
RELATIONS AND FUNCTIONS 3

Definition 4 A relation R in a set A is said to be an equivalence relation if R is
reflexive, symmetric and transitive.

Example 2 Let T be the set of all triangles in a plane with R a relation in T given by
R = {(T1, T2) : T1 is congruent to T2}. Show that R is an equivalence relation.

Solution R is reflexive, since every triangle is congruent to itself. Further,
(T1, T2) ∈ R ⇒ T1 is congruent to T2 ⇒ T2 is congruent to T1 ⇒ (T2, T1) ∈ R. Hence,
R is symmetric. Moreover, (T1, T2), (T2, T3) ∈ R ⇒ T1 is  congruent to T2 and T2 is
congruent to T3 ⇒ T1 is congruent to T3 ⇒ (T1, T3) ∈ R. Therefore, R is an equivalence
relation.

Example 3 Let L be the set of all lines in a plane and R be the relation in L defined as
R = {(L1, L2) : L1 is perpendicular to L2}. Show that R is symmetric but neither
reflexive nor transitive.

Solution R is not reflexive, as a line L1 can not be perpendicular to itself, i.e., (L1, L1)
∉ R. R is symmetric as (L1, L2) ∈ R
⇒ L1 is perpendicular to L2

⇒ L2 is perpendicular to L1

⇒ (L2, L1) ∈ R.
R is not transitive. Indeed, if L1 is perpendicular to L2 and

L2 is perpendicular to L3, then L1 can never be perpendicular to
L3. In fact, L1 is parallel to L3, i.e., (L1, L2) ∈ R, (L2, L3) ∈ R but (L1, L3) ∉ R.

Example 4 Show that the relation R in the set {1, 2, 3} given by R = {(1, 1), (2, 2),
(3, 3), (1, 2), (2, 3)} is reflexive but neither symmetric nor transitive.

Solution R is reflexive, since (1, 1), (2, 2) and (3, 3) lie in R. Also, R is not symmetric,
as (1, 2) ∈ R but (2, 1) ∉ R. Similarly, R is not transitive, as (1, 2) ∈ R and (2, 3) ∈ R
but (1, 3) ∉ R.

Example 5 Show that the relation R in the set Z of integers given by
R = {(a, b) : 2 divides a – b}

is an equivalence relation.

Solution R is reflexive, as 2 divides (a – a) for all a ∈ Z. Further, if (a, b) ∈ R, then
2 divides a – b. Therefore, 2 divides b – a. Hence, (b, a) ∈ R, which shows that R is
symmetric. Similarly, if (a, b) ∈ R and (b, c) ∈ R, then a – b and b – c are divisible by
2. Now, a – c = (a – b) + (b – c) is even (Why?). So, (a – c) is divisible by 2. This
shows that R is transitive. Thus, R is an equivalence relation in Z.

Fig 1.1

© N
CERT

no
t to

 be
 re

pu
bli

sh
ed

Preview from Notesale.co.uk

Page 3 of 32



MATHEMATICS12

1.4  Composition of Functions and Invertible Function
In this section, we will study composition of functions and the inverse of a bijective
function. Consider the set A of all students, who appeared in Class X of  a Board
Examination in 2006. Each student appearing in the Board Examination is assigned a
roll number by the Board which is written by the students in the answer script at the
time of examination. In order to have confidentiality, the Board arranges to deface the
roll numbers of students in the answer scripts and assigns a fake code number to each
roll number. Let B ⊂ N be the set of all roll numbers and C ⊂ N be the set of all code
numbers. This gives rise to two functions f : A → B and g : B → C given by f (a) = the
roll number assigned to the student a and g (b) = the code number assigned to the roll
number b. In this process each student is assigned a roll number through the function f
and each roll number is assigned a code number through the function g. Thus, by the
combination of these two functions, each student is eventually attached a code number.

This leads to the following definition:
Definition 8 Let f : A → B and g : B → C be two functions. Then the composition of
f and g, denoted by gof, is defined as the function gof : A → C given by

gof (x) = g(f (x)), ∀  x ∈ A.

Fig 1.5

Example 15 Let f : {2, 3, 4, 5} → {3, 4, 5, 9} and g : {3, 4, 5, 9} → {7, 11, 15} be
functions defined as f (2) = 3, f (3) = 4, f (4) =  f (5) = 5 and g (3) = g (4) = 7 and
g (5) =  g (9) = 11. Find gof.

Solution We have gof (2) =  g (f (2)) = g (3) = 7, gof (3) =  g (f (3)) = g (4) = 7,
gof (4) =  g (f (4)) = g (5) = 11 and gof (5) =  g (5) = 11.

Example 16 Find gof and fog, if f : R → R and g : R → R are given by f (x) = cos x
and g (x) = 3x2. Show that gof  ≠ fog.

Solution We have gof (x) =  g (f (x)) = g (cos x) = 3 (cos x)2 = 3 cos2 x. Similarly,
fog (x) =  f (g (x)) =  f (3x2) = cos (3x2). Note that 3cos2 x ≠ cos 3x2, for x = 0. Hence,
gof ≠ fog.
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RELATIONS AND FUNCTIONS 15

Definition 9 A function f : X → Y is defined to be invertible, if there exists a function
g : Y → X such that  gof = IX and fog = IY. The function g is called the inverse of f  and
is denoted by f –1.

Thus, if f is invertible, then f must be one-one and onto and conversely, if f is
one-one and onto, then f must be invertible. This fact significantly helps for proving a
function f to be invertible by showing that f is one-one and onto, specially when the
actual inverse of f is not to be determined.

Example 23 Let f : N → Y be a function defined as f (x) = 4x + 3, where,
Y = {y ∈ N : y = 4x + 3 for some x ∈ N}. Show that f is invertible. Find the inverse.

Solution Consider an arbitrary element y of Y. By the definition of Y, y = 4x + 3,

for some x in the domain N . This shows that 
( 3)

4
yx −

= . Define g : Y → N  by

( 3)( )
4

yg y −
= . Now, gof (x) = g (f (x)) = g (4x + 3) = 

(4 3 3)
4

x x+ −
=  and

fog (y) = f (g (y)) = f ( 3) 4 ( 3) 3
4 4

y y− −⎛ ⎞ = +⎜ ⎟
⎝ ⎠

 = y – 3 + 3 = y. This shows that gof = IN

and fog = IY, which implies that f is invertible and g is the inverse of f.

Example 24 Let Y = {n2 : n ∈ N} ⊂ N . Consider f : N  → Y as f (n) = n2. Show that
f is invertible. Find the inverse of f.

Solution An arbitrary element y in Y is of the form n2, for some n ∈ N . This

implies that n = y . This gives a function g : Y → N , defined by g (y) = y . Now,

gof (n) = g (n2) = 2n = n and fog (y) = ( ) ( )2
f y y y= = , which shows that

gof = IN and fog = IY. Hence, f is invertible with f –1 = g.

Example 25 Let f : N  → R be a function defined as f (x) = 4x2 + 12x + 15. Show that
f : N→ S, where, S is the range of f, is invertible. Find the inverse of f.

Solution Let y be an arbitrary element of range f. Then y = 4x2 + 12x + 15, for some

x in N, which implies that y = (2x + 3)2 + 6. This gives 
   6 3

2
y

x
  

 , as y ≥ 6.
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MATHEMATICS16

Let us define g : S → N by g (y) = 
    6 3

2
y  

.

Now gof (x) = g (f (x)) = g (4x2 + 12x + 15) = g ((2x + 3)2 + 6)

=
)( )( ( )2(2 3) 6 6 3 2 3 3

2 2

x x x
+ + − − + −

= =

and fog (y) =
( )( ) ( )( ) 2

6 3 2 6 3
3 6

2 2
y y

f
⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟ ⎜ ⎟= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= ( )( )) ( )
2 2

6 3 3 6 6 6y y− − + + = − +  = y – 6 + 6 = y.

Hence, gof = IN and fog =IS. This implies that f is invertible with f –1 = g.

Example 26 Consider f : N → N, g : N → N and h : N → R defined as f (x) = 2x,
g (y) = 3y + 4 and h (z) = sin z, ∀ x, y and z in N. Show that ho(gof ) = (hog) of.

Solution We have

   ho(gof) (x) = h(gof (x)) = h(g (f (x))) = h (g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4) .x  N

Also,      ((hog)o f ) (x) = (hog) ( f (x)) = (hog) (2x) = h ( g (2x))
= h(3(2x) + 4) = h(6x + 4) = sin (6x + 4), ∀ x ∈ N.

This shows that ho(gof) = (hog) o f.
This result is true in general situation as well.
Theorem 1 If f : X → Y, g : Y → Z and h : Z → S are functions, then

ho(gof ) = (hog) o f.
Proof We have

ho(gof ) (x) = h(gof (x)) = h(g (f (x))), ∀ x in X
and (hog) of (x) = hog (f (x)) = h(g (f (x))), ∀ x in X.
Hence, ho(gof) = (hog) o f.

Example 27 Consider f : {1, 2, 3} → {a, b, c} and g : {a, b, c} → {apple, ball, cat}
defined as f (1) = a, f (2) = b, f (3) = c, g(a) = apple, g(b) = ball and g(c) = cat.
Show that f, g and gof are invertible. Find out f –1, g–1 and (gof)–1 and show that
(gof) –1 = f –1o g–1.
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RELATIONS AND FUNCTIONS 31

18. Let f : R → R be the Signum Function defined as

1, 0
( ) 0, 0

1, 0

x
f x x

x

>⎧
⎪= =⎨
⎪− <⎩

and g : R → R be the Greatest Integer Function given by g (x) = [x], where [x] is
greatest integer less than or equal to x. Then, does fog and gof coincide in (0, 1]?

19. Number of binary operations on the set {a, b} are
(A) 10 (B) 16 (C) 20 (D ) 8

Summary
In this chapter, we studied different types of relations and equivalence relation,
composition of functions, invertible functions and binary operations. The main features
of this chapter are as follows:

Empty relation is the relation R in X given by R = φ ⊂ X × X.
Universal relation is the relation R in X given by R = X × X.
Reflexive relation R in X is a relation with (a, a) ∈ R ∀ a ∈ X.
Symmetric relation R in X is a relation satisfying (a, b) ∈ R implies (b, a) ∈ R.
Transitive relation R in X is a relation satisfying (a, b) ∈ R and (b, c) ∈ R
implies that (a, c) ∈ R.
Equivalence relation R in X is a relation which is reflexive, symmetric and
transitive.
Equivalence class [a] containing a ∈ X for an equivalence relation R in X is
the subset of X containing all elements b related to a.
A function f : X → Y is one-one (or injective) if
f (x1) = f (x2) ⇒ x1 = x2 ∀  x1, x2 ∈ X.
A function f : X → Y is onto (or surjective) if given any y ∈ Y, ∃ x ∈ X such
that f (x) = y.
A function f : X → Y is one-one and onto (or bijective), if f is both one-one
and onto.
The composition of functions f : A → B and g : B → C is the function
gof : A → C given by gof (x) = g(f (x))∀  x ∈ A.
A function f : X → Y is invertible if ∃ g : Y → X such that gof = IX and
fog = IY.
A function f : X → Y is invertible if and only if f is one-one and onto.
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