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Figure 4.8: Bounded region in R2, enclosed in a rectangle.

Definition 330 If
∫∫
R

F (x, y) dA exists, then we define

∫∫
D

f (x, y) dA =

∫∫
R

F (x, y) dA

This definition makes sense since, as we can see in figures 4.9 and 4.10, the
portion of the graph of F which is not 0 is identical to the graph of f. The
portion which is 0 will not contribute to the integral. In particular, this means
that for our definition, it does not matter which rectangle R we select. In the

case, f (x, y) ≥ 0,
∫∫
D

f (x, y) dA corresponds to the volume of the solid which

lies above D and below the graph of z = f (x, y).

We still must be able to compute
∫∫
R

F (x, y) dA. This is not always a simple

task. But it is for certain regions, which we consider next.

4.3.2 Regions of Type I

When describing a region, one has to give the condition x and y must satisfy
so that a point (x, y) lies in the region. A region is said to be of type I if x is
between two constants, and y is between two continuous functions of x. More
precisely, we have the following definition:

Definition 331 A plane region D is said to be of type I if it is of the form

D =
{

(x, y) ∈ R2 | a ≤ x ≤ b and g1 (x) ≤ y ≤ g2 (x)
}
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Figure 4.15: Region between y = x and y = x2
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Method 1 Treating Ω as a type I region.
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Method 2 Treating Ω as a type II region.

∫∫
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Example 349 Evaluate
∫∫

Ω

cos πx
2

2 dA where D is the region bounded by x = 1,

y = 0 and y = x.
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