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Theorem 1. If A and B are two polynomials then:
(i) deg(A + B) < max(deg A, deg B), with the equality itleg A # deg B.
(i) deg(A-B)=deg A+ degB. O

The conventional equalitfeg 0 = —oo actually arose from these properties of degrees, as else
the equality (ii) would not be always true.

Unlike a sum, difference and product, a quotient of two polyials is not necessarily a polyno-
mial. Instead, like integers, they can be divided with adesi

Theorem 2. Given polynomialsd and B # 0, there are unique polynomiatg (quotient) andR
(residue) such that

A=BQ+ R and degR < degB.

Proof. Let A(z) = ana™ + - -+ + ap and B(x) = byz* + - - - + by, Wherea, by # 0. Assumek is
fixed and use induction on. Forn < k the statement is trivial. Suppose that N > k and that

the statement is true for < N. ThenA,(z) = A(z) — Z—:x”*kB(x) is a polynomial of degree
less tham (for its coefficient atz™ iz zero); hence by the inductive assumption there are unique
polynomials); andR such thatd; = BQ; + R anddeg R. But this also implies

A=BQ+R, where Q(x)= Z—"z"’k +Qi(z). O
k

Example 2. The quotient upon division of(z) = 23 +2? — 1 by B(z) = 2? — x — 3 is i+ Vﬂ’l

the residuézx + 5, as C
+ — 5 +5

o
We say that polynomiad is dIVISI &5&@737 the ndeR when A is divided by
t

B equalto 0, i.e. if there IS'S hatd =
Theorem 3 ( f@\b\leor m). Polyael?% g)smle by binomiake — a if and only if

?(;:)f There exist a polyno atl) and a constant such thatP(z) = (z — a)Q(x) + ¢. Here
= ¢, making the statement obvious.

Numbera is azero (root)of a given polynomiaP(z) if P(a) =0, i.e.(z —a) | P(z).

To determine a zero of a polynomifimeans to solve the equatigiiz) = 0. This is not always
possible. For example, it is known that finding the exact @slaf zeros is impossible in general
when f is of degree at least 5. Nevertheless, the zeros can alwagsrbputed with an arbitrary
precision. Specificallyf(a) < 0 < f(b) implies thatf has a zero betweenandb.

Example 3. Polynomialz? — 2z — 1 has two real rootsz; o = 1 4+ /2.
Polynomialz? — 2z + 2 has no real roots, but it has two complex roots;> = 1 + .
Polynomialz® —5x+ 1 has a zero in the intervdl .44, 1.441] which cannot be exactly computed.

More generally, the following simple statement holds.

Theorem 4. If a polynomialP is divisible by a polynomial), then every zero @ is also a zero of
P.O

The converse does not hold. Although every zero?is a zero ofr, x2 does not divider.

Problem 1. For whichn is the polynomiak™ + = — 1 divisible by a)z? — x + 1, b) 2% — x + 1?
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Theorem 19 (Newton’s interpolating polynomial). For given numbersy, ..., y, and distinct
Zo, ..., Ty there is a unique polynomidP(z) of n-th degree such thaP(x;) = y; fori = 0, 1,
.,m. This polynomial is given by the formula

ZyH e-z) 4
=0 j#i 171'])

Example 6. Find the cubic polynomia such thatQ (i) = 2¢ fori = 0,1, 2, 3.
. z—1)(z—2)(z— z(x—2)(x— x(x—1)(x— x(x—1)(x— 3452
Solution. Q(z) = &=1E=2(=3) | 20(@=N(2=3) | drle-1)(z=3)  Sa@=D(@=2) _ 2’45246 A

In order to compute the value of a polynomial given in this i@gome point, sometimes we
do not need to determine its Newton’s polynomial. In factwim’s polynomial has an unpleasant
property of giving the answer in a complicated form.

Example 7. If the polynomialP of n-th degree takes the value 1 in poift, 4, ..., 2n, compute
P(-1).

Solution. P(z) is of course identically equal to 1, 98(—1) = 1. But if we apply the Newton
polynomial, here is what we get:

— — n ; il(n — 1)
iy 2] 21) par e (20 — 27) 2 P (2i + 1)il(n —9)!

Instead, it is often useful to consider tfigite differencef polynomial P, defined byP[l]( )
P(z + 1) — P(z), which has the degree by 1 less than thaPofFurther, we deflne th {e
difference,P*! = (PF=1)[1l which is of degree. — k (wheredeg P \ n) G la ction

gives a general formula
& a
Pl — (
In particular,Pl"! is constaﬂd@m whic Iead

Theoeré\r\zerwrl (x +1).

Problem 15. Polynomial P of degreen satisfiesP (i) = ”jl fori = 0,1,...,n. Evaluate
P(n+1).
Solution. We have
n+1
_ 7 n+ 1 S\ n+1 } 2 | n;
0_;(—1) ( . )P(z)—( ) P(n—i—l)—i—{ 0 24n
1, 2 m

It follows that P(n + 1) = { 0, 2in. A

Problem 16. If P(z) is a polynomial of an even degreewith P(0) = 1 and P(i) = 2¢~* for

i=1,...,n,provethatP(n +2) =2P(n+1) — L.

Solution. We observe thaP(0) = 0i PlN() = 271 fori = 1,...,n — 1; furthermore,
PRI(0) = 1i PPl(3) = 2= fori = 1,...,n—2, etc. Ingeneral, itis easily seen tiRit] (i) = 2~

fori =1,...,n —k,andP¥(0) is O fork odd and 1 fork even. Now

o, 2| n;

P(n+1)P(n)+P[”(n)~~~P(R)erm(”1>+"'+PM(O>{ 91, 2fn.

Similarly, P(n 4 2) = 2271 — 1. A
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19. If P and@ are monic polynomials such th&®(P(z)) = Q(Q(x)), prove thatP = Q.

20. Letm,n anda be natural numbers and< a — 1 a prime number. Prove that the polynomial
f(z) = 2™(x — a)™ + pisirreducible.

21. Prove that the polynomidl(z) = (2 + )" + 1 is irreducible for alln € N.

22. A polynomial P(z) has the property that for every € Q there existst € Q such that
P(z) = y. Prove thatP is a linear polynomial.

23. LetP(x) be a monic polynomial of degreewhose zeros are— 1,7 — 2,...,i — n (where
2 = —1) and letR(z) andS(z) be the real polynomials such thB(x) = R(z) + iS(x).
Prove that the polynomiak(z) hasn real zeros.

24. Leta, b, c be natural numbers. Prove that if there exist coprime patyiats P, QQ, R with
complex coefficients such that
po + Qb —_ ]_%c7
thenl + 3 +1>1.
Corollary: The Last Fermat Theorem for polynomials.

25. Suppose that all zeros of a monic polynoniék) with integer coefficients are of module 1.
Prove that there are only finitely many such polynomials gfgimen degree; hence show that

all its zeros are actually roots of unity, i.2(z) | (z" — 1)* for some naturah, . \A
9 Solutions CO u
1. The polynomialf(xz) — 10z vanishes at pomts = IVISIb|e by polynomial
(x—=1)(x—2)(x—3). The mon|C|ty|m zfl —2)(z—3)(z—c¢)

for somec. Now
£12) + £( 8W ﬁ(g m @&0)’;11)(8 —¢) — 80 = 19840.
P @\Lé H@ﬁggz "2 Tl + 21) = (—1)"P(«)P(—2). We now

ave
bit+bot-+by=Q(1)—1=(-1)"P(1)P(-1)-1=(-1)"(1+ B - A)(1+ B+ A),
whereAd =a; +asz+as+--- andB=ay + a4+ ---

3. It follows from the conditions thaP(— sinz) = P(sinx), i.e. P(—t) = ( ) for infinitely
manyt, so the polynomiald(z) andP( x) coincide. ThereforeP(z) = S(z?) for some
polynomialS. Now S(cos? z) = S(sin® z) for all z, i.e. S(1 — t) = S(t) f r|nf|n|tely many
t, which impliesS(z) = S(1 — x). This is equivalent tcR(x —1)=R(3—2),ie. Ry =
R(—y), whereR is a polynomial such tha(z) = R(z — 1). Now R (:c) ( 2) for some
polynomialT, and therefore®(z) = S(2?) = R(2? — 1) = T(2* — 2 + 1) = Q(a* — 2?)
for some polynomiad).

= H

4. (a) ClearlyTy(x) =1 andT;(x) = x satisfy the requirements. Far> 1 we use induction
onn. Sincecos(n + 1)z = 2coszcosnx — cos(n — 1)z, we can definel},;, =
21T, — Ty—1. Sincel  T,, andT,,_; are of degrees + 1 andn — 1 respectively{,, 11
is of degree: + 1 and has the leading coefficieht2” = 27+1, It also follows from the
construction that all its coefficients are integers.

(b) The relation follows from the identityos(m + n)x + cos(m — n)x = 2 cos mx cos nx.



