Ksp

To begin:

- Solubility (S)
- ✤ K_{sp} (Solubility product constant)

In a reaction: $(Cation)_n$ $(Anion)_m(s) \Leftrightarrow n$ Cation(aq) + m Anion(aq):

 $K_{sp} \text{ or } Q = \text{[Cation]}^{n} \text{[Anion]}^{m}$

At a certain temperature: All salts have a given constant K_{sp}

If:

 $Q = K_{sp}$: Solution is saturated

 $Q > K_{sp}$: A solid precipitate is formed in the reaction

Q< K_{sp} : Solution is considered unsaturated

Either gram solubility (how many grams in a giver of use) or MOLAR solubility (S, how many moles per liter of saturated solution) Relationships between Sund K_{sp} 1. Write or equation where the solution of the solution o

- chapters)
- 2. Write an expression to help solve for K_{sp}
- 3. Write out concentration in terms of S (you can get that by using stoichiometry)
- 4. Substitute the concentrations into the K_{sp} expression

Example:

Say you are given AgCl (K_{sp} value = $1.8*10^{-10}$) Determine the molar solubility

- $AgCl(s) \Leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$ 1)
- 2) $Ksp = [Ag^+][Cl^-]$
- 3) $[Ag^+] = S, [Cl^-] = S$
- $Ksp = S^2$ 4)

 $1.8*10^{(-10)} = S^2$ so, $S=1.3*10^{-5}$

Solubility can also be expressed in g/L, but is mainly expressed in mol/L (M)

K_{sp} can also be used to predict whether or not a precipitate will form, but Q has to be greater than Ksp