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Let us now considerx ≤ 2k−1y in order to simplify the expression to the formf
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, and if we takex for which2x ≤ yk−1 we getk − 1 = (k − 1)2, i.e. k = 1 or k = 2. For

k = 1 the solution isf(x, y) = min(x, y), and fork = 2 the solution isf(x, y) = xy. It is easy to
verify that both solutions satisfy the given conditions.△
Problem 23. (APMO 1989) Find all strictly increasing functionsf : R → R such that

f(x) + g(x) = 2x,

whereg is the inverse off .

Solution. Clearly every function of the formx + d is the solution of the given equation. Another
useful idea appears in this problem. Namely denote bySd the the set of all numbersx for which
f(x) = x + d. Our goal is to prove thatSd = R. Assume thatSd is non-empty. Let us prove
that forx ∈ Sd we havex + d ∈ Sd as well. Sincef(x) = x + d, according to the definition of
the inverse function we haveg(x + d) = x, and the given equation impliesf(x + d) = x + 2d,
i.e. x + d ∈ Sd. Let us prove that the setsSd′ are empty, whered′ < d. From the above we have
that each of those sets is infinite, i.e. ifx belongs to some of them, then eachx + kd belongs to it
as well. Let us use this to get the contradiction. More precisely we want to prove that ifx ∈ Sd

andx ≤ y ≤ x + (d − d′), theny 6∈ Sd′ . Assume the contrary. From the monotonicity we have
y + d′ = f(y) ≥ f(x) = x + d, which is a contradiction to our assumption. By further induction
we prove that everyy satisfying

x + k(d − d′) ≤ y < x + (k + 1)(d − d′),

can’t be a member ofSd′ . However this is a contradiction with the previously established properties
of the setsSd andSd′ . Similarly if d′ > d switching the roles ofd andd′ gives a contradiction.

Simple verification shows that eachf(x) = x + d satisfies the given functional equation.△
Problem 24. Find all functionsh : N → N that satisfy

h(h(n)) + h(n + 1) = n + 2.

Solution. Notice that we have bothh(h(n)) andh(n+1), hence it is not possible to form a recurrent
equation. We have to use another approach to this problem. Let us first calculateh(1) andh(2).
Settingn = 1 givesh(h(1)) + h(2) = 3, thereforeh(h(1)) ≤ 2 andh(2) ≤ 2. Let us consider the
two cases:

1◦ h(2) = 1. Thenh(h(1)) = 2. Pluggingn = 2 in the given equality gives4 = h(h(2)) +
h(3) = h(1) + h(3). Let h(1) = k. It is clear thatk 6= 1 andk 6= 2, and thatk ≤ 3.
This means thatk = 3, henceh(3) = 1. However from2 = h(h(1)) = h(3) = 1 we get a
contradiction. This means that there are no solutions in this case.

2◦ h(2) = 2. Thenh(h(1)) = 1. From the equation forn = 2 we geth(3) = 2. Setting
n = 3, 4, 5 we geth(4) = 3, h(5) = 4, h(6) = 4, and by induction we easily prove that
h(n) ≥ 2, for n ≥ 2. This means thath(1) = 1. Clearly there is at most one function
satisfying the given equality. Hence it is enough to guess some function and prove that it
indeed solves the equation (induction or something similarsounds fine). The solution is

h(n) = ⌊nα⌋ + 1,

whereα =
−1 +

√
5

2
(this constant can be easily foundα2 + α = 1). Proof that this is a

solution uses some properties of the integer part (althoughit is not completely trivial).△
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15. (IMO 2002, shortlist) Find all functionsf : R → R such that

f(f(x) + y) = 2x + f(f(y) − x).

16. (Iran 1997) Letf : R → R be an increasing function such that for all positive real numbersx
andy:

f(x + y) + f(f(x) + f(y)) = f(f(x + f(y)) + f(y + f(x))).

Prove thatf(f(x)) = x.

17. (IMO 1992, problem 2) Find all functionsf : R → R, such thatf(x2 + f(y)) = y + f(x)2

for all x, y ∈ R.

18. (IMO 1994, problem 5) LetS be the set of all real numbers strictly greater than -1. Find all
functionsf : S → S that satisfy the following two conditions:

(i) f(x + f(y) + xf(y)) = y + f(x) + yf(x) for all x, y ∈ S;

(ii)
f(x)

x
is strictly increasing on each of the intervals−1 < x < 0 and0 < x.

19. (IMO 1994, shortlist) Find all functionsf : R+ → R such thatf(x)f(y) = yαf(x/2) +
xβf(y/2), za svex, y ∈ R+.

20. (IMO 2002, problem 5) Find all functionsf : R → R such that

(f(x) + f(z))(f(y) + f(t)) = f(xy − zt) + f(xt + yz).

21. (Vietnam 2005) Find all values for a real parameterα for which there exists exactly one
functionf : R → R satisfying

f(x2 + y + f(y)) = f(x)2 + α · y.

22. (IMO 1998, problem 3) Find the least possible value forf(1998) wheref : N → N is a
function that satisfies

f(n2f(m)) = mf(n)2.

23. Does there exist a functionf : N → N such that

f(f(n − 1)) = f(n + 1) − f(n)

for each natural numbern?

24. (IMO 1987, problem 4) Does there exist a functionf : N0 → N0 such thatf(f(n)) =
n + 1987?

25. Assume that the functionf : N → N satisfiesf(n + 1) > f(f(n)), for everyn ∈ N. Prove
thatf(n) = n for everyn.

26. Find all functionsf : N0 → N0, that satisfy:

(i) 2f(m2 + n2) = f(m)2 + f(n)2, for every two natural numbersm andn;

(ii) If m ≥ n thenf(m2) ≥ f(n2).

27. Find all functionsf : N0 → N0 that satisfy:

(i) f(2) = 2;

(ii) f(mn) = f(m)f(n) for every two relatively prime natural numbersm andn;
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49. Letf : Q × Q → Q+ be a function satisfying

f(xy, z) = f(x, z)f(y, z), f(z, xy) = f(z, x)f(z, y), f(x, 1 − x) = 1,

for all rational numbersx, y, z. Prove thatf(x, x) = 1, f(x,−x) = 1, andf(x, y)f(y, x) =
1.

50. Find all functionsf : N × N → R that satisfy

f(x, x) = x, f(x, y) = f(y, x), (x + y)f(x, y) = yf(x, x + y).
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