Unit 3 - 3 The Exponential and	Logarithmic Functions				
The exponential function					
An exponential function is of the form	Note: In general an exponential function will take the form: $A(x) = ab^{x}$ where both <i>a</i> and <i>b</i> are constants. <i>a</i> will represent an initial value <i>b</i> will represent the multiplier				
a^x where a is a constant.					
If $a > 0$, the function is increasing (growth) If $a < 0$, the function is decreasing (decay) a may take any positive value					
depends on situation function is modelling.	<i>x</i> will represent the variable				
A special exponential function ~ e^x e^x e is a special constant – a never ending decimal like π .	The number <i>e</i> crops up on many occasions in the natural world. It is: $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$				
e = 2.718 282 828	You can find this by pressing the e^x key on your calculator followed by '1 =' This effectively is evaluating e^1 .				
Linking the exponential and logarithmic functions. $y = a^{x} \iff \log_{a} y = x$ $1 = a^{0} \iff \log_{a} 1 = 0$ $a = a^{1} \iff e^{1} e^{1}$	Use this relationship to since between log and exponential forms. (s) these two relationships to since by and evaluate logarithmic and exponential functions and expressions.				
Examples:	Solutions:				
2. Write in log form: $y^4 = 20$ 3. Write in log form: ${}^{1}/_{9} = 3^{-2}$ 4. Write in log form: $z^{1/2} = 10$ 5. Write in exp. form: $\log_2 4 = 2$ 6. Write in exp. form: $\log_{10} 100 = 2$ 7. Write in exp. form: $\log_9 3 = \frac{1}{2}$ 8. Write in exp. form: $\log_8 4 = \frac{2}{3}$ 9. Write in exp. form: $\log_a c = b$ 10. Solve: $\log_x 9 = 2$ 11. Solve: $\log_4 x = 0.5$	2. $\log_y 20 = 4$ 3. $\log_3 \frac{1}{9} = -2$ 4. $\log_z 10 = \frac{1}{2}$ 5. $2^2 = 4$ 6. $10^2 = 100$ 7. $9^{\frac{1}{2}} = 3$ 8. $8^{\frac{2}{3}} = 4$ i.e. $(\sqrt[3]{8})^2 = 4$ 9. $a^b = c$ 10. $x^2 = 9$ so $x = 3$ 11. $4^{0.5} = x$ so $4^{\frac{1}{2}} = x$ $\sqrt{4} = x$ $x = 2$				
 Solve: log₃ 81 = x Solve: log_x 7 = 1 Solve: log₁₀ x = 0.5 	12. $3^{x} = 81$ so $x = 4$ 13. $x^{1} = 7$ $x = 7$ 14. $10^{0.5} = x$ Use calculator 10 $y^{x} 0.5 = 3.162$ $x = 3.16 (2 \text{ d.p})$				

Unit 3 - 3

Example

Six spherical sponges were dipped in water and weighed to see how much water each could absorb. The diameter (x millimetres) and gain in weight (y grams) were measured and recorded for each sponge.

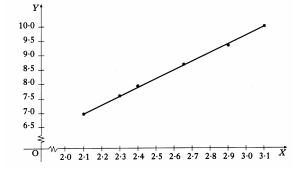
It is thought that x and y are connected by a relationship of the form $y = ax^{b}$

By taking logarithms of the values of x and y, this table was constructed.

$X (= \log_e x)$	2.10	2.31	2.40	2.65	2.90	3.10
$Y(=\log_e y)$	7.00	7.60	7.92	8.70	9.38	10.00

A graph was drawn and is shown here.

- a) Find the equation of the line in the form Y = mX + c
- b) Hence find the values of the constants a and b
 - in the relationship $y = ax^{b}$



 $\begin{aligned} \log_{e} y &= \log_{e} ax^{b} \\ \log_{e} y &= \log_{e} a + \log_{e} x \\ \log_{e} y &= \log_{e} x \\ \log_{e} y &= \log_{e} x \\ \log_{e} y &= \log_{e} x \\$ a)

Choose two points on the line of best fit. (2.1, 7.0) and (3.1, 10.0)b)

Substitute into $\log_e y = \log_e a + b \log_e x$

 $7.0 = \log_e a + 2.1 b \dots (1)$ giving:

 $10.0 = \log_e a + 3.1 b$ (2)

subtracting: $(2) - (1) \implies 3.0 = b$ substituting $\implies \log_e a = 0.7$ so $a = e^{0.7}$ a = 2.01...

Hence relationship is: $y = 2x^3$ i.e. a = 2.0 and b = 3.0 (1 d.p.)

You should be confident in applying the method in part (b) rather than relying on the Note: gradient and y-intercept, as in this case, you cannot determine the y-intercept.

Unit 3 - 3

The Exponential and Logarithmic Functions

Example

Find the relation $y = ab^x$ for this data

Х	2.15	2.13	2.00	1.98	1.95	1.93
у	83.33	79.93	64.89	62.24	59.70	57.26

1.94 1.92

1.90 1.88

1.86

1.84 1.82

1.80 1.78 1.76

1.74

1.90

2.00

1.95

2.05

2.10

2.15

2.20

Solution:

 $v = ab^x$ $\log_{10} y = \log_{10} ab^x$ $\log_{10} y = \log_{10} a + \log_{10} b^x$ $\log_{10} y = \log_{10} a + x \log_{10} b$

Add a row to the table showing $\log_{10} y$

Plot data log₁₀ y against x (because relationship is exponential)

ecause relation determine line	onship is expo		icate which p	oints to use.	le.co	.uk
X	2.15	2.13	2.01	1050	1.95	1.93
у	83.33	€ 79.©	64.89	6624	59.70	57.26
log ₁₀ y	New	1.90	e 122	1.79	1.78	1.76
NP		700				

From graph, choose points (1.13, 1.76) and (2.15, 1.92) corresponding to $(x, \log_{10} y)$

Substituting into $\log_{10} y = \log_{10} a + x \log_{10} b$

 $1.92 = \log_{10} a + 2.15 \log_{10} b \dots (1)$ gives: $1.76 = \log_{10} a + 1.93 \log_{10} b$ (2) and: (1) - (2) $0.16 = 2.15 \log_{10} b - 1.93 \log_{10} b$ Subtracting: $0.16 = 0.22 \log_{10} b$ $\log_{10} b = 0.727$ $b = 10^{0.727} = 5.3 (1 \text{ d.p.})$ Substituting into (1) \Rightarrow $\log_{10}a = 1.92 - 2.15 \log_{10} 5.3$ $\log_{10}a = 1.92 - 1.56$ $log_{10}a = 0.36$ $a = 10^{0.36} = 2.29 = 2.3 (1 \text{ d.p.})$ Hence relationship is: $y = 2.3 (5.3)^x$

Unit 3 - 4	The Wave Function a	cos x + b sin x					
Examples:							
1. Solve for 0	$\leq x \leq 180$ 6 cos (3x + 60) - 3	b = 0					
	$6 \cos (3x + 60) = 3$ $\cos (3x + 60) = 0.5$ so south $(3x + 60) = 60^{\circ}$						
	$\cos (3x + 60) = 0.5$ so, acute $(3x + 60) = 60^{\circ}$ The range for x is: $0 \le x \le 180$ so the range for 3x is: $0 \le x \le 540$						
	The range for x is: $0 \le x \le 180$ so the range for 3x is: $0 \le x \le 540$ The cosine is positive, so the required quadrants are 1st, 4 th and 5 th (1 st quadrant – second time around)						
	$\therefore 3x + 60 = 60 \qquad 3x + 60 = 360 - 60 \qquad 3x + 60 = 360 + 60$						
	$\therefore x = 0^{\circ}, 80^{\circ} \text{ or } 120^{\circ}$						
	as $\sqrt{3} \cos x - \sin x$ in the form since solve the equation $\sqrt{3} \cos y$		x ≤ 360				
i) l	$k \sin(x - \alpha) = k \sin x \cos \alpha - k$	$\cos x \sin \alpha$					
(comparing coefficients:	$-k \sin \alpha = \sqrt{3}$ $k \cos \alpha = -1$	$k \sin \alpha = -\sqrt{3}$ $k \cos \alpha = -1$	(1) (2)			
5	squaring and adding:	$k^2 = (\sqrt{3})^2 + 1^2$	$k^2 = 3 + 1 = 4$	k = 2			
(dividing:	$\tan \alpha = \sqrt{3}$	acute $\alpha = 60^{\circ}$. A			
t	from (1) and (2)	sin α and cos α both	acute $\alpha = 60$ a negative, so α lies in 2^{rd}	u dra r			
		$\therefore \alpha = 180 + 60^\circ = 2$	240° - 26.				
]	Hence: $\sqrt{3} \cos x - \sin x = 2 \sin x$	sin (x – 240)	lesa:				
P	Using $2 \sin (x - 240) = 0$ $x = 240^{\circ}$ (because we are adding 240° , we solution -180° as well, we do not	$\sin (x - 243) = 5$ $\cos x$ to make sure w to need to go any furth	e cover all the range, so	0°, 180°, or 360° we need to consider the be then out of the range)			
-	$(2x - \alpha)$, find the maximum and sponding values for x in $0 \le x$		$4\cos 2x + 3\sin 2x + 5$				
]	$R\cos(2x - \alpha) = R\cos 2x\cos \alpha$	+ R sin 2x sin α					
(compare coefficients:	R sin $\alpha = 3$					
		R cos $\alpha = 4$					
S	squaring and adding:	$R^2 = 3^2 + 4^2$	$R^2 = 25$	R = 5			
(dividing:	$\tan \alpha = \frac{3}{4}$	acute $\alpha = 0.643$ rad				
S	sin α and cos α both positive, so	α is in first quadrant,	,				
]	Hence: $4 \cos 2x + 3 \sin 2x + 5$	can be expressed as:	$5\cos(2x - 0.643) + 5$				
]	Maximum value is:		$(43) = 0, 2\pi, \text{ or } 4\pi \text{ (since } 3.46 \text{ rad } (6.60 \text{ rad } - \text{dis})$				
]	Minimum value is: 0 when $(2x - 0.643) = \pi$ or 3π (since we have 2x and not x) when $x = 1.89$ rad or 5.03 rad.						