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Theorem 1. If A andB are two polynomials then:

(i) deg(A ± B) ≤ max(deg A, deg B), with the equality ifdeg A 6= deg B.

(ii) deg(A · B) = deg A + deg B. 2

The conventional equalitydeg 0 = −∞ actually arose from these properties of degrees, as else
the equality (ii) would not be always true.

Unlike a sum, difference and product, a quotient of two polynomials is not necessarily a polyno-
mial. Instead, like integers, they can be divided with a residue.

Theorem 2. Given polynomialsA andB 6= 0, there are unique polynomialsQ (quotient) andR
(residue) such that

A = BQ + R and deg R < deg B.

Proof. Let A(x) = anxn + · · · + a0 andB(x) = bkxk + · · · + b0, whereanbk 6= 0. Assumek is
fixed and use induction onn. Forn < k the statement is trivial. Suppose thatn = N ≥ k and that
the statement is true forn < N . ThenA1(x) = A(x) − an

bk
xn−kB(x) is a polynomial of degree

less thann (for its coefficient atxn iz zero); hence by the inductive assumption there are unique
polynomialsQ1 andR such thatA1 = BQ1 + R anddeg R. But this also implies

A = BQ + R, where Q(x) =
an

bk
xn−k + Q1(x) . 2

Example 2. The quotient upon division ofA(x) = x3 +x2 − 1 byB(x) = x2 − x− 3 is x +2 with
the residue5x + 5, as

x3 + x2 − 1

x2 − x − 3
= x + 2 +

5x + 5

x2 − x − 3
.

We say that polynomialA is divisibleby polynomialB if the remainderR whenA is divided by
B equal to 0, i.e. if there is a polynomialQ such thatA = BQ.

Theorem 3 (Bezout’s theorem).PolynomialP (x) is divisible by binomialx − a if and only if
P (a) = 0.

Proof. There exist a polynomialQ and a constantc such thatP (x) = (x − a)Q(x) + c. Here
P (a) = c, making the statement obvious.2

Numbera is azero (root)of a given polynomialP (x) if P (a) = 0, i.e. (x − a) | P (x).
To determine a zero of a polynomialf means to solve the equationf(x) = 0. This is not always

possible. For example, it is known that finding the exact values of zeros is impossible in general
whenf is of degree at least 5. Nevertheless, the zeros can always becomputed with an arbitrary
precision. Specifically,f(a) < 0 < f(b) implies thatf has a zero betweena andb.

Example 3. Polynomialx2 − 2x − 1 has two real roots:x1,2 = 1 ±
√

2.
Polynomialx2 − 2x + 2 has no real roots, but it has two complex roots:x1,2 = 1 ± i.
Polynomialx5−5x+1 has a zero in the interval[1.44, 1.441] which cannot be exactly computed.

More generally, the following simple statement holds.

Theorem 4. If a polynomialP is divisible by a polynomialQ, then every zero ofQ is also a zero of
P . 2

The converse does not hold. Although every zero ofx2 is a zero ofx, x2 does not dividex.

Problem 1. For whichn is the polynomialxn + x − 1 divisible by a)x2 − x + 1, b) x3 − x + 1?
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Theorem 19 (Newton’s interpolating polynomial). For given numbersy0, . . . , yn and distinct
x0, . . . , xn there is a unique polynomialP (x) of n-th degree such thatP (xi) = yi for i = 0, 1,
. . . , n. This polynomial is given by the formula

P (x) =
n
∑

i=0

yi

∏

j 6=i

(x − xj)

(xi − xj)
. 2

Example 6. Find the cubic polynomialQ such thatQ(i) = 2i for i = 0, 1, 2, 3.

Solution. Q(x) = (x−1)(x−2)(x−3)
−6 + 2x(x−2)(x−3)

2 + 4x(x−1)(x−3)
−2 + 8x(x−1)(x−2)

6 = x3+5x+6
6 . △

In order to compute the value of a polynomial given in this wayin some point, sometimes we
do not need to determine its Newton’s polynomial. In fact, Newton’s polynomial has an unpleasant
property of giving the answer in a complicated form.

Example 7. If the polynomialP of n-th degree takes the value 1 in points0, 2, 4, . . . , 2n, compute
P (−1).

Solution. P (x) is of course identically equal to 1, soP (−1) = 1. But if we apply the Newton
polynomial, here is what we get:

P (1) =

n
∑

i=0

∏

j 6=i

1 − 2i

(2j − 2i)
=

n
∑

i=0

∏

j 6=i

−1 − 2j

(2i − 2j)
=

(2n + 1)!!

2n

n+1
∑

i=1

(−1)n−i

(2i + 1)i!(n − i)!
. △

Instead, it is often useful to consider thefinite differenceof polynomialP , defined byP [1](x) =
P (x + 1) − P (x), which has the degree by 1 less than that ofP . Further, we define thek-th finite
difference,P [k] = (P [k−1])[1], which is of degreen − k (wheredeg P = n). A simple induction
gives a general formula

P [k] =

k
∑

i=0

(−1)k−i

(

k

i

)

P (x + i).

In particular,P [n] is constant andP [n+1] = 0, which leads to

Theorem 20. P (x + n + 1) =

n
∑

i=0

(−1)n−i

(

n + 1

i

)

P (x + i). 2

Problem 15. PolynomialP of degreen satisfiesP (i) =
(

n+1
i

)−1
for i = 0, 1, . . . , n. Evaluate

P (n + 1).

Solution. We have

0 =

n+1
∑

i=0

(−1)i

(

n + 1

i

)

P (i) = (−1)n+1P (n + 1) +

{

1, 2 | n;
0, 2 ∤ n.

It follows thatP (n + 1) =

{

1, 2 | n;
0, 2 ∤ n.

△

Problem 16. If P (x) is a polynomial of an even degreen with P (0) = 1 and P (i) = 2i−1 for
i = 1, . . . , n, prove thatP (n + 2) = 2P (n + 1) − 1.

Solution. We observe thatP [1](0) = 0 i P [1](i) = 2i−1 for i = 1, . . . , n − 1; furthermore,
P [2](0) = 1 i P [2](i) = 2i−1 for i = 1, . . . , n−2, etc. In general, it is easily seen thatP [k](i) = 2i−1

for i = 1, . . . , n − k, andP [k](0) is 0 fork odd and 1 fork even. Now

P (n + 1) = P (n) + P [1](n) = · · · = P (n) + P [1](n − 1) + · · · + P [n](0) =

{

2n, 2 | n;
2n − 1, 2 ∤ n.

Similarly,P (n + 2) = 22n+1 − 1. △

Preview from Notesale.co.uk

Page 11 of 22
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19. If P andQ are monic polynomials such thatP (P (x)) = Q(Q(x)), prove thatP ≡ Q.

20. Letm, n anda be natural numbers andp < a − 1 a prime number. Prove that the polynomial
f(x) = xm(x − a)n + p is irreducible.

21. Prove that the polynomialF (x) = (x2 + x)2
n

+ 1 is irreducible for alln ∈ N.

22. A polynomialP (x) has the property that for everyy ∈ Q there existsx ∈ Q such that
P (x) = y. Prove thatP is a linear polynomial.

23. LetP (x) be a monic polynomial of degreen whose zeros arei − 1, i − 2, . . . , i − n (where
i2 = −1) and letR(x) andS(x) be the real polynomials such thatP (x) = R(x) + iS(x).
Prove that the polynomialR(x) hasn real zeros.

24. Leta, b, c be natural numbers. Prove that if there exist coprime polynomials P, Q, R with
complex coefficients such that

P a + Qb = Rc,

then 1
a + 1

b + 1
c > 1.

Corollary: The Last Fermat Theorem for polynomials.

25. Suppose that all zeros of a monic polynomialP (x) with integer coefficients are of module 1.
Prove that there are only finitely many such polynomials of any given degree; hence show that
all its zeros are actually roots of unity, i.e.P (x) | (xn − 1)k for some naturaln, k.

9 Solutions

1. The polynomialf(x) − 10x vanishes at pointsx = 1, 2, 3, so it is divisible by polynomial
(x−1)(x−2)(x−3). The monicity implies thatf(x)−10x = (x−1)(x−2)(x−3)(x− c)
for somec. Now

f(12) + f(−8) = 11 · 10 · 9 · (12 − c) + 120 + (−9)(−10)(−11)(−8− c) − 80 = 19840.

2. Note thatQ(x2) =
∏

(x2 − x2
i ) =

∏

(x − xi) ·
∏

(x + xi) = (−1)nP (x)P (−x). We now
have

b1 + b2 + · · ·+ bn = Q(1)− 1 = (−1)nP (1)P (−1)− 1 = (−1)n(1 + B −A)(1 + B + A),

whereA = a1 + a3 + a5 + · · · andB = a2 + a4 + · · · .

3. It follows from the conditions thatP (− sin x) = P (sin x), i.e. P (−t) = P (t) for infinitely
manyt, so the polynomialsP (x) andP (−x) coincide. Therefore,P (x) = S(x2) for some
polynomialS. Now S(cos2 x) = S(sin2 x) for all x, i.e. S(1 − t) = S(t) for infinitely many
t, which impliesS(x) ≡ S(1 − x). This is equivalent toR(x − 1

2 ) = R(1
2 − x), i.e. R(y) ≡

R(−y), whereR is a polynomial such thatS(x) = R(x − 1
2 ). Now R(x) = T (x2) for some

polynomialT , and thereforeP (x) = S(x2) = R(x2 − 1
2 ) = T (x4 − x2 + 1

4 ) = Q(x4 − x2)
for some polynomialQ.

4. (a) Clearly,T0(x) = 1 andT1(x) = x satisfy the requirements. Forn > 1 we use induction
on n. Sincecos(n + 1)x = 2 cosx cosnx − cos(n − 1)x, we can defineTn+1 =
2T1Tn −Tn−1. SinceT1Tn andTn−1 are of degreesn+ 1 andn− 1 respectively,Tn+1

is of degreen + 1 and has the leading coefficient2 · 2n = 2n+1. It also follows from the
construction that all its coefficients are integers.

(b) The relation follows from the identitycos(m + n)x + cos(m− n)x = 2 cosmx cosnx.
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