
- 1. eLF_3 loaded at the side of small subunit (SSU) \rightarrow prevent binding of large subunit (LSU)
- 2. eLF_1 loaded at "A" site \rightarrow prevent tRNA from binding at "A"
- 4.
- 6. Ribosome with bound $tRNA_i^{methionine}$ and eLF_2 binds to $m^7G 5'$ end of mRNA (ribosome binding site)
- 7. ATP is hydrolysed to ADP and $P_i \rightarrow tRNA_i$ moves along mRNA searching for the first AUG ------

Energy intensive \rightarrow because anabolising a.a. into highly ordered polypeptides decreases entropy!

- c. Elongation: Adding charged tRNA to "A" with elongation factor → nucleotides → peptide bond formation
 -EF1 (eukaryotex) = ECTU (bacteria), E52 (RuCryotes) = EF-G
- 9. EF1/EF-TU brings 2nd charged tRNA to "A" site and proofreads translation;
 - Checks whether the tRNA-amino acid match is correct
 - •
 - Correct matches have a narrowly-defined affinity for EF-TU
 → allow EF-TU to discriminate and select the correct ones into the ribosome
 - Monitors interaction (hydrogen bond) between anticodon of aminoacyl-tRNA and codon on mRNA at "A"
 - As aminoacyl-tRNA bends when bound to GTP-form of EF-TU → codon pairing, BUT not peptide bond formation → correct codon pairing gives GTP hydrolysis → EF-TU releases tRNA and amino acid is donated for protein synthesis ------
- 10. LSU catalyses peptide bond formation between 1st and 2nd amino acids

