- Simple Distillation ٠
 - Separates mixtures based on boiling point
 - Separating salt from water
- Fractional Distillation
 - Separation of a mixture into it's different parts based on boiling points
 - Getting different types of gas/fuel from crude oil
- Centrifugation
 - Spinning the sample to cause the denser materials to go to the bottom
 - Separating plasma in blood

Properties of Matter

- Law of Conservation of Matter: In chemical reactions the total mass of the products must equal the total mass of the reactants.
- Physical Properties
 - <u>Color</u>
 - Odor
 - Luster (to be shiny or glossy)
 - Color Odor Luster (to be shiny or glossy) Malleability (ability of the sublt in the be beaten into thin sheets) •
 - Hardness (how easy the substance can be stratched)
 - Conductivity (to anow flow of gner ty or electricity)
 - Sociality (ability to d s (ive a solvent)
 - Melting Point
 - Boiling Point
 - Etc

States of Matter and Phase Changes

- There are 5 States of Matter
 - Solid •
 - Liquid
 - Gas
 - Plasma
 - B.E.C. (Bose-Einstein Condensate)
- Phases Changes •
 - Solid \rightarrow Liquid = Melting
 - Solid \rightarrow Gas = Sublimation

- Liquid \rightarrow Gas = Vaporization
- Liquid \rightarrow Solid = Freezing
- Gas \rightarrow Liquid = Condensation
- <u>Gas \rightarrow Solid = Deposition</u>
- <u>Gas \rightarrow Plasma = Ionization</u>
- Plasma \rightarrow Gas = Deionization
- Endothermic requires the absorption of heat
- Exothermic requires the release of heat

Phase change	Endothermic or Exothermic
Melting	<u>Endothermic</u>
Vaporization	Endothermic
Sublimation	Endothermic
Deposition	Exothermic sale.
Condensation	500 Maine 25
Freezing	Egthenic
ble. baa	

Integrative Levels of Organization

Levels of Organization

Level of Organization	Description	Examples
Atom	Components of molecules	Hydrogen
<u>Element</u>	A substance that can't be broken down any further into another substance	Sulfur, Oxygen, Hydrogen
Compound	Two or more elements combined	Water, Methane
Macromolecules	A molecule that contains a lot of atoms	Protein, DNA
<u>Organelles</u>	Structures in a cell	Mitochondria (powerhouse of the cell), nucleus

Deposition	
Condensation	
Freezing	

Integrative Levels of Organization Practice

Fill in the Levels of Organization

<u>Item</u>	<u>Organization</u>
Water	
<u>Sulfur</u>	
Phosphates	
Euglena	
Hair	
Eye	
Bee Stinger	
DNA	cale.
Pistil of a flower	1630
Methane	
Blood	at E
Hartland	0
Nucleus	
<u>D</u> er	
Sperm	
Gold	
Coral Reef	
Marianas trench	

Microscope Practice

Complete the table and answer the practice questions. Be sure to show all of your work.

<u>Total</u>	Diameter in	Diameter in mm
Magnification	Microns	

Scanning lens		
Low Power		
High Power		

• <u>Approximately 500 of a certain type of bacteria can fit across your low-power</u> field of vision. What is the approximate size of 1 bacterium?

2. Approximately 7 of a certain type of protist can fit across your high-power field of vision. What is the approximate size of 1 protist?

5. If an organism took up 1/5 of your field of vision while using the 40x objective lens, the organism would be how small? Show your work.

6. A ribosome in a typical animal cell takes up 1/1000 of the cytoplasmic space (the space inside the cell). If the animal cell is viewed under high power, it appears to take up 1/20th of your field of vision.

- What is the size of the cell?
- <u>What is the size of the ribosome?</u>
- 7. Cryptosporidium is a protozoan parasite that infected millions of Milwaukee residents