RELATIONS AND FUNCTIONS 3

Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T bethe set of all trianglesin aplanewith R arelationin T given by
R={(T,T,): T, iscongruentto T }. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T, T,)e R=T, iscongruenttoT,= T,iscongruentto T, = (T,, T,) € R. Hence,
R is symmetric. Moreover, (T, T,), (T,, T,) € R= T is congruentto T,and T, is
congruentto T,= T, iscongruentto T,= (T, T,)e R. Therefore Risan equwalence
relation.
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Example3 Let L betheset of al linesinaplaneand R betherelationin L defin
={(L, L) : L, is perpendicular to L }. Show that R is wmmetch@eC:D
reflexwe nor transmve

Solution Risnot reflexive, asaline L, can not beﬁ@&ﬁmt e, (Ll, L )
¢ R.Rissymmetricas (L, L)e
= L, isperpen £XLO ?) O

B p(i’é}sﬁ?ﬁ. "Ba0

Risnot tranditive. Indeed, if L, is perpendicular to L, and Fig1.1
L, isperpendicular to L., then L, can never be perpendicular to
L, Infact, L isparaleltoL,ie,(L,L)e R, (L, L)e Rbut(L,L)¢ R

Example 4 Show that the relation Rinthe set {1, 2, 3} givenby R={(1, 1), (2, 2),
(3,3), (1, 2), (2, 3)} isreflexive but neither symmetric nor transitive.

Solution Risreflexive, since (1, 1), (2, 2) and (3, 3) liein R. Also, R isnot symmetric,
as(1,2) e Rbut(2,1) ¢ R. Similarly, Risnot transitive, as(1,2) e Rand (2, 3) e R
but (1, 3) ¢ R.
Example 5 Show that the relation R in the set Z of integers given by

R={(a, b): 2 dividesa— b}
isan equivalencerelation.
Solution R isreflexive, as 2 divides (a—a) for al ae Z. Further, if (a, b) € R, then
2 dividesa—b. Therefore, 2 dividesb —a. Hence, (b, @) € R, which showsthat R is
symmetric. Similarly, if (a, b) € Rand (b, ¢) € R, thena—b and b —c are divisible by
2.Now, a—c=(a—b) + (b-c) iseven (Why?). So, (a—c) isdivisible by 2. This
showsthat R istransitive. Thus, R isan equivalencerelationin Z.
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1.4 Composition of Functionsand I nvertible Function

In this section, we will study composition of functions and the inverse of a hijective
function. Consider the set A of al students, who appeared in Class X of a Board
Examination in 2006. Each student appearing in the Board Examination isassigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arrangesto deface the
roll numbers of studentsin the answer scripts and assigns afake code number to each
roll number. Let B — N be the set of all roll numbersand C c N be the set of all code
numbers. Thisgivesriseto two functionsf: A — Bandg: B — Cgivenby f(a) =the
roll number assigned to the student a and g (b) = the code number assigned to therall
number b. In this process each student is assigned aroll number through the funct

and each roll number is assigned a code number through the function
combination of these two functions, each student iseventuall a@@&i umber
Thisleadsto thefollowing definition: w
Definition 8 Letf: A — B and g: functions. Th %%asition of
f and g, denoted by gqf, |s i‘:gnctl on 91’2%
preV\EHge”

Fig15

Example15Letf:{2,3,4,5 —{3,4,5 9 andg:{3,4,5,9} — {7, 11, 15} be
functions defined as f(2) = 3, f(3) = 4, f(4) = f(5) =5and g(3) = g(4) =7 and
g(5) = g(9) = 11. Find gof.

Solution We have gof(2) = g(f(2)) = g(3) = 7, gof(3) = g(f(3)) = g(4) =7,
gof (4) = g(f(4)) = 9(5 = 11 and gof (5) = g(5) = 11.

Example 16 Find gof and fog, if f : R - Rand g : R — R are given by f(X) = cos x
and g(x) = 3x2. Show that gof = fog.

Solution We have gof (X) = g(f(x)) = g(cos xX) = 3 (cos x)? = 3 cos® x. Similarly,
fog(x) = f(g(x)) = f(3x?) = cos (3x?). Note that 3cos? x # cos 3x?, for x = 0. Hence,
gof # fog.
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Definition 9 A function f: X — Y isdefined to be invertible, if there exists afunction
g:Y — Xsuchthat gof =1 andfog=1,. Thefunctiongiscalledtheinverseof f and
is denoted by .

Thus, if f isinvertible, then f must be one-one and onto and conversely, if fis
one-one and onto, then f must beinvertible. Thisfact significantly helpsfor proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actual inverse of f isnot to be determined.

Example 23 Let f: N — Y be afunction defined as f(x) = 4x + 3, where,
Y ={ye N:y=4x+ 3for somex e N}. Show that f isinvertible. Find the inverse.

(y-3)

Solution Consider an arbitrary element y of Y. By the definition of Y S 4x60

for some x in the domain N. This shows that X= — N by

o)Ncin

a(y)= (y 9 Now, gof(¥) = p( QW3§4X+3§ 3%

2 (§e3) 4%1 @Qe

y—3+3=Yy. Thisshowsthat gof =1

fog(y) =\(g (y))

and fog =1, which |mpI|esthat fisinvertible and g isthe inverse of f.

Example 24 LetY ={n?: ne N} c N. Consider f: N — Y asf(n) = n?2. Show that
fisinvertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form n?, for some n € N. This

impliesthat n = \/y . Thisgivesafunctiong:Y — N, defined by g(y) = \/y . Now,

2
gof(n) = g(m) = Jnz = nand fog(y) = f('y)=(y/y) =y, which shows that
gof =1, and fog = |,.. Hence, f is invertible with f *=g.

Example 25 Letf: N — R beafunction defined as f(x) = 4x2 + 12x + 15. Show that
f: N— S, where, Sistherange of f, isinvertible. Find the inverse of f.

Solution Let y be an arbitrary element of rangef. Theny = 4x2 + 12x + 15, for some

Jy 6 3

xin N, which impliesthat y = (2x + 3)2 + 6. This gives x — asy=6.

B\
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Jy 6 3
Let usdefineg: S— N by g(y) = Y >

Now gof(x) = g(f(x)) = g(4x®+ 12x + 15) = g((2x + 3)?> + 6)

_(V@e97+6-6)-3) (2xs3-3)

2 2
2

ad  fog(y) = f[((”‘;)‘3)]:[2(( y;6)‘3)+3j .6

= ((Jy-6)- 3+3)) $ \@-C
Hence, gof =1, and fog =I.. Th|S|mpI| ewithft=g.
Example 26 Consider f: N — N X) = 2X,
g(y) = 3y+4and h(2-= g ‘gxpnN Sh h (hog) of.

Solutio \
v ho(gof) (X) = h(gof (? Q (x))) = h(g(2¥)

=h(3(2x) +4) =h(éx +4) =sin(bx+4) x N.
Also,  ((hog)of) (x) = (hog) (f(x)) = (hog) (2¥) = h(g(2x))
=h(3(2x) + 4) =h(6x + 4) =sin (6x + 4), wXxe N.
This shows that ho(gof) = (hog) of.
Thisresult istruein general situation aswell.
Theorem 1Iff: X —-Y,g:Y - Zandh:Z — Sarefunctions, then
ho(gof) = (hog) of.

We have
ho(gof) (x) = h(gof (x)) = h(g(f(x))), vxin X
and (hog) of (X) = hog(f (X)) = h(g(f(X))), vxin X.
Hence, ho(gof) = (hog)of.

Example 27 Consider f: {1, 2,3} - {a, b, c} andg: {a, b, c} — {apple, bal, cat}
defined as f(1) = a, f(2) = b, f(3) = ¢, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f *, g* and (gof)™ and show that
(gof) * = f “og

o V¥
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Let f: R — R bethe Signum Function defined as

1 x>0
f(x)=410, x=0
-1 x<0
and g : R — R bethe Greatest Integer Function given by g (x) = [X], where [X] is
greatest integer less than or equal to x. Then, does fog and gof coincidein (0, 1]?
Number of binary operations on the set {a, b} are
(A) 10 (B) 16 (© 20 (D) 8

Summary CO ‘U\(

In this chapter, we studied different types of relations and qu’ ﬁ ation,

compoasition of functions, invertible functionsand bipar

ain features

of this chapter are as follows:

L 2 2R 2 2R 4

*

*

Empty relation isthe relatl |®GS§1 by R = ch(X
Universal rel s}e Rin X giv ’h
@3 |nX|?? (a a)e Ryae X.
s

r|c relationRin X'i isfying (a, b) € Rimplies(b, @) € R.
Transitive relation R in X is arelation satisfying (a, b) € Rand (b, ¢) € R
impliesthat (a, c) € R.

Equivalencerelation R in X isarelation which is reflexive, symmetric and
trangtive.

Equivalence class[a] containing ae X for an equivalencerelationRin X is
the subset of X containing all elements b related to a.

A function f : X — Y is one-one (or injective) if

f(x) =f(x) =X, =X, V X, X, € X.

Afunctionf: X — Y isonto (or surjective) if givenany y e Y, 3 xe X such
that f(X) =y.

A functionf: X — Y is one-one and onto (or bijective), if f is both one-one
and onto.

The composition of functionsf: A — B and g : B — C is the function
gof : A — Cgivenby gof(x) = g(f(X)) v x e A.

A function f: X — Y isinvertibleif 3 g:Y — X such that gof = I, and
fog=1,.

A functionf: X — Y isinvertibleif and only if f is one-one and onto.



