lim -TX = not real = (ONE) lim TX = (BNE) (no left side) * DC conclus X -7 0 $\lim_{\chi \to 2} \frac{\chi^2 + u}{\chi + v} = \frac{2^3 + v}{2^{+1}} = \frac{3}{3}$ bundshipld 3110 = unditamond Hew from 3 of when you have induterminate - find reational exposure. 2.0 2.909 2,9999 = lim x+3 = Co very close to co X-73

Piecewise Functions

can be solved either graphically or algebraically.

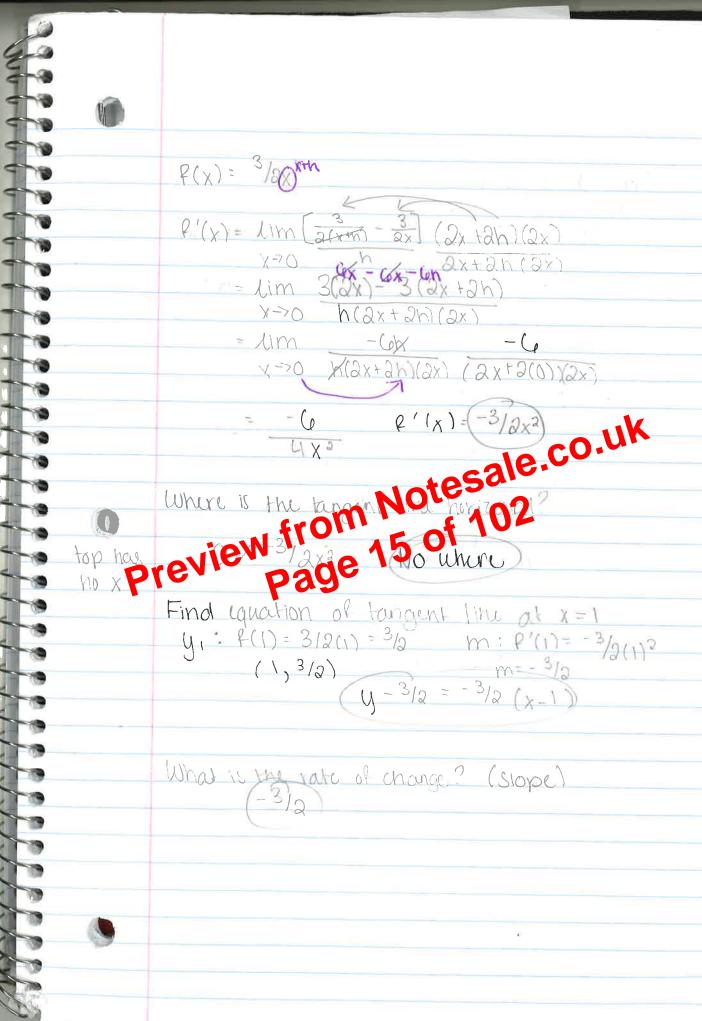
 $P(x) = \begin{cases} 2+x^{2} & x \leq 0 \\ 2-x^{2} & x > 0 \end{cases}$

1

X	W= 21X	X	9:3-1
0	2	MO	2
-	1	١	1
-2	0	2	0

Dot win -> fill in Moll

 $\frac{\lim_{x \to 0} f(x) = 2 \pi K}{\text{Notesian}} = \frac{\lim_{x \to 0} f(x) = 2 \pi K}{1020^{\frac{1}{2}}} = \frac{1}{2} \frac{1}{2} = 0$ Preview from 8 of 1020 $\frac{1}{2}$


Page 8 of 1020

R(0) = 270=2 contact x=0

Algebra: 15 lim (2+x) = 2+0 $x \to 0$ -2 $\lim (2-x) = 2-0$ 1 =>09 = 2 lim f-(x) = 2 ~ X=>0 F(0)=2+0=2

& canal = cont. at x=0

2-3			
	Last Day of Limits!		
979			
	The rate of change of one quantity with vespect to another is mathematically equivilent		
-	to the slope of the rangent line		
10			
1	beneficiaries in yet		
	t= 0 > 1990 (in millions)		
-			
	10 35		
-	In ux 2000 => t=10		
	f(x) = 10/20 = .5		
-	Motes		
	Thorn from -X3 Of 10		
Pr	evier ade 1.5		
•	In yr 2000 -> t=10 f(x) = 10/20 = .5 Notesale.co.uk f(x) = 10/20 = .5 Notesale.co.uk 102 eView 10255 - 1,500,000 Average rate of change of f(x) over the interval		
9	Average rate of change : of f(x) over the interval		
	Starting [x xth] is:		
	e(x+h) - P(x) = P(x+h) - P(x)		
# difference	$(\chi + h) - \chi$		
A Witer	Tristantaneous rate of change : of f(x) we respect		
	to x is: (im f(x+n)-f(x)		
4			
	$f'(x) = \lim_{x \to \infty} f(x+h) - f(x)$ subset of dimerio $f(x)$		
	f' > fprime of x		
	1st de ivative		
	Instantaneous rate of change: of $f(x)$ we respect to x is: $f(x)$ by $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ and $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x)$ are $f(x)$ and $f(x)$ are $f(x$		

Chain Rull for Power Functions y = [P(X)]" P(X) ≠ plain x y'= n[f(x)n-1 . f'(x) $ext{lX}$. $e(x) = (x^4 - 5)^5$ $e^2(x) = 5(x^4 - 5)^4 \cdot 4x^3$ (+(x) = 20x3 (x4-5)4 P(X)=(5X+2)3 $f(x) = 3(5x+2)^{2} \cdot 5$ $f'(x) = 15(5x+2)^{2} \cdot 5$ $f(x) = 15(5x+2)^{2} \cdot 102$ f(x) = 102 f(x) = 102P(x)= ~4-x) 1/2 P?(x) = 1/2 (4-x) 1/2 . (-1) $f(x) = (2x+1)^2 (x^2-6)$ $f'(x) = (2x+1)^2 \cdot (2x) + 2(2x+1)(2) \cdot (x^2-6)$ = $(2x+1)^2 \cdot (2x) + 4(2x+1)(x^2-6)$ = 2 (2x+1) [(2x+1)(x)+2(x2-6)] 47(x) = 2(2x+1) (4x2+x-12)

gorn,

STREET SELECTIFICATE SELECTIFICATION OF THE STREET

0

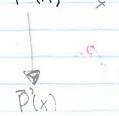
$$P(x) = b^{x} \qquad P(x) = e^{x}$$

$$P(x) = e^{x} \qquad P(x) = 5e^{x}$$

$$P(x) = e^{x} \qquad P(x) = 5e^{x}$$

$$P(x) = 4e^{x} + 8x^{2} + 7x - 14$$

$$P(x) = 4e^{x} + 16x + 7$$


$$P(x) = 4e^{x} + 16x$$

XV-erages

Avg cost, ru, profit:

$$\overline{C}(x) = \frac{C(x)}{x} \overline{R}(x) = \frac{P(x)}{x} \overline{P}(x) = \frac{P(x)}{x}$$

marginals

(x) = (50,000 + 30x)

avg. cost & marginal cost function eval. x=1000

C(K) = 150,000x-1+30 esale.Co.UK

C(1000) = 8180 NOwg. tvo 205+8180

Preview -150,003x10

Average cost is decreasing by A.15 When 1001 are produced the average cost is \$179.85

R(x) = 300x - 1/30x2 -> avg. rev + marginal x = 1000

R(x) = 300x - 1/30x81 R(X) = 300 - 1/30x R(1000) = \$260 UT

12 (x) = -1/30 Awago revenue is dicrasing by 1.03 R (1000)=-.03 When 1001 are produced the average revenue 15 \$ 26 6. 64

Cobb-Douglas Productivity Function

top H = 1

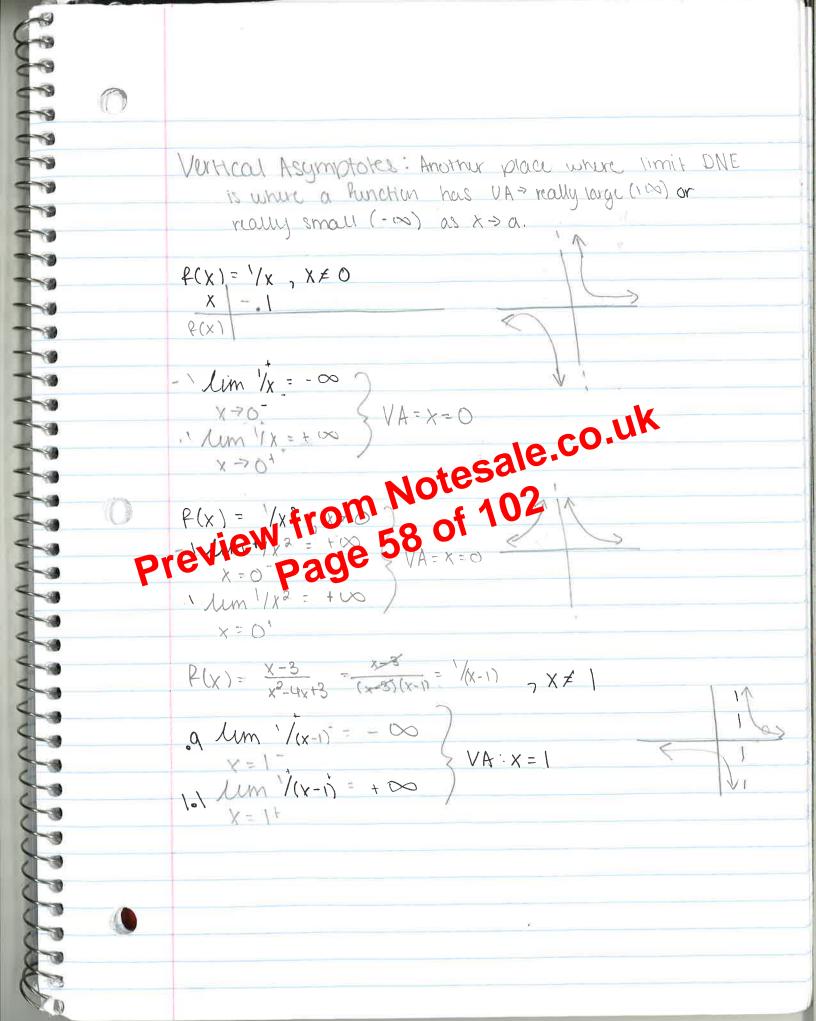
P(X,y) = axoy1.0

14 d6D

economists up this to determine to of units produced from the whilesation & units of labor & y units of capital

O. The the company currently uses loop until labor and 2000 units of capital file C. of units of star proclacy of tession (1200). The company of star proclacy of tession (1200). Page 40 1011.01 & (17,411) white of steel

Partial Derivatives


When we take the derivative with respect to I of the variable and hold the other variable constant we obtain partial

Px (xyy) = we take derivative of xs and treat ys as constants

fy (x24) > we take derivate of ye and treat xs as considerate

ex. $f(x,y) = 3x^2y - 4y$ $f_x(x,y) = 3(2x)y - 0$ = (6xy)

 $f_{y}(x,y) = 3x^{2}(1) - 4(1)$

Mnti-Derivative

A function F is an antidevivative of P(x) if F(x) = f(x)

 $f'(x) = x^{4}$ $f(x) = 1/5x^{5}$ $f(x) = 1/5x^{5} + 3$ $f(x) = 1/5x^{5} + 3$ $f(x) = 1/5x^{5} - 1/3$ $f(x) = 1/5x^{5} - 1/3$ $f(x) = 1/5x^{5} - 1/3$

If g(x) is the antidurivative of function

preview from F(x)= g(x) +c co. UK

Preview from 73 of 102

Preview page 73 of 102

The process of finding the antiduwative is called auticlifferation or integration

 $\int_{X}^{x} f(x) dx = F(x) + C$ Integral $\rightarrow \int X^4 dX = 15 X^5 + C$ respect to x

Rules: Constant Rule: Stdx = tx +c $\int dx = 1x + c$

Power Rule: Sxndx = xn+1 + c St3 dt = +++ + c = (+++c) $S = \frac{X}{1} + C = (-X - 1) + C$ Constant multiplier Rule: SXXndX = X THIT +C $\int 3x^{4}dx = 3\frac{x^{5}}{5} + C = \underbrace{\frac{3}{5}x^{5} + C}_{5/8}u^{3/5} + C = \underbrace{\frac{3}{5}x^{5} + C}_{5/$ $S(ax^{5}-3x^{3}+1)dx = 2\frac{x^{6}}{6}-3\frac{x^{3}}{3}+1x+c$ $\int (3\sqrt{x})^{\frac{3}{4}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} \frac{3}{\sqrt{x}} + C = (\sqrt{2}x^{\frac{3}{2}/3} + 2)\sqrt{x} + C$ $\int \frac{x_{1}-8x_{2}}{x_{3}} dx = \int \frac{3}{(x_{3}-8x_{1})} dx$ $\int (83\sqrt{x} - \frac{C_0}{\sqrt{x}}) dx = \int (8x^{1/3} - (0x^{-1/3})) dx$ $= \frac{1}{4} \frac{2}{5} \frac{x^{1/3}}{\sqrt{x}} - \frac{2}{5} \frac{x^{1/3}}{\sqrt{x}} + C = \frac{2}{5} \frac{x^{1/3}}{\sqrt{x}} - \frac{1}{5} \frac{x^{1/3}}{\sqrt{x}} + C$

 $\frac{\chi_{3}}{\lambda_{4}} - \frac{\chi_{8}}{8\chi_{3}}$

11-Substitution

Reverse the Chain Rule $\int_{\mathbb{R}^{k}} \left[\int_{\mathbb{R}^{k}} \int_{\mathbb{R}^{k}}$

S[P(x)] of $\sigma(x)dx = \ln |P(x)| + c$

3.

review 3 age of the country of the control of the country of the c

Qu = Gx2dx

Sterndx = See 5dx

 $u = 5x = Se^{u} du$ du = 5dx

July dx 3 (yrx) axdx

 $\frac{\alpha = 4 + x^2}{du = 2x dx} = \frac{5 u^2 du}{du = 2x dx} = \frac{10 |4 + x^8| + c}{2 |4 + x^8| + c}$

4. S (x2+2x+5)5 (x+1) dx U= x2 +2x+5)= u5. /a du = 1/2 uc + c (12 (x2+2x+5) c + c du = 2x+2 dx Yadu = (XH) dx 5. ((4x-6)(x2-3x+7)-4dx $\int (\dot{x}^{2}-3x+7)^{-4} (4x-6)dx$ $u = x^{2}-3x+7$ du = 2x-2doM 2du = 2x-2doM 2de = 2x-26. Se=3x dx = Sea. - 1/3 du = -1/3 en + c u = -3x = $-\frac{1}{3}e^{3x} + c$ $\frac{du}{3} = \frac{3}{3} dx$ 7. S + 2-9 ax - S (x2-9) x dx u=x2-9 du= 2xdx Su-1. Yadu (12 ln 1x2-91+c) 'ladu = xdx

1 CONT. N. (X (X+4)3 dX = 4: X14 -> 4-4: X J 43 (4-4) du du: dx Juy-443 che = (x+4)5 = (x+4)4+c = 5-44 +c $P(x) = \int_{-10}^{2} x^{2} dx otesa(x) = [0x^{-1} + 10x^{-1}]$ $P(x) = \frac{1}{10} x^{2} dx otesa(x) = [0x^{-1} + 10x^{-1}]$ $P(x) = \frac{1}{10} x^{2} dx otesa(x) = [0x^{-1} + 10x^{-1}]$ Page 89 of 102 b. (1)(x)=x3+x f(2)=5 $b(x) = \frac{\pi}{x_0} + \frac{3}{x_0} + c$ $b(x) = \frac{\pi}{x_0} + \frac{3}{x_0} + c$ $b(x) = \frac{\pi}{x_0} + \frac{3}{x_0} + c$ $b(x) = \frac{\pi}{x_0} + \frac{3}{x_0} + c$ 3. a. Sa (5-16-3) dx

#8 4. V'(t) = 500(t-12) 0 < t < 10 a. Find total loss in value during the first 5 yr V(4) = (3 500 (4-12) OF = (8-33,750 6. Find average loss over the first 5 gr $\frac{1}{5-0}$ = $\frac{1}{5}$ $\int_0^5 500 (t-12) dt = 1 - 4750$ Auraschierco 1, 750

a. Benrott of oth Mot 202 10 years

Preview 1 = 020 910 t + 5 dt = (19,318)

bandti b. 20-10 = 10 S20 100 t= +5dt = (11931.5 painty #9+10

you wish to have \$ 20,000 for a down payment on a none but you only have \$15,000 You saved the a 15,000 as 10% comp. quarterly How long until you have \$20,000?

A= P(1+C)n

(= R/m n= mt

20000 = 15,000 (1+ 20)(46) In 1.3333 =M. 0254E Un (1.833)/4 > tesalsh (.025)

Un (1.833)/4 > tesalsh (.025)

Preview from 0 102

Effection 0 1 In(13333)= 4 t In(025)

Effective Rate (annual percentage yield) Simple interest rate that produces same negults as compainded rate in 1 yr Rue = (1 + R/m)m-1 Rept = eR-1 cont.

Find the effective rate 1. 10% comp. monthly

Refp = (1 + 10/12) 13-1 - 1047 (10,47%)

2 9% comp cont. 12018 = 6.00 = 9.420%

Present value: How much should you deposit vow in order to withdraw a su amt each period for a set the of yes

DA= DW+ [1-(1+5)-4]

How melch should you deposit now in order to withdraw \$1000 each mo for 2 urs

At 12% comp. cont?

N= 24

I%= 12

e.co.uk

Preview FV- 08 01= # of pay - PV
1000 (24) - 21, 243 39

- 1000 (24) - 21, 243 39

- 1000 (24) - 21, 243 39

End

Amortization: when a loan is repaid in regular installments for a set # of yes. USC PV formula

ex. A family puys a \$180,000 condo. Their pay 10% and finance at 4.5% comp. monthly for 30 yrs What is the monthly payment

Down = \$18,000 PV = \$162,000

I = 820.83 (300) - 162,000 = 18133,493,800

168,000 \$820.83)