

Unit 1 - 2.1 Composite and Inverse I		se Functions	
Definition of a function			
A function is defined from a set A to a set B as a rule which links each member of A to exactly one member of B.		1 • • 3 2 • • 6 3 • • • 9 4 • • • 12	
EVALUATE: $y = f(x)$ or $f(x) \ge y$ (frame x to y)		5• • • 15	
$y = f(x)$ of $f(x) \to y$ (f maps x to y)		Domain Range	Domain Range
Domain and Range		$f(x) = 3x$ or $f: x \to 3x$	$g(x) = x^2$ or $g: x \to x^2$
variable the function operates upon.			
The range of a function is the output – the value of the function.			
Domain of h(x)=\sqrt{x} and $\mathbf{k}(\mathbf{x}) = \frac{1}{x-1}$			
We write this as:		The largest domain of $h(x) = \sqrt{x}$ is the set of real numbers greater than or equal to	
domain of $h(x)$ is $\{x : x \in \Re : x \ge 0\}$		zero, since you cannot take the square root of a negative number.	
and: domain of $\mathbf{k}(\mathbf{x})$ is: $\{\mathbf{x} \cdot \mathbf{x} \in \mathbf{\Re} \cdot \mathbf{x} \neq 1\}$		The largest domain of $k(x) = \frac{1}{x-1}$ is the set of real numbers except x = 1	
You should always be aware of the danger of		(since this would make the denominator zero ~ you cannot divide by zero).	
dividing by zero.			
Undefined functions		$f(x) = \sqrt{x} + 3$ is undefined when $x < 1$ Or (x) - x square root of negative number) f(x) = is undefined when $x = 3$	
Functions may be undefined for particular values of $x \sim in particular$:			
• where you would need to take the			
 where you work theed to arvide by 0 		$\frac{3}{(\text{results in division by zero })}$.	
Related Functions		Example: $f(x) = 3x + 1$ what is $f(x+1)$	
Given $f(x)$, what is $f(x+1)$ or $f(x^2)$ or $f(2x)$ etc.		Solution: $f(x+1) = 3(x+1) + 1 \implies 3x + 4$	
To find $f(x+1)$,		Example: $h(x) = x^2 - 3x$ what is $h(2x)$	
simply replace the 'x' in $f(x)$ with 'x+1' etc.		Solution: $h(2x) = (2x)^2 - 3(2x) \implies 4x^2 - 6x$	
and simplify.		Example: $f(x) = 2x^2 + 3x$ what is $f(x+1)$	
		Solution: $I(X+1) = 2(X+1) + 3(X+1) \implies 2X + 7X + 3$	
Evaluating functions:		Example: If $f(x) = x^2 + 3x - 1$ Evaluate $f(-1)$	
Given $f(x)$, what is $f(1)$ or $f(0)$ or $f(-2)$ etc.		Solution: $f(-1) = (-1)^2 + 3(-1) - 1 \implies -3$	
To evaluate a function $f(x)$ at $x = 2$ (say), calculate what the value of the function is when you replace x by 2		Example: If $f(x) = 3x^3 - 5x + 2$ What is $f(a)$ Solution: $f(a) = 3a^3 - 5a + 2$	

