SYLLABUS OF MATHEMATICAL METHODS (as per JNTU Hyderabad)

Name of the Unit	Name of the Topic
Unit-I Solution of Linear systems	Matrices and Linear system of equations: Elementary row transformations – Rank
	- Echelon form, Normal form - Solution of Linear Systems - Direct Methods - LU
	Decomposition from Gauss Elimination – Solution of Tridiagonal systems – Solution
	of Linear Systems.
Unit-II Eigen values and Eigen vectors	Eigen values, Eigen vectors - properties - Condition number of Matrix, Cayley -
	Hamilton Theorem (without proof) - Inverse and powers of a matrix by Cayley -
	Hamilton theorem – Diagonalization of matrix – Calculation of powers of matrix –
	Model and spectral matrices.
	Real Matrices, Symmetric, skew symmetric, Orthogonal, Linear Transformation -
Unit-III Linear Transformations	Orthogonal Transformation. Complex Matrices, Hermition and skew Hermition
	matrices, Unitary Matrices - Eigen values and Eigen vectors of complex matrices and
	their properties. Quadratic forms - Reduction of quadratic form to canonical form,
	Rank, Positive, negative and semi definite, Index, signature, Sylvester law, Singular
	value decomposition.
	Solution of Algebraic and Transcendental Equations- Introduction The Bisection
Unit-IV Solution of Non-	Method – The Method of False Position – The Iteration Method - Newton –Raphson
	Method Interpolation:Introduction in ors in Polynomial Interpolation - Finite
	differences- Forward din elence, Backward differences, Central differences, Symbolic
Jincor Systems	relations and separation of symbol-Difference equations - Differences of a
bre	Notinomial - Newton's Disculae for interpolation - Central difference interpolation
F1-	formulae - Gauss Central Difference Formulae - Lagrange's Interpolation formulae- B.
	Spline interpolation, Cubic spline.
Unit-V	Curve Fitting: Fitting a straight line - Second degree curve - Exponential curve -
Curve fitting &	Power curve by method of least squares.
Numerical	Numerical Integration: Numerical Differentiation-Simpson's 3/8 Rule, Gaussian
Integration	Integration, Evaluation of Principal value integrals, Generalized Quadrature.
Unit-VI	Solution by Taylor's series - Picard's Method of successive approximation- Euler's
Numerical	Method -Runge kutta Methods, Predictor Corrector Methods, Adams- Bashforth
solution of ODE	Method.
Unit-VII Fourier Series	Determination of Fourier coefficients - Fourier series-even and odd functions -
	Fourier series in an arbitrary interval - Even and odd periodic continuation - Half-
	range Fourier sine and cosine expansions.
Unit-VIII	Introduction and formation of PDE by elimination of arbitrary constants and
Partial	arbitrary functions - Solutions of first order linear equation - Non linear equations -
Differential	Method of separation of variables for second order equations - Two dimensional wave equation
Equations	

CONTENTS

UNIT-IV(b) **INTERPOLATION**

- > Introduction
- > Introduction to Forward, Back ward and Central differences
- > Symbolic relations and Separation of Symbols
- > Properties
- > Newton's Forward Difference Interpolation Formulae
- > Newton's Backward Difference Interpolation Formulae
- **Gauss Forward Central Difference Interpolation Formulae**
- Preview from Notesale.co.uk page 3 of 14 **Gauss Backward Central Difference Interpolation Formulae**