Topics

Topic I—Algebra

	0	
1.1	The <i>n</i> th term of an arithmetic sequence	$u_n = u_1 + (n-1)d$
	The sum of <i>n</i> terms of an arithmetic sequence	$S_n = \frac{n}{2}(2u_1 + (n-1)d) = \frac{n}{2}(u_1 + u_n)$
	The <i>n</i> th term of a geometric sequence	$u_n = u_1 r^{n-1}$
	The sum of <i>n</i> terms of a finite geometric sequence	$S_n = \frac{u_1(r^n - 1)}{r - 1} = \frac{u_1(1 - r^n)}{1 - r}, \ r \neq 1$
	The sum of an infinite geometric sequence	$S_{\infty} = \frac{u_1}{1-r}, \mid r \mid < 1$
1.2	Exponents and logarithms	$a^x = b \Leftrightarrow x = \log_a b$
	Laws of logarithms	$\log_c a + \log_c b = \log_c ab$
		$\log_{c} a + \log_{c} b = \log_{c} ab$ $\log_{c} a - \log_{c} b = \log_{c} \frac{a}{b}$ $\log_{c} a^{r} = r \log_{c} a \text{ Otessale.}$
	Change of base	$\log_b a = \frac{\log_c a}{\log a}$ 5 of 9
	previe.	Day
1.3	linomial coefficient	$\binom{n}{r} = \frac{n!}{r! (n-r)!}$
	Binomial theorem	$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$