Binomial Theorem and Mathematical Induction 269

General term

In the expansion of $(x + y)^n (r + 1)^{th}$ term is called the general term which can be represented by T_{r+1}

 $T_{r+1} = {}^{n}C_{r} x^{n-r} a^{r} = {}^{n}C_{r} \text{ (first term)}^{n-r} \text{ (second term)}^{r}.$

Independent term or Constant term

Independent term or constant term of a binomial expansion is the term in which exponent of the variable is zero.

Condition: (n - r) [Power of x] + r [Power of y] = 0, in the expansion of $[x + y]^n$.

Number of terms in the expansion of $(a+b+c)^n$ and $(a+b+c+d)^n$

$$(a + b + c)^n$$
 can be expanded as : $(a + b + c)^n = \{(a + b) + c\}^n$
= $(a + b)^n + {}^nC_1(a + b)^{n-1}(c)^1 + {}^nC_2(a + b)^{n-2}(c)^2 + \dots + {}^nC_n c^n$

 $= (n+1) \operatorname{term} + n \operatorname{term} + (n-1) \operatorname{term} + \dots + 1 \operatorname{term}$

.: Total number of terms

$$= (n + 1) + (n) + (n - 1) + \dots + 1 = \frac{(n + 1)(n + 2)}{2}$$
.

Similarly, number of terms in the expansion of

$$(a+b+c+d)^n = \frac{(n+1)(n+2)(n+3)}{6}.$$

Middle term

te

The middle term depends upon the value of n.

(1) When *n* is even, then to a multipler of terms in the expansion of $(x + y)^n$ is n + 1 and $x + y^n$. So there is only be a left

term i.e., $\left(\frac{n}{2}+1\right)^{\text{th}}$ term is the middle term. $T_{\left[\frac{n}{2}+1\right]} = {}^{n}C_{n/2}x^{n/2}y^{n/2}$

(2) When *n* is odd, then total number of terms in the expansion of $(x+y)^n$ is n+1 (even). So, there are two middle

rms i.e.,
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 and $\left(\frac{n+3}{2}\right)^{\text{m}}$ are two middle terms.
 $T_{(n+1)} = {}^{n}C_{n-1} \frac{n+1}{2} \frac{n-1}{2}$ and $T_{(n+3)} = {}^{n}C_{n+1} \frac{n-1}{2} \frac{n+1}{2}$

• When there are two middle terms in the expansion then their binomial coefficients are equal.

Binomial coefficient of middle term is the greatest binomial coefficient.

To determine a particular term in the expansion

In the expansion of
$$\left(x^{\alpha} \pm \frac{1}{x^{\beta}}\right)^{n}$$
, if x^{m} occurs in T_{r+1} , then r

is given by
$$n\alpha - r(\alpha + \beta) = m \Rightarrow r = \frac{n\alpha}{\alpha + \beta}$$

Thus in above expansion if constant term which is independent of x, occurs in T_{r+1} then r is determined by

$$n\alpha - r(\alpha + \beta) = 0 \Rightarrow r = \frac{n\alpha}{\alpha + \beta}$$

Greatest term and Greatest coefficient

(1) Greatest term : If T_r and T_{r+1} be the r^{th} and $(r+1)^{th}$ terms in the expansion of $(1+x)^n$, then

UNIVERSAL GEV SCORE

$$\frac{T_{r+1}}{T_r} = \frac{{}^n C_r x^r}{{}^n C_{r-1} x^{r-1}} = \frac{n-r+1}{r} x^r$$

Let numerically, T_{r+1} be the greatest term in the above

expansion. Then $T_{r+1} \ge T_r$ or $\frac{T_{r+1}}{T_r} \ge 1$.

∴
$$\frac{n-r+1}{r} |x| \ge 1$$
 or $r \le \frac{(n+1)}{(1+|x|)} |x|$ (i)

Now substituting values of n and x in (i), we get $r \le m + f$ or $r \le m$, where m is a positive integer and f is a fraction such that 0 < f < 1.

When *n* is even T_{m+1} is the greatest term, when *n* is odd T_m and T_{m+1} are the greatest terms and both are equal.

Short cut method : To find the greatest term (numerically) in the expansion of $(1 + x)^n$.

(i) Calculate
$$m = \left| \frac{x(n+1)}{x+1} \right|$$

(ii) If m is integer, then T_m and T_{m+1} are equal and both are

greatest term. (iii) If r is the greatest term, where Nuclearly the greatest integral part.

(2) Greatest pefficient

 \square If the ten, then greatest coefficient is ${}^{n}C_{n/2}$

(ii) If n is odd, then greatest coefficient are ${}^{n}C_{n+1}$ and ${}^{n}C_{n+3}$.

To find a term from the end in the expansion of $(x + a)^n$

It can be easily seen that in the expansion of $(x + a)^n$ $(r+1)^{th}$ term from end = $(n-r+1)^{th}$ term from beginning i.e. $T_{r+1}(E) = T_{n-r+1}(B)$

$$\therefore T_r(E) = T_{n-r+2}(B).$$

Properties of binomial coefficients

In the binomial expansion of $(1 + x)^n$,

 $(1+x)^{n} = {}^{n}C_{0} + {}^{n}C_{1}x + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{r}x^{r} + \dots + {}^{n}C_{n}x^{n}$

where ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$,...., ${}^{n}C_{n}$ are the coefficients of various powers of x and called binomial coefficients, and they are written as $C_{0}, C_{1}, C_{2}, \dots, C_{n}$.

Hence, $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots +$

(1) The sum of binomial coefficients in the expansion of $(1 + x)^n$ is 2^n .

Putting x = 1 in (i), we get $2^n = C_0 + C_1 + C_2 + \dots + C_n$...(ii) (2) Sum of binomial coefficients with alternate signs : Putting x = -1 in (i)

Scanned by CamScanner