The overall equation for aerobic respiration is the same as for the complete combust ${\rm C_6H_{12}O_6}.$	stion of
(i) Write the equation for the aerobic respiration of C ₆ H ₁₂ O ₆ .	
$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O \checkmark$	[1]
(ii) Explain, in terms of bond breaking and bond forming, why this reaction is exother	me CO.
(ii) Explain, in terms of bond breaking and bond forming, why this reaction is exother Bond breaking absorbs energy AND bond forming releases to Some energy ✓ More energy released than abound ✓	5
More energy released than abound y page 5	
3	[2]
The enthalpy change of formation, $\Delta H_{\rm f}$, of glucose, ${\rm C_6H_{12}O_6}$, cannot be determined directly. The equation for this enthalpy change is shown below.	
$6C(s) + 6H_2(g) + 3O_2(g) \rightarrow C_6H_{12}O_6(s)$	
Suggest why the enthalpy change of formation of $\mathrm{C_6H_{12}O_6}$ cannot be determined directly.	
Would make carbon dioxide and water instead	
OR activation energy (too) high OR rate is (too) slow	
OR do not react together ✓	

An important reaction in the manufacture of nitric acid is the catalytic oxidation of ammonia.

$$4NH_3(g) + 5O_2(g) \iff 4NO(g) + 6H_2O(g)$$
 $\Delta H = -909 \text{ kJ mol}^{-1}$

(a) Low pressures and low temperatures would give the maximum equilibrium yield of NO.

Low pressure because more (gas) molecules on right hand side of equation **OR** low pressure because ΔV = positive (125 Low temperature because the (forward) terc(150 ls exothermic ✓ [2]

b) The actual conditions used in the catalytic decidation of ammonia include 900 °C and an increase in pressure.

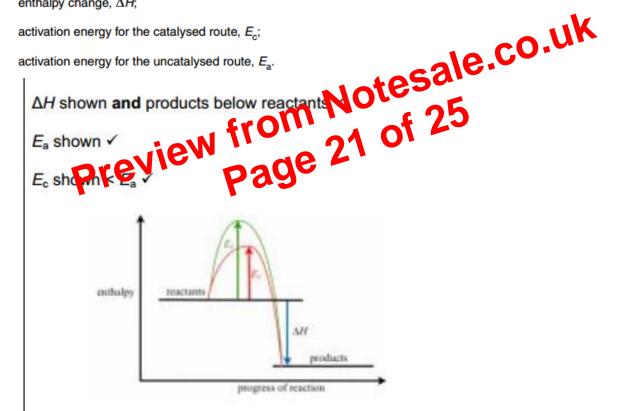
Suggest why these conditions are a contract.

Increased pressure speeds up reaction / ora ✓

900 °C increases the rate **OR** increased temperature speeds up reaction / ora ✓

Idea that high enough temperature without compromising yield **OR** idea that high enough pressure without compromising yield ✓

In the chemical industry methanol, CH₃OH, is synthesised by reacting together carbon monoxide and hydrogen in the presence of copper, zinc oxide and alumina which act as a catalyst. This is a reversible reaction.


$$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -91 \text{ kJ mol}^{-1}$

low temperature as (fo

(b) Explain why the actual conditions used in the chemical industry might be different from those in (a) above.

Too expensive to use a high pressure ✓ Too slow to use a low temperature ✓

- (ii) Using the axes below, sketch an enthalpy profile diagram for an exothermic reaction to show how a catalyst provides an alternative reaction route with a lower activation energy. Include on your diagram labels for:
 - enthalpy change, ΔH ;

