose

sides (called radii) are line segments from O to two points on the circle. In Figure 2.5.1(a),

∠O is a central angle and we say that it intercepts the arc �BC.

O

B
C

(a) Central angle ∠O

A

B
C

(b) Inscribed angle ∠A

O

B
C

A

D

(c) ∠A =∠D = 1
2
∠O

Figure 2.5.1 Types of angles in a circle

An inscribed angle of a circle is an angle whose vertex is a point A on the circle and

whose sides are line segments (called chords) from A to two other points on the circle. In

Figure 2.5.1(b), ∠A is an inscribed angle that intercepts the arc �BC. We state here without

proof12 a useful relation between inscribed and central angles:

Theorem 2.4. If an inscribed angle ∠A and a central angle ∠O intercept the same arc,

then ∠A = 1
2
∠O . Thus, inscribed angles which intercept the same arc are equal.

Figure 2.5.1(c) shows two inscribed angles, ∠A and ∠D, which intercept the same arc �BC

as the central angle ∠O, and hence ∠A =∠D = 1
2
∠O (so ∠O = 2∠A = 2∠D ).

We will now prove our assertion about the common ratio in the Law of Sines:

Theorem 2.5. For any triangle △ABC, the radius R of its circumscribed circle is given by:

2R =
a

sin A
=

b

sin B
=

c

sin C
(2.35)

(Note: For a circle of diameter 1, this means a= sin A, b= sin B, and c= sin C.)

12For a proof, see pp. 210-211 in R.A. AVERY, Plane Geometry, Boston: Allyn & Bacon, 1950.
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Circumscribed and Inscribed Circles • Section 2.5 63

We will use Figure 2.5.6 to find the radius r of the inscribed circle. Since OA bisects A,

we see that tan 1
2
A = r

AD
, and so r = AD · tan 1

2
A. Now, △OAD and △OAF are equivalent

triangles, so AD = AF. Similarly, DB=EB and FC =CE. Thus, if we let s= 1
2
(a+b+ c), we

see that

2 s = a + b + c = (AD+DB) + (CE+EB) + (AF+FC)

= AD + EB + CE + EB + AD + CE = 2(AD+EB+CE)

s = AD + EB + CE = AD + a

AD = s−a .

Hence, r = (s−a) tan 1
2
A. Similar arguments for the angles B and C give us:

Theorem 2.10. For any triangle△ABC, let s= 1
2
(a+b+c). Then the radius r of its inscribed

circle is

r = (s−a) tan 1
2
A = (s−b) tan 1

2
B = (s− c) tan 1

2
C . (2.38)

We also see from Figure 2.5.6 that the area of the triangle △AOB is

Area(△AOB) = 1
2
base×height = 1

2
c r .

Similarly, Area(△BOC)= 1
2
ar and Area(△AOC)= 1

2
b r. Thus, the area K of △ABC is

K = Area(△AOB) + Area(△BOC) + Area(△AOC) = 1
2
c r + 1

2
ar + 1

2
b r

= 1
2
(a+b+ c) r = sr , so by Heron’s formula we get

r =
K

s
=

p
s (s−a) (s−b) (s− c)

s
=

√
s (s−a) (s−b) (s− c)

s2
=

√
(s−a) (s−b) (s− c)

s
.

We have thus proved the following theorem:

Theorem 2.11. For any triangle△ABC, let s= 1
2
(a+b+c). Then the radius r of its inscribed

circle is

r =
K

s
=

√
(s−a) (s−b) (s− c)

s
. (2.39)

A

d

d

Figure 2.5.7

Recall from geometry how to bisect an angle: use a compass cen-

tered at the vertex to draw an arc that intersects the sides of the

angle at two points. At those two points use a compass to draw an

arc with the same radius, large enough so that the two arcs inter-

sect at a point, as in Figure 2.5.7. The line through that point and

the vertex is the bisector of the angle. For the inscribed circle of a

triangle, you need only two angle bisectors; their intersection will be

the center of the circle.
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Note how we proved the identity by expanding one of its sides ( sin θ
cos θ

) until we got an expres-

sion that was equal to the other side (tan θ). This is probably the most common technique

for proving identities. Taking reciprocals in the above identity gives:

cot θ =
cos θ

sin θ
when sin θ 6= 0 (3.2)

x

y

0

θ

|y|

|x|

r

(x, y)

Figure 3.1.1

We will now derive one of the most important trigonometric

identities. Let θ be any angle with a point (x, y) on its terminal

side a distance r > 0 from the origin. By the Pythagorean The-

orem, r2 = x2 + y2 (and hence r =
√

x2+ y2). For example, if θ

is in QIII as in Figure 3.1.1, then the legs of the right triangle

formed by the reference angle have lengths |x| and |y| (we use

absolute values because x and y are negative in QIII). The same

argument holds if θ is in the other quadrants or on either axis.

Thus,

r2 = |x|2 + |y|2 = x2 + y2 ,

so dividing both sides of the equation by r2 (which we can do since r > 0) gives

r2

r2
=

x2 + y2

r2
=

x2

r2
+

y2

r2
=

( x
r

)2
+

( y
r

)2
.

Since r2

r2
= 1, x

r
= cos θ, and

y

r
= sin θ, we can rewrite this as:

cos2 θ + sin2 θ = 1 (3.3)

You can think of this as sort of a trigonometric variant of the Pythagorean Theorem. Note

that we use the notation sin2 θ to mean (sin θ)2, likewise for cosine and the other trigono-

metric functions. We will use the same notation for other powers besides 2.

From the above identity we can derive more identities. For example:

sin2 θ = 1 − cos2 θ (3.4)

cos2 θ = 1 − sin2 θ (3.5)

from which we get (after taking square roots):

sin θ = ±
√
1 − cos2 θ (3.6)

cos θ = ±
√
1 − sin2 θ (3.7)
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Example 3.5

Prove that
tan2 θ + 2

1 + tan2 θ
= 1 + cos2 θ .

Solution: Expand the left side:

tan2 θ + 2

1 + tan2 θ
=

(
tan2 θ + 1

)
+ 1

1 + tan2 θ

=
sec2 θ + 1

sec2 θ
(by (3.10))

=
sec2 θ

sec2 θ
+

1

sec2 θ

= 1 + cos2 θ

When trying to prove an identity where at least one side is a ratio of expressions, cross-

multiplying can be an effective technique:

a

b
=

c

d
if and only if ad = bc

Example 3.6

Prove that
1 + sin θ

cos θ
=

cos θ

1 − sin θ
.

Solution: Cross-multiply and reduce both sides until it is clear that they are equal:

(1 + sin θ)(1 − sin θ) = cos θ · cos θ

1 − sin2 θ = cos2 θ

By (3.5) both sides of the last equation are indeed equal. Thus, the original identity holds.

Example 3.7

Suppose that a cos θ = b and c sin θ = d for some angle θ and some constants a, b, c, and d. Show

that a2c2 = b2c2+a2d2.

Solution: Multiply both sides of the first equation by c and the second equation by a:

ac cos θ = bc

ac sin θ = ad

Now square each of the above equations then add them together to get:

(ac cos θ)2 + (ac sin θ)2 = (bc)2 + (ad)2

(ac)2
(
cos2 θ + sin2 θ

)
= b2c2 + a2d2

a2c2 = b2c2 + a2d2 (by (3.3))

Notice how θ does not appear in our final result. The trick was to get a common coefficient (ac) for

cos θ and sin θ so that we could use cos2 θ+sin2 θ = 1. This is a common technique for eliminating

trigonometric functions from systems of equations.
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Exercises

1. We showed that sin θ = ±
p
1 − cos2 θ for all θ. Give an example of an angle θ such that

sin θ = −
p
1 − cos2 θ .

2. We showed that cos θ = ±
√
1 − sin2 θ for all θ. Give an example of an angle θ such that

cos θ = −
√
1 − sin2 θ .

3. Suppose that you are given a system of two equations of the following form:1

A cos φ = Bν1 − Bν2 cos θ

A sin φ = Bν2 sin θ .

Show that A2 = B2
(
ν21 + ν22 − 2ν1ν2 cosθ

)
.

For Exercises 4-16, prove the given identity.

4. cos θ tan θ = sin θ 5. sin θ cot θ = cos θ

6.
tan θ

cot θ
= tan2 θ 7.

csc θ

sin θ
= csc2 θ

8.
cos2 θ

1 + sin θ
= 1 − sin θ 9.

1 − 2 cos2 θ

sin θ cos θ
= tan θ − cot θ

10. sin4 θ − cos4 θ = sin2 θ − cos2 θ 11. cos4 θ − sin4 θ = 1 − 2 sin2 θ

12.
1 − tan θ

1 + tan θ
=

cot θ − 1

cot θ + 1
13.

tan θ + tan φ

cot θ + cot φ
= tan θ tan φ

14.
sin2 θ

1 − sin2 θ
= tan2 θ 15.

1 − tan2 θ

1 − cot2 θ
= 1 − sec2 θ

16. sin θ = ±
tan θ

√
1 + tan2 θ

(Hint: Solve for sin2θ in Exercise 14.)

x

y

0

θ

(1, y)

1

y

Figure 3.1.2

17. Sometimes identities can be proved by geometrical methods. For ex-

ample, to prove the identity in Exercise 16, draw an acute angle θ in QI

and pick the point (1, y) on its terminal side, as in Figure 3.1.2. What

must y equal? Use that to prove the identity for acute θ. Explain the

adjustment(s) you would need to make in Figure 3.1.2 to prove the iden-

tity for θ in the other quadrants. Does the identity hold if θ is on either

axis?

18. Similar to Exercise 16 , find an expression for cos θ solely in terms of tan θ.

19. Find an expression for tan θ solely in terms of sin θ, and one solely in terms of cos θ.

20. Suppose that a point with coordinates (x, y) = (a (cos ψ − ǫ),a
p
1−ǫ2 sin ψ) is a distance r > 0

from the origin, where a> 0 and 0< ǫ< 1. Use r2 = x2+ y2 to show that r = a (1 − ǫ cos ψ) .

(Note: These coordinates arise in the study of elliptical orbits of planets.)

21. Show that each trigonometric function can be put in terms of the sine function.

1These types of equations arise in physics, e.g. in the study of photon-electron collisions. See pp. 95-97 in W.

RINDLER, Special Relativity, Edinburgh: Oliver and Boyd, LTD., 1960.
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and

cos (A+B) =
OM

OP
=

ON−MN

OP
=

ON−RQ

OP
=

ON

OP
−

RQ

OP

=
ON

OQ
·
OQ

OP
+

RQ

PQ
·
PQ

OP

= cos A cos B − sin A sin B . (3.15)

So we have proved the identities for acute angles A and B. It is simple to verify that they

hold in the special case of A = B = 0◦. For general angles, we will need to use the relations

we derived in Section 1.5 which involve adding or subtracting 90◦:

sin (θ+90◦) = cos θ sin (θ−90◦) = −cos θ

cos (θ+90◦) = −sin θ cos (θ−90◦) = sin θ

These will be useful because any angle can be written as the sum of an acute angle (or

0◦) and integer multiples of ±90◦. For example, 155◦ = 65◦+90◦, 222◦ = 42◦+2(90◦), −77◦ =
13◦−90◦, etc. So if we can prove that the identities hold when adding or subtracting 90◦

to or from either A or B, respectively, where A and B are acute or 0◦, then the identities

will also hold when repeatedly adding or subtracting 90◦, and hence will hold for all angles.

Replacing A by A+90◦ and using the relations for adding 90◦ gives

sin ((A+90◦)+B) = sin ((A+B)+90◦) = cos (A+B) ,

= cos A cos B − sin A sin B (by equation (3.15))

= sin (A+90◦) cos B + cos (A+90◦) sin B ,

so the identity holds for A+90◦ and B (and, similarly, for A and B+90◦). Likewise,

sin ((A−90◦)+B) = sin ((A+B)−90◦) = −cos (A+B) ,

= −(cos A cos B − sin A sin B)

= (−cos A) cos B + sin A sin B

= sin (A−90◦) cos B + cos (A−90◦) sin B ,

so the identity holds for A−90◦ and B (and, similarly, for A and B+90◦). Thus, the addition

formula (3.12) for sine holds for all A and B. A similar argument shows that the addition

formula (3.13) for cosine is true for all A and B. QED

Replacing B by −B in the addition formulas and using the relations sin (−θ)=−sin θ and

cos (−θ)= cos θ from Section 1.5 gives us the subtraction formulas:

sin (A−B) = sin A cos B − cos A sin B (3.16)

cos (A−B) = cos A cos B + sin A sin B (3.17)
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Using the identity tan θ = sin θ
cos θ

, and the addition formulas for sine and cosine, we can

derive the addition formula for tangent:

tan (A+B) =
sin (A+B)

cos (A+B)

=
sin A cos B + cos A sin B

cos A cos B − sin A sin B

=

sin A cos B

cos A cos B
+

cos A sin B

cos A cos B
cos A cos B

cos A cos B
−

sin A sin B

cos A cos B

(divide top and bottom by cos A cos B)

=

sin A

cos A
·
�
�
�cos B

cos B
+

�
�
��cos A

cos A
·
sin B

cos B

1 −
sin A

cos A
·
sin B

cos B

=
tan A + tan B

1 − tan A tan B

This, combined with replacing B by −B and using the relation tan (−θ) = −tan θ, gives us

the addition and subtraction formulas for tangent:

tan (A+B) =
tan A + tan B

1 − tan A tan B
(3.18)

tan (A−B) =
tan A − tan B

1 + tan A tan B
(3.19)

Example 3.8

Given angles A and B such that sin A = 4
5
, cos A = 3

5
, sin B= 12

13
, and cos B= 5

13
, find the exact values

of sin (A+B), cos (A+B), and tan (A+B).

Solution: Using the addition formula for sine, we get:

sin (A+B) = sin A cos B + cos A sin B

=
4

5
·
5

13
+

3

5
·
12

13
⇒ sin (A+B) =

56

65

Using the addition formula for cosine, we get:

cos (A+B) = cos A cos B − sin A sin B

=
3

5
·
5

13
−

4

5
·
12

13
⇒ cos (A+B) = −

33

65

Instead of using the addition formula for tangent, we can use the results above:

tan (A+B) =
sin (A+B)

cos (A+B)
=

56
65

− 33
65

⇒ tan (A+B) = −
56

33
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11. tan (θ+45◦) =
1 + tan θ

1 − tan θ
12.

cos (A+B)

sin A cos B
= cot A − tan B

13. cot A + cot B =
sin (A+B)

sin A sin B
14.

sin (A−B)

sin (A+B)
=

cot B − cot A

cot B + cot A

15. Generalize Exercise 6: For any a and b, −
p
a2+b2 ≤ a sin θ + b cos θ ≤

p
a2+b2 for all θ.

16. Continuing Example 3.12, use Snell’s law to show that the s-polarization transmission Fresnel

coefficient

t1 2 s =
2 n1 cos θ1

n1 cos θ1 + n2 cos θ2
(3.22)

can be written as:

t1 2 s =
2 cos θ1 sin θ2

sin (θ2+θ1)

x

y

0

θ

y=m1x+b1
y=m2x+b2

17. Suppose that two lines with slopes m1 and m2, respectively,

intersect at an angle θ and are not perpendicular (i.e. θ 6=
90◦), as in the figure on the right. Show that

tan θ =
∣∣∣∣
m1 − m2

1 + m1 m2

∣∣∣∣ .

(Hint: Use Example 1.26 from Section 1.5.)

18. Use Exercise 17 to find the angle between the lines y= 2x+3 and y=−5x−4.

19. For any triangle △ABC, show that cot A cot B + cot B cot C + cot C cot A = 1.

(Hint: Use Exercise 9 and C = 180◦− (A+B).)

20. For any positive angles A, B, and C such that A+B+C = 90◦, show that

tan A tan B + tan B tan C + tan C tan A = 1 .

21. Prove the identity sin (A+B) cos B − cos (A+B) sin B = sin A.

Note that the right side depends only on A, while the left side depends on both A and B.

22. A line segment of length r > 0 from the origin to the point (x, y) makes an angle α with the

positive x-axis, so that (x, y) = (r cos α, r sin α), as in the figure below. What are the endpoint’s

new coordinates (x′, y′) after a counterclockwise rotation by an angle β ? Your answer should be in

terms of r, α, and β.

x

y

0

α

β

r

r

(x, y)= (r cos α, r sin α)

(x′, y′)
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Example 4.5

A central angle in a circle of radius 5 m cuts off an arc of length 2 m. What is the measure of the

angle in radians? What is the measure in degrees?

Solution: Letting r = 5 and s= 2 in formula (4.4), we get:

θ =
s

r
=

2

5
= 0.4 rad

In degrees, the angle is:

θ = 0.4 rad =
180

π
· 0.4 = 22.92◦

For central angles θ > 2π rad, i.e. θ > 360◦, it may not be clear what is meant by the inter-

cepted arc, since the angle is larger than one revolution and hence “wraps around” the circle

more than once. We will take the approach that such an arc consists of the full circumference

plus any additional arc length determined by the angle. In other words, formula (4.4) is still

valid for angles θ > 2π rad.

What about negative angles? In this case using s= rθ would mean that the arc length is

negative, which violates the usual concept of length. So we will adopt the convention of only

using nonnegative central angles when discussing arc length.

Example 4.6

2

A

B

D C
E3

4

4

θ

Figure 4.2.3

A rope is fastened to a wall in two places 8 ft apart at the same height. A

cylindrical container with a radius of 2 ft is pushed away from the wall as

far as it can go while being held in by the rope, as in Figure 4.2.3 which

shows the top view. If the center of the container is 3 feet away from the

point on the wall midway between the ends of the rope, what is the length

L of the rope?

Solution: We see that, by symmetry, the total length of the rope is L =
2 (AB+�BC). Also, notice that △ADE is a right triangle, so the hypotenuse

has length AE =
p
DE2+DA2 =

p
32+42 = 5 ft, by the Pythagorean The-

orem. Now since AB is tangent to the circular container, we know that

∠ABE is a right angle. So by the Pythagorean Theorem we have

AB =
√

AE2−BE2 =
√
52−22 =

p
21 ft.

By formula (4.4) the arc �BC has length BE · θ, where θ = ∠BEC is the

supplement of ∠AED+∠AEB. So since

tan∠AED =
4

3
⇒ ∠AED = 53.1◦ and cos∠AEB =

BE

AE
=

2

5
⇒ ∠AEB = 66.4◦ ,

we have

θ = ∠BEC = 180◦ − (∠AED+∠AEB) = 180◦ − (53.1◦+66.4◦) = 60.5◦ .

Converting to radians, we get θ = π
180

· 60.5= 1.06 rad. Thus,

L = 2(AB + ·�BC) = 2(
p
21 + BE ·θ) = 2(

p
21 + (2)(1.06)) = 13.4 ft .
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The graph of y= cot x can also be determined by using cot x= 1
cot x

. Alternatively, we can

use the relation cot x = −tan (x+90◦) from Section 1.5, so that the graph of the cotangent

function is just the graph of the tangent function shifted to the left by π
2
radians and then

reflected about the x-axis, as in Figure 5.1.9:

x

y

0

−8

−6

−4

−2

2

4

6

8

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π−π
4

−π
2− 3π

4
−π− 5π

4
− 3π

2
− 7π

4
−2π

y= cot x

Figure 5.1.9 Graph of y= cot x

Example 5.1

Draw the graph of y=−sin x for 0≤ x≤ 2π.

Solution: Multiplying a function by −1 just reflects its graph around the x-axis. So reflecting the

graph of y= sin x around the x-axis gives us the graph of y=−sin x:

x

y

0

−1

1

π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

y=−sin x

Note that this graph is the same as the graphs of y= sin (x±π) and y= cos (x+ π
2
).
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5.3 Inverse Trigonometric Functions

We have briefly mentioned the inverse trigonometric functions before, for example in Section

1.3 when we discussed how to use the
✄

✂

�

✁sin−1 ,
✄

✂

�

✁cos−1 , and
✄

✂

�

✁tan−1 buttons on a calculator to find

an angle that has a certain trigonometric function value. We will now define those inverse

functions and determine their graphs.

x

Domain

y

Range

f

y= f (x)

Figure 5.3.1

Recall that a function is a rule that assigns a single object

y from one set (the range) to each object x from another set

(the domain). We can write that rule as y= f (x), where f is

the function (see Figure 5.3.1). There is a simple vertical rule

for determining whether a rule y = f (x) is a function: f is a

function if and only if every vertical line intersects the graph

of y= f (x) in the xy-coordinate plane at most once (see Figure 5.3.2).

y

x

y= f (x)

(a) f is a function

y

x

y= f (x)

(b) f is not a function

Figure 5.3.2 Vertical rule for functions

Recall that a function f is one-to-one (often written as 1−1) if it assigns distinct values

of y to distinct values of x. In other words, if x1 6= x2 then f (x1) 6= f (x2). Equivalently, f is

one-to-one if f (x1)= f (x2) implies x1 = x2. There is a simple horizontal rule for determining

whether a function y= f (x) is one-to-one: f is one-to-one if and only if every horizontal line

intersects the graph of y= f (x) in the xy-coordinate plane at most once (see Figure 5.3.3).

y

x

y= f (x)

(a) f is one-to-one

y

x

y= f (x)

(b) f is not one-to-one

Figure 5.3.3 Horizontal rule for one-to-one functions

If a function f is one-to-one on its domain, then f has an inverse function, denoted by

f −1, such that y= f (x) if and only if f −1(y)= x. The domain of f −1 is the range of f .
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The basic idea is that f −1 “undoes” what f does, and vice versa. In other words,

f −1( f (x)) = x for all x in the domain of f , and

f ( f −1(y)) = y for all y in the range of f .

We know from their graphs that none of the trigonometric functions are one-to-one over

their entire domains. However, we can restrict those functions to subsets of their domains

where they are one-to-one. For example, y= sin x is one-to-one over the interval
[
−π

2
, π
2

]
, as

we see in the graph below:

x

y

0

−1

1

π
2

π−π
2

−π

y= sin x

Figure 5.3.4 y= sin x with x restricted to
[
−π

2
, π
2

]

For −π
2
≤ x ≤ π

2
we have −1 ≤ sin x ≤ 1, so we can define the inverse sine function y =

sin−1 x (sometimes called the arc sine and denoted by y = arcsin x) whose domain is the

interval [−1,1] and whose range is the interval
[
−π

2
, π
2

]
. In other words:

sin−1(sin y) = y for −π
2
≤ y≤ π

2
(5.2)

sin (sin−1 x) = x for −1≤ x≤ 1 (5.3)

Example 5.13

Find sin−1 (
sin π

4

)
.

Solution: Since −π
2
≤ π

4
≤ π

2
, we know that sin−1 (

sin π
4

)
=

π

4
, by formula (5.2).

Example 5.14

Find sin−1 (
sin 5π

4

)
.

Solution: Since 5π
4

> π
2
, we can not use formula (5.2). But we know that sin 5π

4
= − 1p

2
. Thus,

sin−1 (
sin 5π

4

)
= sin−1

(
− 1p

2

)
is, by definition, the angle y such that −π

2
≤ y≤ π

2
and sin y=− 1p

2
. That

angle is y=−π
4
, since

sin
(
−π

4

)
= −sin

(
π
4

)
= − 1p

2
.

Thus, sin−1 (
sin 5π

4

)
= −π

4
.
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The inverse functions for cotangent, cosecant, and secant can be determined by looking at

their graphs. For example, the function y= cot x is one-to-one in the interval (0,π), where it

has a range equal to the set of all real numbers. Thus, the inverse cotangent y= cot−1 x is

a function whose domain is the set of all real numbers and whose range is the interval (0,π).

In other words:

cot−1(cot y) = y for 0< y<π (5.8)

cot (cot−1 x) = x for all real x (5.9)

The graph of y= cot−1 x is shown below in Figure 5.3.11.

x

y

0

π
2

π

π
4

π
2

3π
4

− 3π
4

−π
4

−π
2

y= cot−1 x

Figure 5.3.11 Graph of y= cot−1 x

Similarly, it can be shown that the inverse cosecant y = csc−1 x is a function whose

domain is |x| ≥ 1 and whose range is −π
2
≤ y ≤ π

2
, y 6= 0. Likewise, the inverse secant

y= sec−1 x is a function whose domain is |x| ≥ 1 and whose range is 0≤ y≤π, y 6= π
2
.

csc−1(csc y) = y for −
π

2
≤ y≤

π

2
, y 6= 0 (5.10)

csc (csc−1 x) = x for |x| ≥ 1 (5.11)

sec−1(sec y) = y for 0≤ y≤π, y 6=
π

2
(5.12)

sec (sec−1 x) = x for |x| ≥ 1 (5.13)

It is also common to call cot−1 x, csc−1 x, and sec−1 x the arc cotangent, arc cosecant,

and arc secant, respectively, of x. The graphs of y = csc−1 x and y = sec−1 x are shown in

Figure 5.3.12:
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128 Chapter 5 • Graphing and Inverse Functions §5.3

Exercises

For Exercises 1-25, find the exact value of the given expression in radians.

1. tan−11 2. tan−1 (−1) 3. tan−10 4. cos−11 5. cos−1 (−1)

6. cos−10 7. sin−11 8. sin−1 (−1) 9. sin−10 10. sin−1 (
sin π

3

)

11. sin−1 (
sin 4π

3

)
12. sin−1 (

sin
(
− 5π

6

))
13. cos−1

(
cos π

7

)
14. cos−1

(
cos

(
− π

10

))

15. cos−1
(
cos 6π

5

)
16. tan−1 (

tan 4π
3

)
17. tan−1 (

tan
(
− 5π

6

))
18. cot−1

(
cot 4π

3

)

19. csc−1
(
csc

(
−π

9

))
20. sec−1

(
sec 6π

5

)
21. cos

(
sin−1 (

5
13

))
22. cos

(
sin−1 (

− 4
5

))

23. sin−1 3
5
+ sin−1 4

5
24. sin−1 5

13
+ cos−1 5

13
25. tan−1 3

5
+ cot−1 3

5

For Exercises 26-33, prove the given identity.

26. cos (sin−1 x) =
p
1− x2 27. sin (cos−1 x) =

p
1− x2

28. sin−1 x + cos−1 x = π
2

29. sec−1 x + csc−1 x = π
2

30. sin−1(−x) = −sin−1 x 31. cos−1(−x) + cos−1 x = π

32. cot−1 x = tan−1 1
x

for x> 0 33. tan−1 x + tan−1 1
x
= π

2
for x> 0

34. In Example 5.22 we showed that the formula tan−1 a + tan−1 b = tan−1
(
a+b

1−ab

)
does not always

hold. Does the formula tan (tan−1 a + tan−1 b) =
a+b

1−ab
, which was part of that example, always

hold? Explain your answer.

35. Show that tan−1 1
3
+ tan−1 1

5
= tan−1 4

7
.

36. Show that tan−1 1
4
+ tan−1 2

9
= tan−1 1

2
.

37. Figure 5.3.13 shows three equal squares lined up against each other. For the angles α, β, and γ

in the picture, show that α=β+γ. (Hint: Consider the tangents of the angles.)

αβγ

Figure 5.3.13 Exercise 37

38. Sketch the graph of y= sin−12x.

39. Write a computer program to solve a triangle in the case where you are given three sides. Your

program should read in the three sides as input parameters and print the three angles in degrees

as output if a solution exists. Note that since most computer languages use radians for their

inverse trigonometric functions, you will likely have to do the conversion from radians to degrees

yourself in the program.
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136 Chapter 6 • Additional Topics §6.2

Below is the result of compiling and running the program using x0 = 0 and x1 = 1:

javac secant.java

java secant 0 1

x2 = 0.6850733573260451

x3 = 0.736298997613654

x4 = 0.7391193619116293

x5 = 0.7390851121274639

x6 = 0.7390851332150012

x7 = 0.7390851332151607

x8 = 0.7390851332151607

x = 0.73908513321516067229310920083662495017051696777344

Notice that the program only got up to x8, not x10. The reason is that the difference

between x8 and x7 was small enough (less than ǫerror = 1.0 × 10−50) to stop at x8 and call

that our solution. The last line shows that solution to 50 decimal places.

Does that number look familiar? It should, since it is the answer to Exercise 11 in Section

4.1. That is, when taking repeated cosines starting with any number (in radians), you even-

tually start getting the above number repeatedly after enough iterations. This turns out not

to be a coincidence. Figure 6.2.2 gives an idea of why.

0

0.2

0.4

0.6

0.8

1

−π
2 -1 0 1 π

2

y

x

y= cos(x)

y= x

Figure 6.2.2 Attractive fixed point for cos x

Since x = 0.73908513321516... is the solution of cos x = x, you would get cos (cos x) =
cos x= x, so cos (cos (cos x))= cos x= x, and so on. This number x is called an attractive fixed
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142 Chapter 6 • Additional Topics §6.3

Example 6.10

x

y

0

r
1

2

z=−2− i

θ

Figure 6.3.2

Represent the complex number −2− i in trigonometric form.

Solution: Let z = −2− i = x+ yi, so that x = −2 and y = −1. Then θ is

in QIII, as we see in Figure 6.3.2. So since tan θ = y
x
= −1

−2 = 1
2
, we have

θ = 206.6◦. Also,

r =
√

x2+ y2 =
√
(−2)2+ (−1)2 =

p
5 .

Thus, −2− i =
p
5 (cos 206.6◦ + i sin 206.6◦) , or

p
5 cis 206.6◦.

For complex numbers in trigonometric form, we have the following formulas for multipli-

cation and division:

Let z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2) be complex numbers. Then

z1 z2 = r1 r2 (cos (θ1+θ2) + i sin (θ1+θ2)) , and (6.5)

z1

z2
=

r1

r2
(cos (θ1−θ2) + i sin (θ1−θ2)) if z2 6= 0. (6.6)

The proofs of these formulas are straightforward:

z1 z2 = r1 (cos θ1 + i sin θ1) · r2 (cos θ2 + i sin θ2)

= r1 r2 [(cos θ1 cos θ2 − sin θ1 sin θ2) + i (sin θ1 cos θ2 + cos θ1 sin θ2)]

= r1 r2 (cos (θ1+θ2) + i sin (θ1+θ2))

by the addition formulas for sine and cosine. And

z1

z2
=

r1 (cos θ1 + i sin θ1)

r2 (cos θ2 + i sin θ2)

=
r1

r2
·
cos θ1 + i sin θ1

cos θ2 + i sin θ2
·
cos θ2 − i sin θ2

cos θ2 − i sin θ2

=
r1

r2
·
(cos θ1 cos θ2 + sin θ1 sin θ2) + i (sin θ1 cos θ2 − cos θ1 sin θ2)

cos2 θ2 + sin2 θ2

=
r1

r2
(cos (θ1−θ2) + i sin (θ1−θ2))

by the subtraction formulas for sine and cosine, and since cos2 θ2 + sin2 θ2 = 1. QED

Note that formulas (6.5) and (6.6) say that when multiplying complex numbers the moduli

are multiplied and the arguments are added, while when dividing complex numbers the

moduli are divided and the arguments are subtracted. This makes working with complex

numbers in trigonometric form fairly simple.
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Polar Coordinates • Section 6.4 151

Example 6.20

Prove that the distance d between two points (r1,θ1) and (r2,θ2) in polar coordinates is

d =
√

r2
1
+ r2

2
− 2r1r2 cos (θ1−θ2) . (6.11)

Solution: The idea here is to use the distance formula in Cartesian coordinates, then convert that

to polar coordinates. So write

x1 = r1 cos θ1 y1 = r1 sin θ1

x2 = r2 cos θ2 y2 = r2 sin θ2 .

Then (x1, y1) and (x2, y2) are the Cartesian equivalents of (r1,θ1) and (r2,θ2), respectively. Thus, by

the Cartesian coordinate distance formula,

d2 = (x1− x2)
2 + (y1− y2)

2

= (r1 cos θ1− r2 cos θ2)
2 + (r1 sin θ1− r2 sin θ2)

2

= r21 cos
2 θ1 − 2r1r2 cos θ1 cos θ2 + r22 cos

2 θ2 + r21 sin
2 θ1 − 2r1r2 sin θ1 sin θ2 + r22 sin

2 θ2

= r21(cos
2 θ1 + sin2 θ1) + r22(cos

2 θ2 + sin2 θ2) − 2r1r2(cos θ1 cos θ2 + sin θ1 sin θ2)

d2 = r21 + r22 − 2r1r2 cos (θ1−θ2) ,

so the result follows by taking square roots of both sides.

In Example 6.17 we saw that the equation x2+ y2 = 9 in Cartesian coordinates could be

expressed as r = 3 in polar coordinates. This equation describes a circle centered at the

origin, so the circle is symmetric about the origin. In general, polar coordinates are useful

in situations when there is symmetry about the origin (though there are other situations),

which arise in many physical applications.

Exercises

For Exercises 1-5, convert the given point from polar coordinates to Cartesian coordinates.

1. (6,210◦) 2. (−4,3π) 3. (2,11π/6) 4. (6,90◦) 5. (−1,405◦)

For Exercises 6-10, convert the given point from Cartesian coordinates to polar coordinates.

6. (3,1) 7. (−1,−3) 8. (0,2) 9. (4,−2) 10. (−2,0)

For Exercises 11-18, write the given equation in polar coordinates.

11. (x−3)2+ y2 = 9 12. y=−x 13. x2− y2 = 1 14. 3x2+4y2−6x= 9

15. Graph the function r = 1+2 cos θ in polar coordinates.
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158 Appendix B: Graphing with Gnuplot

In Linux you would do this:

set terminal wxt enhanced

You can then (provided the Symbol font is installed, which it usually is) set the x-axis to

have multiples of π/2 from 0 to 2π as labels with this command (all on one line):

set xtics (’0’ 0,’{/Symbol p}/2’ pi/2,’{/Symbol p}’ pi,’3{/Symbol p}/2’ 3*pi/2,

’2{/Symbol p}’ 2*pi)

In the above example, to also plot the function y= cos 2x+ sin 3x on the same graph, put a

comma after the first function then append the new function:

plot [0:2*pi] sin(x), cos(2*x) + sin(3*x)

By default, the x-axis is not shown in the graph. To display it, use this command before the

plot command:

set zeroaxis

Also, to label the axes, use these commands:

set xlabel "x"

set ylabel "y"

The default sample size for plots is 100 units, which can result in jagged edges if the curve

is complicated. To get a smoother curve, increase the sample size (to, say, 1000) like this:

set samples 1000

Putting all this together, we get the following graph:
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