Summary Thus Far

- A. Summary of Newton's Laws
 - a. $F_{net}=0$
 - b. F_{net}=ma
 - c. F_{AonB}=F_{BonA}
 - d. Larger mass=more inertia
- B. Types of Forces
 - a. Gravitational: mg, acts downwards
 - b. Tension: acts in a spring or cable, has the same magnitude all along the spring/cable, F_T or T
 - c. Normal: perpendicular to surface, F_N or N
 - d. Friction
- C. Friction
 - a. Force that acts between 2 surfaces in contact.
 - b. Static friction: keeps objects stationary when sliding would otherwise occur
 - c. Kinetic friction: when 2 surfaces are sliding against each other
 - d. Force is always in the direction that opposes motion or potential motion
 - e. F_f is less than or equal to uF_N where u=coefficient of friction
- D. Coefficient of Friction
- a. Static friction varies in magnitude so the object stays stationary
 b. Kinetic friction should be constant
 c. For most cases u_k will be hear than u.
 d. Is always position

 - d. Is always positive

A. Intro

Uniform Circ

- a. Something moving in a circle with a constant speed v
- b. Velocity is always tangential to the circle
- c. A=change in v/change in t
- d. The change in velocity will always point towards the center of the circle
- B. Centripetal Acceleration
 - a. Objects are kept on a circular path
 - b. $A_r=v^2/r$
 - c. Acceleration will always point towards the center of the circle
 - d. Velocity is always tangential to the circle (v_T)
 - e. Velocity and acceleration are always perpendicular
- C. Period and Frequency
 - a. Period-T: time it takes for one complete revolution around the circle
 - b. Frequency-f: number of revolutions per second
 - c. Are always inverses of each other
 - d. T=1/f
- D. Calculating Speed
 - a. V=distance/time=circumference/period=(2pir/T)
- E. The Dynamics of Uniform Circular Motion