
 
 
 

11 
 

     GENERAL INSTRUMENT CP 1600 => 16- bit Processor 

 

Third generation microprocessors 

• After 1978 

• 16-bit processors designed using HMOS(High density MOS) 

• High packing density and better speed power product 

• Provided with 40/48/64 pins package 

• Strong processing capability 

• Easier to program 

• Allowed dynamic relocation with an internal register size of 8/16/32 bits 

• Segmented address and virtual memory 

•  1-16 MB physical memory space 

• Powerful interrupt handling capability 

• Examples  INTEL 8086 & 8088  

 

Preview from Notesale.co.uk

Page 11 of 501



 
 
 

14 
 

 

• 4004  In 1971 first microprocessor was developed by INTEL. It contained approximately 2300 

PMOS transistors. It was four bit device used in calculators. 

• 8008  In 1972 INTEL developed a eight but microprocessor. It required 20 or more additional 

devices to form a functional CPU. 

• 8080  In 1974 INTEL developed 8080 which had much larger instruction set than 8008 and 

require only two additional devices to form a functional CPU. Also 8080 used NMOS transistors. 

So it can operate much faster than 8008. It requires +5V, -5V, and +12V supplies. 

• MC6800  To avoid difficulties in 8080 which require different power supplies. Motorola came 

out with MC6800 which requires only +5V supply. For several years 8080 and 6800 were top 

selling 8-bit processors. 

• 8085  It is a 8-bit processor. INTEL produced 8085, an upgrade of 8080, requires only +5V 

supply. 

• MC6809  Motorola then produced MC6809 which has few 16-bit instructions but still basically 

8-bit processor. 

• 8086  In 1978 INTEL developed 8086 which is full 16-bit processor, it contains approximately 

29,000 transistors and is fabricated using HMOS technology.  

UNIT-1 

8086 MICROPROCESSOR 

-Typical Microprocessor based system 

A typical microprocessor based system consists of 

 CPU (central Processing Unit) 

 (ALU + Register organization + Control unit) 

 Timing unit 

 Bus control logic 

 Memory 

 I/O subsystem 

Features of 8086 

• Introduced in 1978 . 

Preview from Notesale.co.uk

Page 14 of 501



 
 
 

15 
 

• Comes in Dual-In-Line Package(DIP) IC. 

• 8086 is a 16-bit N-channel HMOS microprocessor . 

• Works on 5 volts power supply and draws a current of 360 ma, with an internal circuitry made up 

of 29K transistors. 

• It consists of an electronic circuitry built using 29000 transistors. 

• It is built on single semiconductor chip and packaged in an 40-pin IC. 

• It has 20-bit address bus and 16-bit data bus. 

• It can directly address upto 2
20 

I.e., 1M bytes of memory. 

• The 16-bit data word is divided into lower-order byte and  

higher order byte. 

• The 20-bit address bus is time multiplexed: 

 The lower order 16-bit address bus is time multiplexed with data bus. 

 The higher order 4-bit address bus is time multiplexed with status signals. 

• The maximum internal clock for 8086 is 5MHz. 

• 8086 chip does not have the facility of internal clock generation. 

(the INTEL 8284 clock generator/driver is used to generate the clock signal for 8086 microprocessor 

• The clock signal is divided by 3 in case of 8086 for internal clock requirements. 

• 8086 uses I/O mapped I/O techniques hence I/O devices are accessed by using separate 16-bit 

address 

• 8086 operates in two different modes 

 Minimum mode 

    ( It works as a simple single processor system when configured in minimum mode) 

 Maximum mode 

    ( It works as a multiprocessor system i.e., along with math coprocessor and I/O coprocessor when 

configured in maximum mode) 

8086 Registers 

Preview from Notesale.co.uk

Page 15 of 501



 
 
 

34 
 

8086 – Default 16 bit segment and offset address combinations 

 

 

 

SS and SP Reg. 

A stack is a section of memory set aside to store addresses and data  while a subprogram executes.  

The stack segment register is used to hold the upper 16 bits of  the starting address for the program  

stack. 

Preview from Notesale.co.uk

Page 34 of 501



 
 
 

37 
 

• 2 Logical Addresses for each Segments. 

– Base Address (16 bits) 

– Offset Address (16 bits) 

• Segment registers are used to store the Base address of the segment.  

 

 

 

Stack Pointer Register 
 

A Stack, is a section of memory set aside to store addresses and data while 

asubprogram is being executed. An entire 64 K bytes segment is set aside as Stack in 

8086MPU. The upper 16 bits of the starting address for this segment is kept in the 

stack segment register. The  Stack Pointer  (SP) register contain the 16-bit offset from the start 

of the segment to the memory location where a word was most recently stored on the Stack.The 

memory location where a word was most recently stored is called the top of Stack  .Fig.6 shows 

the details.The physical address for a stack read or for a stack write is produced by 

adding thecontents of the stack pointer register to the segment base address in SS. 

To do this thecontents of the Stack segment register are shifted four bit positions left and the 

contentsof SP are added to the shifted result. In the figure 5000 H in SS is shifted 

Preview from Notesale.co.uk

Page 37 of 501



 
 
 

40 
 

 

 

 

 

 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 40 of 501



 
 
 

42 
 

• The BIU performs all bus operations such as instruction         fetching, reading and writing 

operands for memory and calculating the addresses of the memory operands. The 

instruction bytes are transferred to the instruction queue. 

•  EU executes instructions from the instruction system byte queue. 

• Both units operate asynchronously to give the 8086 an overlapping instruction fetch and 

execution mechanism which is called as Pipelining. This results in efficient use of the system 

bus and system performance. 

• BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder. 

• EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag 

register. 

BUS INTERFACE UNIT (BIU) 

Contains 

• 6-byte Instruction Queue (Q) 

• The Segment Registers (CS, DS, ES, SS). 

• The Instruction Pointer (IP). 

• The Address Summing block (Σ) 

 

  

Preview from Notesale.co.uk

Page 42 of 501



 
 
 

44 
 

• Instruction decoder 

• ALU 

 

 

 

EXECUTION UNIT – General Purpose Registers 

 

Preview from Notesale.co.uk

Page 44 of 501



 
 
 

47 
 

 Register Addressing Mode. 

 Direct addressing Mode. 

 Register Indirect Addressing Mode. 

 Preview from Notesale.co.uk

Page 47 of 501



 
 
 

53 
 

 

 

Based Indexed Addressing Modes 

The based indexed addressing modes are simply combinations of the register indirect addressing 

modes. These addressing modes form the offset by adding together a base register (bx or bp) and 

an index register (si or di). The allowable forms for these addressing modes are  
                mov     al, [bx][si] 

                mov     al, [bx][di] 

                mov     al, [bp][si] 

                mov     al, [bp][di] 

Suppose that bx contains 1000h and si contains 880h. Then the instruction  
  mov al,[bx][si]  

would load al from location DS:1880h. Likewise, if bp contains 1598h and di contains 1004, mov 

ax,[bp+di] will load the 16 bits in ax from locations SS:259C and SS:259D. 

 

The addressing modes that do not involve bp use the data segment by default. Those that have bp 

as an operand use the stack segment by default. 

Preview from Notesale.co.uk

Page 53 of 501



 
 
 

58 
 

  

     

 Re-Cursive Procedure: 

    

      

 The recursive procedures are implemented using procedure CALL itself, but care must be 

taken to assure that each successive call does not destroy the parameters and results 

Preview from Notesale.co.uk

Page 58 of 501



 
 
 

60 
 

 Code SEGMENT 

 ASSUME CS : Code, DS : Data  

 START : Mov AX, Data 

         Mov DS, AX 

   : 

         Mov AX,Num  

         CALL X1 

         INT 3H 

  X1 PROC Near 

   MOV BX,Num  

              : 

   Add AX, BX 

              : 

   RET 

  X1 ENDP 

   Code ENDS 

   END START 

 Using (General purpose CPU Registers) Registers: 

 Code SEGMENT 

 ASSUME CS : Code 

 START : Mov AX, 2234H 

        Mov BX, 3342H 

   : 

         CALL X1 

   : 

          INT 3H 

Preview from Notesale.co.uk

Page 60 of 501



 
 
 

62 
 

  X1 ENDP 

   Code ENDS 

   END START 

 Passing parameters using pointers passed in registers: 

    : 

   Mov SI, OFFSET Str1 

   Mov DI, OFFSET Str2 

    : 

   CALL X1 

    : 

   INT 3H 

  X1 PROC Near 

   Mov AL, (SI) 

   Mov BL, AL 

   Mov CL, (DI) 

    : 

   RET 

   X1 ENDP 

   Code ENDS 

   END START 

 Features of Passing parameters using global variables: 

o Extra memory required. 

o All the globally declared variables need to be remembered. 

o Modification of parameters cannot be done directly. 

o Can be implemented only by using ASSEMBLER and not by any other means. 

 Features of Passing parameters using CPU Registers: 

Preview from Notesale.co.uk

Page 62 of 501



 
 
 

69 
 

   

• ALU 

• The arithmetic and logical unit(ALU), performs the following arithmetic and logical 

operations: 

 Addition 

 Subtraction 

 Logical AND 

 Logical OR 

 Logical Exclusive-OR 

 Complement (Logical NOT) 

 Increment (add 1) 

 Decrement(Subtract 1) 

Preview from Notesale.co.uk

Page 69 of 501



 
 
 

76 
 

 

•  The other functional blocks other than the ALU and other registers is as follows: 

     1. Internal Data Bus 

 2. Serial I/O Control 

 3. Interrupt Control 

 4.Timing and Control 

 5. Address Buffer and Address / Data Buffer 

 Internal Data Bus: 

 The internal data bus is 8-bits inside and carries instructions and data between the 

CPU registers.  

• Functional unit of 8085 

• Serial I/O Control : 

 Generally the Data flowing between microprocessor will be either parallel or serial, 

but for some devices it is necessary to accept data serially and output data serially and if 

there is a provision built in in the microprocessor for this purpose it is very efficient. 

 In 8085 there is such provision through SID and SOD pins. 

 The SID pin is used for accepting serial data input. 

Preview from Notesale.co.uk

Page 76 of 501



 
 
 

79 
 

 The contents of stack pointer or program counter can be loaded into these buffers. 

These buffers drive the external address bus and address-data bus. The internal data bus is 

also connected to the address / data buffer to send or receive the data.  

• Data and Address Bus 

• The INTEL 8085 is an 8-bit microprocessor. Its data bus is 8-bit wide and hence, 8 bits of 

data can be transmitted in parallel from or to the microprocessor. 

• The INTEL 8085 requires a 16-bit wide address bus as the memory address are of 16-bits. 

• The 8 most significant bits of the address are transmitted by the address bus, A-bus (pins A8 

– A15). 

• The 8 least significant bits of the address are transmitted by Address / Data bus, AD- bus ( 

pins AD0 – AD7). 

• The Address / Data bus transmits data and address at different moments. At a particular 

moment it transmits either data or address. Thus the AD – bus operates in time shared 

mode. This technique is known as Time Multiplexing .  

• Pin Configuration Of 8085  

• The logical pin out of an 8085 microprocessor consists of an 40-pin DIP package. 

• The pins of the 8085 microprocessor can be categorized int the following groups: 

 Address bus 

 Data bus 

 Control and Status signals  

 Power Supply and Frequency signals 

 Externally initiated signals 

 Serial I/O ports 

Preview from Notesale.co.uk

Page 79 of 501



 
 
 

81 
 

• Control and Status signals: 

           ___ 

 This group of signals includes two control signals ( RD  

  ___    __ 

     and WR), three status signals ( IO/M , S1 and S0) to identify the nature of the operation, 

and one special signal (ALE) to indicate the beginning of the operation. These signals are as 

follows: 

 ALE – Address Latch Enable: 

 Output and Tri-stated line 

 It is a Address Latch Enable signal. It goes high during the first clock cycle of a 

machine cycle and enables the lower 8 bits of the address to be latched either into the 

memory or external latch.  

• ___ 

     RD : Read 

 Output and a tri-stated line 

 It is a signal to control read operation 

 When it goes low the microprocessor reads the data from the selected memory 

location or an I/O device. 

• ___ 

 WR : Write 

 Output and Tri-stated line 

 It is a signal to control Write operation 

 When it goes low the microprocessor writes the data into the selected memory or 

I/O device. 

• .     __ 

     IO/M : I/O or Memory indicator 

 Output and Tri-stated line. 

 It is a status signal which distinguishes whether the Address is for Memory or I/O. 

Preview from Notesale.co.uk

Page 81 of 501



 
 
 

82 
 

 When it goes high the address is for  an I/O device and when it goes low the address 

on the address bus is for a memory location. 

• S1 and S0 : Bus state/ status indicator 

 Output lines. 

 The status output signals from microprocessor and these signals gives the 

information about the various types of operations that take place.  

.  S1 S0 Operations 

  0 0 HALT 

  0 1 WRITE 

  1 0 READ 

  1 1 FETCH 

• Power Supply and Clock Frequency Signals 

 The power supply and frequency signals are as follows: 

 VCC : + 5 V Power Supply 

 VSS : Ground Reference 

 X1 and X2 :  Crystal or RC Connections 

 Input lines 

  These are terminals to be connected to an external crystal oscillator which drives an 

internal circuitry of the microprocessor to produce a suitable clock for the operation of 

microprocessor. 

 CLK(Out) : Clock signal 

 Output line 

 It is a Clock Output for user,which can be used for other digital IC‟s. Its frequency 

is same at which processor operates. 

• Externally Initiated Signals including Interrupts: 

 There are five Interrupt signals associated with 8085 microprocessor along with an 

acknowledge signal for these interrupts. 

 apart from the interrupt signals there are the following externally initiated signals 

associated with 8085 microprocessor pin configuration they are 

Preview from Notesale.co.uk

Page 82 of 501



 
 
 

84 
 

• HLDA : Output 

 It is a signal for HOLD acknowledgement. It indicates that the HOLD request has 

been received. 

 The HLDA goes low after the HOLD signal goes low. 

 The CPU takes over the buses after Half clock cycle of removal of HLDA signal. 

• READY : Input 

 It is used by the microprocessor to sense whether a peripheral is ready to transfer 

data or not. 

 A slow peripheral may be connected to the microprocessor through the Ready line. 

 If READY is high the peripheral is ready.If it is low the microprocessor waits till it 

goes high. 

• RESET OUT : Output 

 Indicates that CPU is being reseted, and is used by the microprocessor to reset the 

other sub-systems in the microprocessor based system. 

• (RESET IN)‟ : Input 

 It resets the program counter to zero. It also resets interrupt enable and HLDA flip-

flops. It does not affect any other flag or register except the instruction register. 

 The CPU is held in the reset condition as long as RESET is applied. 

• Serial I/O ports 

 The 8085 microprocessor has two signals for serial communication i.e., SID and 

SOD 

 SID: Serial Input Data (Input) 

 It is data line for serial input. The data on this line is loaded into the 7
th

 bit of the 

accumulator when RIM instruction is executed. 

 SOD : Serial Output Data (Output) 

 It is a data line for serial output. The 7
th

 bit of the accumulator is output on SOD 

line when SIM instruction is executed.  

              

Simple programs on 8086 : 

Preview from Notesale.co.uk

Page 84 of 501



 
 
 

92 
 

                  mov cx,0 

                  mov dx,0 

                  mov ax,num1 ;x1 * y1 

                  mul num2 

                  mov res,ax 

                  mov bx,dx 

                  mov ax,num1 ;x1 * y2 

                  mul num2+2 

                  add bx,ax 

                  mov cx,dx 

                  mov ax,num1+2 ;x2 * y1 

                  mul num2 

                  add bx,ax 

                  mov res+2,bx 

                  add cx,dx 

                  mov ax,num1+2 ;x2 * y2 

                  mul num2+2 

                  add cx,ax 

                  mov res+4,cx 

                  mov res+6,dx 

                  mov ax,4c00h 

                  int 21h 

       code ends 

Preview from Notesale.co.uk

Page 92 of 501



 
 
 

97 
 

Or 

If READY pin is high, the peripheral is ready otherwise the 8086 enters wait state. 

  

This state is used by slow peripheral devices. The peripheral devices can transfer the data to or 

from the microprocessor by using READY input line. The microprocessor remains in wait state 

as long as READY line is low. During the wait state, the contents of the address, address/data 

and control buses are held constant. 

10. 8086 has ____20____ address pins and _16____ data pins 

11. Name  different segments in 8086 microprocessor 

CS,SS,DS,ES 

12. Name the index registers in 8086 microprocessor 

Source index, destination index 

13. Each register in 8086 is of ___16_____ bit wide 

14. what is the purpose of Bus Interface unit 

15. what is the purpose of execution unit in 8086 microprocessor 

ANS: Write short note on the Execution Unit (EU) and the Bus Interface Unit (BIU).  

8086 microprocessor has two units; Execution Unit (EU) and Bus Interface Unit (BIU). 

They are dependent and get worked by each other. Below is a short description of these 

two units. 

 

 Execution Unit (EU) : Execution unit receives program instruction codes and 

data from the BIU, executes them and stores  

the results in the general registers. It can also store the data in a memory location or send them to an I/O 

device by passing the data back to the BIU. This unit, EU, has no connection with the system Buses. It 

receives and outputs all its data through BIU. 

 

ALU (Arithmetic and Logic Unit) : The EU unit contains a circuit board 

called the Arithmetic and Logic Unit. The ALU can perform arithmetic, such as, +,-,×,/ 

and logic such as OR, AND, NOT operations.  

 

Registers : A register is like a memory location where the exception is that 

these are denoted by name rather than numbers. It has 4 data registers, AX, BX, CX, DX 

Preview from Notesale.co.uk

Page 97 of 501



 
 
 

98 
 

and 2 pointer registers SP, BP and 2 index registers SI, DI and 1 temporary register and 1 

status register FLAGS . AX, BX, CX and DX registers has 2 8-bit registers to access the 

high and low byte data registers. The high byte of AX is called AH and the low byte is 

AL. Similarly, the high and low bytes of BX, CX, DX are BH and BL, CH and Cl, DH 

and DL respectively. All the data, pointer, index and status registers are of 16 bits. Else 

these, the temporary register holds the operands for the ALU and the individual bits of 

the FLAGS register reflect the result of a computation. 

 

 Bus Interface Unit : As the EU has no  connection with the system Busses, this 

job is done by BIU. BIU and EU are connected with an internal bus. BIU connects EU 

with the memory or I/O circuits. It is responsible for transmitting data, addresses and 

control signal on the busses.  

 

Registers : BIU has 4 segment busses, CS, DS, SS, ES. These all 4 

segment registers holds the addresses of instructions and data in memory. These values 

are used by the processor to access memory locations. It also contain 1 pointer register 

IP. IP contains the address of the next instruction to executed by the EU.    

 

Instruction Queue : BIU also contain an instruction queue. When the EU executes 

instructions, the BIU gets up to 6 bytes of the next instruction and stores them in the 

instruction queue and this process is called instruction prefetch. This is a process to speed 

up the processor. Also when the EU needs to be connected with memory or peripherals, 

BIU suspends instruction prefetch and performs the needed operations.  

 

***** 

UNIT-2 

Assembly language programming involves all the 

instructions : 

     Write ALP and execute the program to 

1. Add two 8-bit numbers 

2. Add two 16-bit numbers 

Preview from Notesale.co.uk

Page 98 of 501



 
 
 

99 
 

3. Add two 32-bit numbers 

4. Subtract two 8-bit numbers 

5. Subtract two 16-bit numbers 

6. Subtract two 32-bit numbers 

7. Multiply two 8-bit numbers 

8. Multiply two 16-bit numbers 

9. Perform 8-bit division 

10. Perform 16-bit division 

11. Find square of a number 

12. Find cube of a number 

13. Exchange two numbers 

 

Experiment III, IV,V &VI: ARRAY PROGRAMMING                                 4 

     Write ALP and execute the program to 

14. Add a given series of numbers 

15. Find average of a given series of numbers 

16. Display squares of  a given series of numbers in memory 

17. Display cubes of  a given series of numbers in memory 

18. Find factorial of a given number 

19. Sort a series of given numbers in ascending order 

20. Sort a series of given numbers in descending order 

21. Find GCD of two given numbers 

22. Find LCM of two given numbers 

23. Display Fibonacci series  

 

Experiment VII : BCD, DECIMAL,ASCII OPERATIONS    5 

Write ALP and execute the program to 

24. Perform one byte BCD addition 

25. Perform one byte BCD subtraction 

26. Produce packed BCD from two ASCII characters 

27. Convert  decimal number to binary  

28. Convert a binary number to a decimal number 

 

Experiment VIII & IX : STRING MANIPULATION PROGRAMS   6 

29. Move a string of data bytes from one location to another 

30. Concatenate two strings 

31. Reverse a given string 

32. Compare two strings  

33. Find length of a given string 

34. Find whether the given byte is in the string or not  

35. Insert an element in a given string 

 

Preview from Notesale.co.uk

Page 99 of 501



 
 
 

113 
 

Timers 0 of an 8253 provide the Transmit and receive baud clocks for the USART. (Refer to 

chapter 5 for a detailed discussion of the Hardware).This timer is initialized by the system 

firmware to provide proper baud clock based on the settings of the DIP Switch as shown below. 

DIP SWITCH 

1. SW3 SW2 SW1 Baud rate 

OFF OFF ON 9,600* 

2. Memory selection: 

ESA 86/88-2 has four sockets, labeled U9, U8, U7, U6 for RAM. These sockets are 

configured for 62256(32X 4) devices. Two of these sockets are populated (providing 64K 

Bytes of RAM) and two are for user expansion. 

DEVICE DIP SWITCH JUMPER 

SW7 SW6 

27256 ON OFF JP10 – 1-2 

 

 

Preview from Notesale.co.uk

Page 113 of 501



 
 
 

122 
 

3. Register Addressing Mode 

Data is stored in a register and it is referred using the particular register 

Ex:  MOV BX,AX 

4. Register Indirect Addressing Mode 

The offset address of data is in either BX or SI or DI register 

Default segment is either DS or ES 

EX:  MOV AX,[BX] 

5. Indexed Addressing Mode 

Offset of the operand is stored in one of Index register 

DS is default segment for index registers SI and DI 

For Strings DS and ES are default segments for SI and DI 

EX:  MOV AX, [SI] 

6. Register Relative Addressing Mode 

Data is available at an effective address formed by adding an 8 bit or 16 bit 

displacement with the content of any one of the registers BX,BP,SI and DI in 

default segment 

EX:  AX,50H[BX] 

7. Based Indexed Addressing Register 

Effective address of data is formed by adding content of base register to content 

of Index register 

Default segment register may be ES or DS 

EX:  MOV AX,[BX][SI] 

8. Relative Based Indexed 

Effective address is formed by adding an 8 or 16 bit displacement with the sum of 

contents of any one of base registers (BX or BP) and any one of Index registers in 

a default segment 

EX:  MOV AX,50H [BX] [SI] 

9. Intrasegment Direct Mode 

Effective address to which the control is to be transferred is given by the sum of 8 

or 16 bit displacement and current content of IP 

Preview from Notesale.co.uk

Page 122 of 501



 
 
 

129 
 

1.4  8-BIT SUBTRACTION 

.MODEL TINY 

.STACK 32H 

.CODE 

START: 

MOV AX,@DATA 

MOV DS,AX 

MOV AX,00 

MOV AL,NUM1 

MOV BL,NUM2 

SUB AL,BL 

MOV RESULT,AL 

INT 3 

 

.DATA 

NUM1 DB 0FFH 

NUM2 DB 0AAH 

RESULT DB 00 

END START 

 

RESULT: 0FFH 

0AAH 

055H 

 

 

 

 

Preview from Notesale.co.uk

Page 129 of 501



 
 
 

132 
 

1.7 8-BIT MULTIPLICATION 

.MODEL TINY 

.STACK 32H 

.CODE 

START: 

MOV AX,@DATA 

MOV DS,AX 

MOV AX,00 

MOV AL,NUM1 

MOV BL,NUM2 

MUL BL 

MOV RESULT,AL 

MOV RESULT1,AH 

INT 3 

.DATA 

NUM1 DB 0FFH 

NUM2 DB 0AAH 

RESULT DB 00 

RESULT1 DB 00 

END START 

 

RESULT: 0FFH 

0AAH 

A956H 

 

 

Preview from Notesale.co.uk

Page 132 of 501



 
 
 

134 
 

1.9 8-BIT DIVISION (16 Bit by 8 Bit) 

.MODEL TINY 

.STACK 32H 

.CODE 

START: MOV AX,@DATA 

MOV DS,AX 

MOV AX,00 

MOV DX,00 

MOV AX,NUM1 

MOV BL,NUM2 

DIV BL 

MOV QUOTIENT,AL 

MOV REMAINDER,AH 

INT 3 

.DATA 

NUM1 DW 0FFH 

NUM2 DB 0AAH 

QUOTIENT DB 00 

REMAINDER DB 00 

END START 

 

RESULT: 0FFH 

0AAH  

5501H QUOTIENT: 01H 

REMAINDER R: 55H 

  

Preview from Notesale.co.uk

Page 134 of 501



 
 
 

169 
 

EX2:  RAMP WAVE GENRATION USING DAC 

        ;8086 MICROPROCESSOR 

        ;INTERFACING TO 8086 WITH DAC INTERFACE 

       ;PORT: PORTA USED ASOUTPUT 

 

CODE SEGMENT 

                        ORG 2000H 

                ASSUME CS:CODE 

                MOV AL,80H       ;INTIALIZE 8255PPI 

                MOV DX,0FFE6H    ;PORTA,PORTB,PORTC ARE OUTPUT 

                OUT DX,AL        ;0FFE6H CONTAINS CWR OF 8255 

        MOV DX,0FFE0H    ;0FFE0H INDICATES PORT  

        MOV AL,00H 

REPEAT:      OUT DX,AL 

            CALL DELAY 

                     INC AL 

                     JMP REPEAT  

                    INT 3H 

DELAY PROC NEAR 

 MOV CX,01FFH 

L1: NOP 

 LOOP L1 

 RET 

DELAY ENDP                 

CODE ENDS 

   END 

 

 

 

EX3:  TRIANGULAR WAVE GENRATION USING DAC  

 

        ;8086 MICROPROCESSOR 

        ;INTERFACING TO 8086 WITH DAC INTERFACE 

       ;PORT: PORTA USED ASOUTPUT 

Preview from Notesale.co.uk

Page 169 of 501



 
 
 

172 
 

        OR      AL,BL 

       RET 

KSCAN      ENDP  

DELAY PROC NEAR 

        PUSH    CX 

        MOV     CX,0000H        ; DELAY ROUTINE 

DLY: NOP   

       LOOP    DLY 

        POP     CX 

        RET 

 DELAY        ENDP  

        END 

 

 

 

 

Preview from Notesale.co.uk

Page 172 of 501



 
 
 

178 
 

D7                 D0 

SM0 SM1
 

SM2 REN TB8 RB8
 

TI RI 

 

o SMO & SM1 (Modes of Operation) 

o SM2 controls microprocessor to microprocessor communication 

o REN (receive enable) 

o TB8 (Transmit bit 8) 

o RB8 (Received bit 8) 

o TI (transmit flag) 

o RI (Received Flag) 

 

MODES OF OPERATION 

 

SM1 SM0 MODE OPERATION 

0 0 0 Shift register, baud rate = f/12 

0 1 1 8 BIT UART, baud rate programmable 

1 0 2 9 BIT UART, baud rate = f/32, f/64 

1 0 3 9 BIT UART, baud rate programmable 

 

 BAUD frequency = 2
SMOD 

* Oscillator frequency/(256-TH1)(12*32) 

o SMOD is bit 7 of PCON register 

 

INTERRUPT STRUCTURE OF 8051 

There are 5 INTERRUPTS in  8051  

i. Timer Interrupts (TF0 & TF1) 

ii. External Interrupts (INT 0 & INT1) 

iii. Serial port Interrupt 

RESET considered as 6
th
 interrupt 

      RESPONSE TO INTERRUPT  

o Complete current instruction  

o Save PC on stack  

o Save interrupt status 

o Jump to fixed ISR address 

o Execute ISR 

Preview from Notesale.co.uk

Page 178 of 501



 
 
 

180 
 

 TF0 

 INT1 

 TF1 

 Serial Port 

  

 I/0 INTERFACING 

p1 is used as a general purpose port, P0 and P2 are used as data and address bus in case of external 

memory acess, otherwise can be used as input/output ports. P3 port contains multifunction pins. If we are 

using serial port, timer input pins ar external interrupt this port can not be used as port. Out of 8 bits of 

port p1 some can be programmed as inputs and some as outputs for example, higher nibble as output can 

be connected to leds & lower nibble as input can be connected to 4 switches. 

 

Writing code for 8051 

The code can be developed in either assembly language using 8051 instructions or by using a simple „c‟ 

program by using cross compilers provided by microcontroller IDEs like KEIL µVision 3. The code will 

be compiles/assembled linked and then executable file will be converted to HEX file to dump it in 

Microcontroller. For that we use flash programming software provided my manufacturer i.e. Atmel. 

Atmel‟s FLIP software is used for dumping the code into microcontroller. 

Steps for writing the code 

1. Open KEIL µVision IDE  

2. Go to project menu select „new project‟, navigate to desired project folder and give project name 

in the file name window and save 

3. Select device for target window will open, click on Atmel to drop down the menu, select 

AT89C51ED2 and press ok. Another window opens asking to add startup files, click no, to not to 

add startup.a51 file 

4. Right click on Target1 in project Window and select „options for target Target1‟ 

In Target select Xtal(MHz): 11.0592 

Check box use on-chip ROM 

In output window check the box „Create HEX file‟  

5. Go to File menu open new file to open an editor. Create your souce file(s) and use the header file 

“at89c51xd2.h‟  in the source file and save files. 

6. Right click on Source group1 and select the option add files to group. 

7. After adding source files go to projects-> “build Target” to build source files and create final 

outputs. It creates <hex file to be downloaded to target device. After successful build. 

 

Program downloading 

1. Set the slide swich SW2 to PROG position and press reset with SW1 on the kit. 

2. Open atmel FLIP 2.4.2 tool 

Preview from Notesale.co.uk

Page 180 of 501



 
 
 

181 
 

3. Go to device option select, select the specific device AT89C51ED2 and press OK 

4. Go to file-> Load hex file, Navigate to desired hex file of the project 

5. Go to settings option-> rs232, a window will open make sure that no other application is 

using com port. Click on COM select com1, set the baud rate to 115200 and click on 

connect 

6. In operations flow region, check the options ERASE, BLANK CHECK, PROGRAM, 

VERIFY. 

7. In the right most side of the window check the box BLJB abd set the address of BSB,EB,SBV 

as 00,FF and FC respectively and select option „level0‟ in device SSB region. 

8. After performing above steps click run button wait until the status bar displays finished.  

9. After programming slide SW2 to RUN position and reset SW1 to execute the program. 

  

Preview from Notesale.co.uk

Page 181 of 501



 
 
 

183 
 

  display(); 

  P3 = 0xFF; 

 } 

}  //end of main()  

// get_key() function will make columns high one by one 

// and calls scan() function 

// on sensing a key from scan() function it 

// will compare the received scan code with  

// scan code lookup table and returns ASCII code 

// rows are read from Port P0 is scan() function  

// this function is in an eternal loop  

// wiil return to main() only after getting a key 

void get_key(void) 

{ 

 int i;  

   display(); 

 flag = 0x00; 

 while(flag == 0x00) 

 {   

  for(row=0;row<4;row++) 

  { 

       if( row == 0) 

          temp3=0xFE; 

      else if(row == 1) 

         temp3=0xFD; 

      else if(row == 2) 

         temp3=0xFB; 

      else if(row == 3) 

         temp3=0xF7;   

// make coulmn high one by one output to Port P1 and          

// invoke scan() function 

          

            P0 = temp3; 

   scan(); 

Preview from Notesale.co.uk

Page 183 of 501



 
 
 

192 
 

6.3  ADC interfacing 

 

/*  This program displays the ADC output of the ADC0809 IC. 

Connections: CN2 port1 to CN15 connector and CN1 port0 connector to CN16 of adc 

block.Also Connect CN3 port2 to CN6 of LCD block. Vary pot R42 to gewt different 

input voltage values 

  */           

      

#include<at89c51xd2.h> 

#include<stdio.h> 

 

// LCD FUNCTION PROTOTYPE 

void lcd_init(void); 

void lcd_comm(void);  

void lcd_data(void); 

 

void delay(int); 

 

unsigned char temp1; 

unsigned char temp2,buf[8]; 

 

float adc_temp; 

sbit EOC = P0^4; 

sbit START_ALE = P0^7; 

unsigned char xdata arr1[12]={"ADC O/P = "}; 

unsigned char xdata arr2[12]={"ADC I/P = "}; 

unsigned char i,a,temp_hi,temp_low; 

unsigned int vtemp1,adc_val; 

unsigned char temp_msg[]={"     "}; 

 

void main () 

{   

 START_ALE = 0; 

   

 lcd_init(); 

  

 temp1 = 0x80;    // Display the data from first 

position of first line 

 lcd_comm();     // Command Writing 

       

    for(i=0;i<10;i++) 

 { 

  temp2 = arr1[i]; 

Preview from Notesale.co.uk

Page 192 of 501



 
 
 

200 
 

   { 

    P0 = Val;     //* Write data for clock 

wise direction 

    Val = Val>>1; 

    delay(575); 

   } 

 } 

 else               // AntiClockwise Direction  

 { 

   

   Val = 0x01; 

   for(i=0;i<4;i++) 

   { 

    P0 = Val;      // Write data for anticlock wise 

direction 

    Val = Val<<1; 

    delay(575); 

   } 

  } 

   }    

} 

 

  

Preview from Notesale.co.uk

Page 200 of 501



 
 
 

205 
 

 Format: XCHG < destination > , < source > 

 Operation:  (destination)  (Source) 

     

 Examples: XCHG Reg1, Reg2 

   XCHG Mem, Reg 

   XCHG AX, Reg16 

 

 General purpose byte or word transfer instructions 

• XLAT: Translate a byte in AL, using a table in memory  

 Format: XLAT 

 Operation:  PA = DS X 1610 + (BX) + (AL)  

   (AL)  (PA) 

 This instruction is used to translate a byte from one code to another code  

 The instruction replaces a byte in the AL register with a byte pointed to by BX register in a look 

up table in memory 

 Before executing XLAT instruction, the look up table is to be put into memory and the starting 

address of the look up table has to be loaded into BX register 

 Examples: ASCII value of 0-9 is 30-39 and EBCDIC is 0-9.  Hence to convert EBCDIC 

code in ASCII, the ASCII values of the 0-9 has to be stored say from 2000H, then save 2000H in BX.   

Simple input and output port transfer instructions 

IN & OUT 

• IN : Copy a byte or word from specified port to accumulator. 

     Format : IN <Accumulator>, <Source> 

     Example : IN AL/AX,[DX] 

                      (AL/AX)  ( Port)  

    the contents of 8-bit port whose address is specified by DX register is transferred to 8-bit accumulator 

(AL/AX) 

                      IN AL/AX, addr8 

Preview from Notesale.co.uk

Page 205 of 501



 
 
 

210 
 

  If the value in the lower nibble is greater than 9 then the AL is                  incremented by 06,AH 

is incremented by 1,the AF and CF flags are set to 1, and the higher nibble of  AL is cleared to 0. 

• Example: 1) AL = 67 (before AAA) 

              AL = 07(after AAA) 

          2) AL = 6A; AH = 00 (before AAA) 

              A > 9 ,hence A + 6 = 1010 + 0110 

                                              = 00010000 = 10H & AF = 1 

  

 Thus before AAA instruction AX = 006AH 

  

  

 DAA : Decimal adjust Accumulator 

 This instruction is used to convert the result of the addition of two packed numbers to a valid 

BCD number,but the result has to be only in AL. 

 If the lower nibble is greater than 9, after addition or if AF is set, it will add 06H to the lower 

nibble in AL. After adding 06 in the lower nibble of AL is greater than 9 or if carry flag is set, DAA 

instruction adds 60H to AL. 

 The DAA instruction affects AF,CF,PF and ZF flags. The OF is undefined. 

 Example: AL = 53, CL = 29 

   ADD AL,CL ; AL <- (AL) + (CL) 

              AL = 53 + 29 = 7C H 

   After DAA  AL <- 7C + 06 H  

     AL = 82 

 Example: 

  AL = 73 and CL = 29  

 ADD AL,CL 

 AL <- AL + CL 

 AL <- 73 + 29 

Preview from Notesale.co.uk

Page 210 of 501



 
 
 

215 
 

 Multiplication instructions: 

 MUL, IMUL, AAM 

o MUL : Unsigned Multiplication of byte or word. 

 MUL Reg. / Mem. 

 This instruction multiplies an unsigned byte or word by the contents of AL. 

 The Unsigned byte or word may be in any one of the general purpose registers or memory 

locations. 

 For Byte multiplication the most significant byte will be stored in AH register and least 

significant byte is stored in AL register. 

 For Word multiplication the most significant word of the result is stored in DX, while the least 

significant word of the result is stored in AX register 

 All the flags are modified depending upon the result of the operation. 

 Immediate operand is not allowed in this instruction. 

 If  the most significant byte or word of result is „0‟ CF and OF both will be set. 

 Example: MUL BL 

   MUL BX 

 IMUL : Signed Multiplication. 

 This instruction multiplies a signed byte in source operand by a signed byte in AL register or A 

signed word in AX register. 

 The source can be a general purpose register, memory operand,index register or base register, but 

it cannot be an immediate data. 

 While using this instruction the content of accumulator and register should be sign extended 

binary in 2‟s complement form and the result is also in sign extended binary. 

 In case of 32-bit results, the higher order word(MSW) is stored in DX and lower order word is 

stored in AX 

 In case of 16-bit result it will be stored in AX register. 

 The AF, PF, SF, and ZF flags are undefined after IMUL instruction execution. 

 If AH and DX contains parts of 16-bit and 32-bit result respectively, CF and OF both will be set. 

Preview from Notesale.co.uk

Page 215 of 501



 
 
 

216 
 

 The AL and AX are the implicit operands in case of 8 –bits and 16-bits multiplication 

respectively. 

 The unsigned higher bits of the result are filled by sign bit and CF,AF are cleared. 

 Example: IMUL BL / IMUL BX  

 AAM : ASCII Adjust after Multiplication 

 This instruction after execution, converts the product available in AL into unpacked BCD format. 

 The AAM instruction follows a multiplication instruction that multiplies two unpacked BCD 

operands, i.e., higher nibbles of the multiplication operands should be „0‟.The multiplication of such 

operands is carried out using MUL instruction. 

 The result of the multiplication will be available in AX. 

 (AH) = (AL)  0A H  

 (AL) = (AL) MOD 0A H 

 The AAM instruction replaces the contents of AH by tens of decimal multiplication and AL by 

singles of the decimal multiplication. 

 MOV AL, 04 ; AL  04  

 MOV BL, 09 ; BL  09  

 MUL BL ; AH:AL  24 H (9 X 4)  

 AAM ; AH  03 

   ; AL 06  

• ARITHMETIC INSTRUCTIONS 

Division instructions 

Division instructions: DIV, IDIV, AAD, CBW, CWD 

o DIV : Unsigned division 

 DIV <reg./Mem> 

 This instruction performs unsigned division. It divides an unsigned word or double word by a 16-

bit or 8-bit operand. 

 The dividend must be in AX for 16-bit operation and the divisor may be specified using any one 

of the addressing modes except immediate. 

Preview from Notesale.co.uk

Page 216 of 501



 
 
 

217 
 

 The dividend for 32-bit operation will be in DX:AX register pair (Most significant word in DX 

and least significant word in AX). 

 All the flags are undefined for DIV instruction. 

 The result of division is for 16-bit number divided by 8-bit number  the Quotient will be in AL 

register and the remainder will be in AH register similarly for 32-bit number divided by 16-bit number the 

Quotient will be in AX register and the remainder will be in DX register. 

 If the result is too big to fit into AL or AX register then Type-0 (divide by zero) interrupt is 

generated and the ISR for the Type zero will be executed such that correction steps are taken to 

accommodate the result. 

 For 16-bit  8-bit 

 (AL)  (AX)  (reg.-8) ; Quotient 

 reg.-8 : 8 – bit register 

 (AH)  (AX) Mod (reg.-8) ; Remainder 

 For 32-bit  16-bit 

  (AX)  (DX)(AX)  (reg.-16) ; Quotient 

 (DX)  (DX)(AX) Mod (reg.-16) ; Remainder 

 Reg.-16 : 16 – bit register 

 Example: DIV AX/ DIV [BX] 

o IDIV : signed division 

 IDIV <reg./Mem> 

 This instruction performs signed division. It divides an signed word or double word by a signed 

16-bit or 8-bit operand. 

 While using IDIV instruction the contents of accumulator and register should be sign extended 

binary. 

 The signed dividend must be in AX for 16-bit operation and the signed divisor may be specified 

using any one of the addressing modes except immediate. 

 The signed dividend for 32-bit operation will be in DX:AX register pair (Most significant word in 

DX and least significant word in AX). 

 All the flags are undefined for IDIV instruction. 

Preview from Notesale.co.uk

Page 217 of 501



 
 
 

223 
 

SHL / SAL, SHR, SAR 

SHL / SAL : Shift Logical / Arithmetic Left 

 SHL <reg. / Mem> 

 CF  R(MSB) ; R(n+1)  R(n) ; R(LSD)  0 

    

 These instructions shift the operand word or byte bit by bit to the left and insert zeros in the 

newly introduced least significant bits. 

 The number of bits to be shifted if 1 will be specified in the instruction itself if the count is more 

than 1 then the count will be in CL register. 

 The operand to be shifted can be either register or memory location contents but cannot be 

immediate data. 

 All the flags are affected depending upon the result.The shift operation will considering using 

carry flag. 

 SHR : Shift Logical Right  

 SHR  <reg. / Mem> 

 CF  R(LSB) ; R(n)  R(n+1) ; R(MSD)  0 

    

    

 These instructions shift the operand word or byte bit by bit to the right and insert zeros in the 

newly introduced Most significant bits. 

 The result of the shift operation will be stored in the register itself. 

 The number of bits to be shifted if 1 will be specified in the instruction itself if the count is more 

than 1 then the count will be in CL register. 

 The operand to be shifted can be either register or memory location contents but cannot be 

immediate data. 

 All the flags are affected depending upon the result.The shift operation will considering using 

carry flag. 

 SAR : Shift Logical Right  

Preview from Notesale.co.uk

Page 223 of 501



 
 
 

230 
 

 Compare one byte or word of a string data stored in data segment with that stored in extra 

segment. 

 The SI register points to the source string and DI register points to the destination string. 

 The CX register is decremented by one for each byte / word movement. 

 The SI and DI registers are automatically incremented or decremented depending on the status of  

DF. 

 MA = (DS) X 1610 + (SI) 

 MAE = (ES) X 1610 + (DI) 

 Modify flags  (MA) - (MAE)  

 If  (MA) > (MAE) then CF = 0 ; ZF = 0 ; SF = 0 

 If  (MA) < (MAE) then CF = 1 ; ZF = 0 ; SF = 1 

 If  (MA) = (MAE) then CF = 0 ; ZF = 1 ; SF = 0 

 For byte operation 

 If  DF = 0, then (DI)  (DI) + 1 ; (SI)  (SI) + 1 

 If  DF = 1, then (DI)  (DI) - 1 ; (SI)  (SI) – 1 

 For word operation 

 If  DF = 0, then (DI)  (DI) + 2 ; (SI)  (SI) + 2 

 If  DF = 1, then (DI)  (DI) - 2 ; (SI)  (SI) - 2 

 SCAS / SCASB / SCASW: Scan string byte or String word 

 One byte or word of a string data stored in extra segment is subtracted from the contents of  AL / 

AX and the result modifies the flags. 

 The DI register points to the string byte or word. 

 The CX register is decremented by one for each byte / word movement. 

 The DI register is automatically incremented or decremented depending on the status of  DF. 

 MA = (DS) X 1610 + (SI) 

 MAE = (ES) X 1610 + (DI) 

  Modify flags  (AL) - (MAE)  / (AX) - (MAE : MAE + 1)  

Preview from Notesale.co.uk

Page 230 of 501



 
 
 

234 
 

 The WAIT instruction is used to synchronize the 8086 processor with the external hardware such 

as the 8087 math processor.  

 HLT : Halt Processing 

 The HLT instruction will cause the 8086 to stop the fetching and execution of the instructions. 

The 8086 will enter a halt state i.e., used to terminate a program. 

 The only ways to get processor out of Halt state are with an interrupt signal on INTR pin, an 

interrupt signal on NMI pin, or a valid reset signal on RESET input. 

 NOP : No Operation 

 No operation is performed for three clock periods 

 This instruction simply uses up three clock cycles and increments the instruction pointer to point 

to the next instruction. 

 The NOP instruction does not affect any flag. 

 The NOP instruction can be used to increase the delay of a delay loop. 

 When hand coding, a NOP can also be used to hold a place in a program for instruction that will 

be added later. 

 ESC : Escape 

 ESC opcode, Mem. / Reg. 

 This instruction is used to pass instructions to a coprocessor , such as the 8087 math coprocessor 

which shares the address and data bus with 8086 

 Instructions for coprocessor are represented by a 6-bit code embedded in the escape instruction. 

 As 8086 fetches the instructions bytes, the coprocessor also catches these bytes from the data bus 

and puts them in its queue , but treats all the normal 8086 instructions as NOPs and when ESC instruction 

is fetched by 8086, the coprocessor decodes the instruction and carries out the action specified by the 6-

bit code in the instruction. 

 In most cases 8086 treats the ESC instruction as NOP but in some cases 8086 will access a data 

item in memory for the coprocessor. 

 For ESC opcode, Mem format the data is accessed by 8087 from memory  

 For ESC opcode, Mem format the data is accessed by 8087 from 8086 register specified in the 

instruction.  

 LOCK : Assert Bus Lock signal 

Preview from Notesale.co.uk

Page 234 of 501



 
 
 

235 
 

 The LOCK is used as a prefix to a critical instruction which has to be executed without any 

disturbances to system bus from other bus masters. 

 When LOCK prefix is used in an instruction then during execution of this instruction the lock 

prefix ensures that the shared system resources are not taken over by other bus masters in the middle of 

the critical instruction execution.  

 When an instruction with LOCK prefix is executed the 8086 will assert its bus lock signal 

output.This signal is connected to an external bus controller device, which then prevents any other 

processor from taking over the system bus 

 LOCK affects no flags. 

• Program execution transfer instructions 

 The control transfer group consists of call, jump, loop and software interrupt instructions. 

 Normally a program is executed sequentially( i.e., the program instructions are executed one after 

the other), when a branch instruction is encountered the program execution control is transferred 

to the specified destination or target instructions. The transfer of program execution control is 

done either by changing the content of IP or by changing the contents of IP and CS. 

 When the content of IP alone is modified, the program control branches to new memory location 

in the same segment. 

 When the contents of IP and CS are modified, the program control branches to new memory 

location in another memory segment. 

 The control transfer instructions do not affect the flags of 8086. 

 The jump and loop instructions can be classified into conditional and unconditional instructions. 

 In conditional instructions, the status of one or more flags are checked and control transfer takes 

place only if the specified condition is satisfied.  

 The program execution transfer instructions can be categorized as: 

 Unconditional transfer instructions 

 Conditional transfer instructions 

 Iteration control instructions 

 Software interrupt instructions 

 Unconditional transfer instructions: 

 CALL 

 RET 

Preview from Notesale.co.uk

Page 235 of 501



 
 
 

252 
 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 252 of 501



 
 
 

257 
 

AD  – AD 
15     0 

A  / S – A  / S 
19   6   16  3 

BHE /S7 

MN / MX 

RD 

TEST 

READY 

RESET 

NMI 

INTR 

CLK 

Vcc 

GND 

Address/ Data Bus         Bidirectional 
3 - state 

Address / Status         Output 3 - State 

Bus High Enable /          Output 
Status              3- State 

Minimum /             Input 
Maximum Mode 

Control 

Read Control          Output 3- State 

Wait On Test Control          Input 

Wait State Controls           Input 

System Reset             Input 

Non - Maskable 
Input Interrupt Request 
Input 

Interrupt Request 
Input System Clock 

+ 5V                 Input 

Ground 
 

 

 

 

 

 

 

Minimum Mode Signals    ( MN/ MX = Vcc ) 

Name Function Type 

Preview from Notesale.co.uk

Page 257 of 501



 
 
 

264 
 

duty cycle to provide optimized internal timing. Minimum frequency of 2 MHz is required, since 

the design of 8086 processors incorporates dynamic cells. The maximum clock frequencies of 

the 8086-4, 8086 and 8086-2 are 4MHz, 5MHz and 8MHz respectively. Since the 8086 does not 

have on-chip clock generation 

circuitry, and 8284 clock generator chip must be connected to the 8086 clock pin. The crystal 

connected to 8284 must have a frequency 3 times the 8086 internal frequency. The 8284 clock 

generation chip is used to generate READY, RESET and CLK. 

 

 

MN/ MX (I): Maximum / Minimum 

This pin indicates what mode the processor is to operate in. In minimum mode, the 8086 itself 

generates all bus control signals. In maximum mode the three status signals are to be decoded to 

generate all the bus control signals. 

 

Minimum Mode Pins  

The following 8 pins function descriptions are for the 8086 in minimum mode; MN/ MX = 1. 

The corresponding 8 pins function descriptions for maximum mode is explained later. 

Preview from Notesale.co.uk

Page 264 of 501



 
 
 

273 
 

 

In the bus timing diagram, data transmit / receive signal goes low (RECEIVE) for Read 

operation. To validate the data, DEN* signal goes low. The Address/ Status bus carries A16 to 

A19 address lines during BHE* (low) and for the remaining time carries Status information. The 

Address/Data bus carries A0 to A15 address information during ALE going high and for the 

remaining time it carries data. The RD* line going low indicates that this is a Read operation. 

The curved arrows indicate the relationship between valid data and RD* signal.  

The TW is Wait time needed to synchronize the fast processor with slow memory etc. The Ready 

pin is checked to see whether any peripheral needs more time for data transmission. 

 

 

 

 

 

Preview from Notesale.co.uk

Page 273 of 501



 
 
 

276 
 

Memory Read timing in  

Maximum Mode 

 

 

 

 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 276 of 501



 
 
 

285 
 

 There does not seem to be a big difference between these methods although the book claims that 

there is.  

  

 Note in either method that A 0 does not connect to memory and bus wire A 1 connects to memory 

pin A 0 , A 2 to A 1 , etc.  

80386SX 16-bit Memory Interface (Separate Decoders) 

 

Memory Interfaces  

 See text for Separate Write Strobe scheme plus some examples of the integration of EPROM and 

SRAM in a complete system.  

o It is just an application of what we've been covering.  

  

 80386DX and 80486 have 32-bit data buses and therefore 4 banks of memory.  

o 32-bit , 16-bit and 8-bit transfers are accomplished by different combinations of the bank 

selection signals BE3 , BE2 , BE1 , BE0 .  

Preview from Notesale.co.uk

Page 285 of 501



 
 
 

289 
 

 

Dynamic RAM 

 DRAM requires refreshing every 2 to 4 ms .  

o Refreshing occurs automatically during a read or write.  

o Internal circuitry takes care of refreshing cells that are not accessed over this interval.  

  

 This special refresh occurs transparently while other memory components operate and is called 

transparent refresh or cycle stealing .  

  

 A RAS -only cycle strobes a row address into the DRAM, obtained by 7- or 8-bit binary counter.  

  

 The capacitors are recharged for the selected row by reading the bits out internally and then 

writing them back.  

  

 For a 256K X 1 DRAM with 256 rows, a refresh must occur every 15.6us (4ms/256).  

o For the 8086, a read or write occurs every 800ns .  

o This allows 19 memory reads/writes per refresh or 5% of the time.  

Preview from Notesale.co.uk

Page 289 of 501



 
 
 

290 
 

Dynamic RAM 

 

 

E1. Interface two 4K X 8 EPROMs and two 4K X 8 RAM chips with 8086. Select suitable 

maps. 
First we have to write the memory map fro the problem given. It will reveal the logic to be used 
for decoding circuit. 
Since the first instruction is fetched from FFFF0h after the microprocessor is reset, we will make 
that address to be present in EPROM and write the memory map as follows. And, to avoid 

windowing let us keep the locations to be present in the RAM as immediate addresses. 
Locations having addresses from FFFFFH to FE000H are allocated to EPROM1 and 2. 
Immediate address map FDFFFH to FD000H is allocated to RAM1 and 2. The line which is 

differentiating EPROM from RAM if A13. Let us use it along with A0 and BHE to identify odd 
and even banks. 

 

A19   A18   A17   A16 A15   A14   A13   A12 A11    A10    A9    A8 A7    A6    A5    A4 A3    A2    A1    A0 

Memory 

Address 

in 

Flex 
1    1    1    1 

1    1    1    1 

1    1    1    1 

1    1       0 1 

1     1    1    1 

0     0    0    0 

1    1    1    1 

0    0    0    0 

1    1    1    1 

0    0    0    0 

FFFFFH 

To 

FE000H 

Preview from Notesale.co.uk

Page 290 of 501



 
 
 

292 
 

 

 

 

 

 

 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 292 of 501



 
 
 

293 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 293 of 501



 
 
 

300 
 

 
General organization of the DMA controller 

 
 
DMA operation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Preview from Notesale.co.uk

Page 300 of 501



 
 
 

303 
 

The peripheral places the byte to be transferred on the bus Data lines. 

Once the data has been transferred, The DMA will de-assert the -DACK2 signal, so that 

the FDC knows it must stop placing data on the bus. 

The DMA will now check to see if any of the other DMA channels have any work to do. If 

none of the channels have their DRQ lines asserted, the DMA controller has completed its 

work and will now tri-state the -MEMR, -MEMW, -IOR, -IOW and address signals. 

Finally, the DMA will de-assert the HOLD signal. The CPU sees this, and de-asserts the 

HOLDA signal. Now the CPU resumes control of the buses and address lines, and it 

resumes executing instructions and accessing main memory and the peripherals. 

EXAMPLE  

Assuming that a DMA initialization has an overhead of 10 cycles, while a CPU transfer to/from 

memory requires 4 cycles (no wait states required), compare a DMA and a CPU transfer from 

one memory location to another of 

One byte of data 

A block of 1Kbytes in burst mode 

A block of 64Kbytes in burst mode  

DMA controller 

 

 

A DMA controller interfaces with several peripherals that may request DMA. 
 

 

The controller decides the priority of simultaneous DMA requests communicates with the 

peripheral and the CPU, and provides memory addresses for data transfer. 

 

Advantages of DMA 

• Fast memory transfer of data 

• CPU and DMA run concurrently under cache mode 

• DMA can trigger an interrupt, which frees the CPU from polling the channel 

 
 

 

Preview from Notesale.co.uk

Page 303 of 501



 
 
 

318 
 

o Usually used to test and debug the hardware and software of an external system like 

prototype of microprocessor based instruments. 

o Emulator have a multi-wire cable which connects the host system to prototype system. 

 

Preview from Notesale.co.uk

Page 318 of 501



 
 
 

319 
 

 

 

Preview from Notesale.co.uk

Page 319 of 501



 
 
 

320 
 

• Machine Level Language Programming 

 Generating the machine codes of program manually and execute it. 

 Disadvantages of MLP : 

o The process is complicated and time consuming. 

o The chances of error being committed are more at the machine level( in hand-coding and 

entering the program byte-by-byte into the system). 

o Debugging a program at the machine-level is more difficult. 

o The programs are not understood by every one and the results are not stored in user 

friendly form. 

 A program called „assembler‟ is used to convert the mnemonics of instructions along with the 

data into their equivalent object code modules, which may further be converted in executable 

code using the linker and loader programs. 

  This type of programming is called Assembly level language programming(ALP). 

  In ALP, the mnemonics are directly used in the user programs. The assembler performs 

the task of coding. 

 Advantages of ALP over MLP: 

o The Programming in assembly language is not so complicated as in machine language 

because the function of coding is performed by an assembler. 

o The chances of error being committed are less because the mnemonics are used instead of 

numerical opcodes. It is easier to enter an ALP. 

o As the mnemonics are purpose suggestive, the debugging is easier. 

o The constants and address locations can be labeled with suggestive labels hence imparting a more 

user friendly interface to user.Advanced assemblers provide facilities like macros, lists,……… 

etc making the task of programming much easier. 

o The memory control is in the hands of users as in machine language. 

o The results may be stored in a more user-friendly form. 

o The flexibility of programming is more in assembly language programming as compared to 

machine language programming because of advanced facilities available with the modern 

assemblers. 

 Assembly language programming (ALP) explains the way the computer hardware and operating 

system work together and also about how the application programs communicate with the 

operating system. 

Preview from Notesale.co.uk

Page 320 of 501



 
 
 

324 
 

• Assembler Directives 

 DD (Define Double Word) : Each operand datum is two words long with low-order word 

followed by high-order word. 

 DQ(Define Quad Word) : Each operand data is 4 words long i.e. 8 bytes and is stored starting 

from lowest byte to higher bytes. 

 DT(Define Ten Bytes) : Each operand datum is 10 bytes long and is stored starting from the 

lowest byte to higher bytes. 

 The character string is stored in between single quotes and each character‟s ASCII codes are 

saved(stored) in successive locations(i.e. the first character goes into the first byte assigned to the 

variable, then second character of the string is stored at second byte and so on…………) 

 The character string is defined or pre-assigned using byte type. 

 The character string can be defined using DW and DD also, but they are rarely used as the bytes 

are reversed and also string operands in a DW or DD cannot exceed two characters in length. 

 When an question mark (?) is used along with mnemonic as second mnemonic, it does not pre-

assign any value but, the appropriate amount of space is reserved. 

 DUP operator is used along with data size defining mnemonics to duplicate multiple locations 

with the specified value in the braces. 

 ex: DUP(0)  fills 0‟s in all the variable locations.  

 Types of numbers used in data statements: 

 Binary : ex  11100101B 

 Negative number is represented in 2‟s complement sign-magnitude form. 

 Any binary number is represented using a suffix of character „B‟. 

 Decimal : ex  20/ 20D / -20 / -20D 

 Any decimal number is represented using a suffix of character „D‟. 

 Decimal is default data type.  

 Hexadecimal : ex: 30H 

• Always any hexadecimal number is represented using a suffix of character „H‟. 

• Always a „0‟(zero) is to be appended in front of a hexadecimal number that starts with 

alphabet. 

Preview from Notesale.co.uk

Page 324 of 501



 
 
 

351 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODE - 0 (BASIC I/O MODE) 

SALIENT FEATURES OF THIS MODE 

1. Two 8-bit ports ( port A and port B) and two 4- bit ports ( port C upper and port C lower ) 

are available.   

2. The two 4-bit ports can be combined used as a third 8-bit port. 

3. Any port can be used as an input or output port. 

4. Output ports are latched. Input ports are not latched. 

5. A maximum of four ports are available so that overall 16 I/O configurations are possible. 

INPUT (READ) CYCLE

0 1 0 0 0 PORT A TO DATA BUS

0 1 0 0 1 PORT B TO DATA BUS

0 1 0 1 0 PORT C TO DATA BUS

0 1 0 1 1 CWR TO DATA BUS

OUTPUT (WRITE) CYCLE

1 0 0 0 0 DATA BUS TO PORT A

1 0 0 0 1 DATA BUS TO PORT B

1 0 0 1 0 DATA BUS TO PORT C

1 0 0 1 1 DATA BUS TO CWR

X X 1 X X DATA BUS TRISTATED

1 1 0 X X DATA BUS TRISTATED

FUNCTION

Preview from Notesale.co.uk

Page 351 of 501



 
 
 

359 
 

Preview from Notesale.co.uk

Page 359 of 501



 
 
 

369 
 

 

Combinations of Mode 1:  

Port A and Port B can be individually defined as input or output in Mode 1 to support a 

wide variety of Strobbed I/O applications. 

 

Preview from Notesale.co.uk

Page 369 of 501



 
 
 

374 
 

 

 

 

 

 

 

 

 

Distinguish  between  Microprocessor and  Microcontroller 

S.No Microprocessor Microcontroller 

1 A microprocessor is a general 

purpose device which is called a 

CPU  

A microcontroller is a dedicated chip which 

is also called single chip computer. 

2 A microprocessor do not contain 

onchip I/OPorts, Timers, Memories 

etc.. 

A microcontroller includes RAM, ROM, 

serial and parallel interface, timers, 

interrupt 

circuitry (in addition to CPU) in a single 

chip. 

3 Microprocessors are most 

commonly used as the CPU in 

microcomputer systems 

Microcontrollers are used in small, 

minimum component designs performing 

control-oriented applications. 

4 Microprocessor instructions are 

mainly nibble or byte addressable 

Microcontroller instructions are both bit 

addressable as well as byte addressable. 

5 Microprocessor instruction sets are  

mainly  intended  for catering to 

large volumes of data. 

Microcontrollers have instruction sets 

catering to the control of inputs and 

outputs. 

Preview from Notesale.co.uk

Page 374 of 501



 
 
 

376 
 

Microcontrollers for Embedded Systems 

• Home 

– Appliances, intercom, telephones, security systems, garage door openers, 

answering machines, fax machines, home computers, TVs, cable TV tuner, VCR, 

camcorder, remote controls, video games, cellular phones, musical instruments, 

sewing machines, lighting control, paging, camera, pinball machines, toys, 

exercise equipment etc. 

• Office 

– Telephones, computers, security systems, fax machines, microwave, copier, laser 

printer, color printer, paging etc. 

• Auto 

– Trip computer, engine control, air bag, ABS, instrumentation, security system, 

transmission control, entertainment, climate control, cellular phone, keyless entry 

Criteria for Choosing a Microcontroller 

• Meeting the computing needs of the task at hand efficiently and cost effectively 

– Speed 

– Packaging 

– Power consumption 

– The amount of RAM and ROM on chip 

– The number of I/O pins and the timer on chip 

– How easy to upgrade to higher performance or lower power-consumption 

versions 

– Cost per unit 

• Criteria for Choosing a Microcontroller 

• Availability of software development tools, such as  compilers, assemblers, and 

debuggers 

Preview from Notesale.co.uk

Page 376 of 501



 
 
 

377 
 

• Wide availability and reliable sources of the microcontroller 

– The 8051 family has the largest number of diversified (multiple source) suppliers 

• Intel (original) 

• Atmel 

• Philips/Signetics  

• AMD 

• Infineon (formerly Siemens) 

• Matra  

• Dallas Semiconductor/Maxim  

TYPES OF MICROCONTROLLERS : 

Microcontrollers can be classified on the basis of internal bus width, architecture, memory and   

instruction set as  4-bit,8-bit,16-bit and 32-bit  micrcontrollers. 

4-bit Microcontrollers: These 4-bit microcontrollers are small  size, minimum pin count  and  

low cost controllers which are widely used for low end applications like LED & LCD  display 

drivers ,portable battery chargers etc.. Their power consumption is also low. The popular 4-bit 

controllers are Renasa M34501 which is a 20 pin DIP chip with  4kB of ROM,256 Bytes of 

RAM,2-Counters and 14 I/O Pins. Similarly  ATAM862 series from ATMEL. 

8-bit Microcontrollers : These are the most popular and widely used microcontrollers .About 

55% of all CPUs sold in the world are 8-bit microcontrollers only.The 8-bit microcontroller has 

8-bitinternal bus and the ALU performs all the arithmetic and logical operations on a byte 

instruction. The well known 8-bit microcontroller is   8051 which was designed by Intel in the 

year 1980 for the use in embedded systems. Other 8-bit microcontrollers are Intel 8031/8052 and 

Motorola MC68HC11 and AVR Microcontrollers, Microchip‟s  PIC Microcontrollers  12C5XX 

,16C5X  and 16C505  etc... 

16-bit  Microcontrollers :  When the  microcontroller performs 16-bit arithmetic and logical 

operations  at an instruction, the microcontroller is said to be a  16-bit  microcontroller. The 

internal bus width of 16-bit microcontroller is of 16-bit. These microcontrollers are having 

increased memory size and speed of operation when compared to 8-bit microcontrollers.These 

Preview from Notesale.co.uk

Page 377 of 501



 
 
 

380 
 

 

 16-Bit Microcontrollers 

The following table gives the list of PIC microcontrollers from Micro chip Inc 

 

Microcontroller Pins I/O Lines On chip ADCs EPROM 

X 12 words 

On chip RAM   

(Bytes) 

16C54 18 12 None 512 25 

16C55 28 20 None 512 24 

16C56 18 12 None 1k 25 

16C57 28 20 None 2k 72 

17C42A 40 33 None 2k 232 

17C43 40 33 None 4k 454 

17C44 40 33 None 8k 454 

17C71 18 13 8bit ADCs 1kx14 36 

17C752 40 33 10Bit ADC 8kx16 678 

Development/Classification of microcontrollers (Invisible)  

Microcontrollers have gone through a silent evolution (invisible). The evolution can be rightly termed as 

silent as the impact or application of a microcontroller is not well known to a common user, although 

microcontroller technology has undergone significant change since early 1970's. Development of some 

Preview from Notesale.co.uk

Page 380 of 501



 
 
 

383 
 

 

Fig. 2.1   Internal Structure of a Microcontroller  

At times, a microcontroller can have external memory also (if there is no internal memory or extra memory 

interface is required). Early microcontrollers were manufactured using bipolar or NMOS technologies. Most 

modern microcontrollers are manufactured with CMOS technology, which leads to reduction in size and 

power loss. Current drawn by the IC is also reduced considerably from 10mA to a few micro Amperes in 

sleep mode(for a microcontroller running typically at a clock speed of 20MHz).  

Harvard vs. Princeton Architecture  

Many years ago, in the late 1940's, the US Government asked Harvard and Princeton universities to come up 

with a computer architecture to be used in computing distances of Naval artillery shell for defense 

applications. Princeton suggested computer architecture with a single memory interface. It is also known as 

Von Neumann architecture after the name of the chief scientist of the project in Princeton University John 

Von Neumann (1903 - 1957 Born in Budapest, Hungary).  

Harvard suggested a computer with two different memory interfaces, one for the data / variables and the 

other for program / instructions. Although Princeton architecture was accepted for simplicity and ease of 

implementation, Harvard architecture became popular later, due to the parallelism of instruction execution.  

Princeton Architecture  (Single memory interface)  

Preview from Notesale.co.uk

Page 383 of 501



 
 
 

385 
 

Fig. 2.3     Harvard Arcitecture  

The same instruction (as shown under Princeton Architecture) would be executed as follows:  

Cycle 1  

- Complete previous instruction 

- Read the "Move Data to Accumulator" instruction  

Cycle 2  

- Execute "Move Data to Accumulator" instruction  

- Read next instruction  

Hence each instruction is effectively executed in one instruction cycle, except for the ones that modify the 

content of the program counter. For example, the "jump" (or call) instructions takes 2 cycles. Thus, due to 

parallelism, Harvard architecture executes more instructions in a given time compared to Princeton 

Architecture.  

  

 

MICROCONTROLLER    DEVELOPMENT TOOLS: 

To develop an assembly language program we need certain  program development tools. 

An assembly language program consists of Mnemonics  which are nothing but short abbreviated 

English instructions given to the controller.The various development tools required for 

Microcontroller   programming are explained below.  

1. Editor : An Editor is a program which allows us to create a file containing the assembly 

language statements for the  program. Examples of some editors are PC write Wordstar. As we 

type the program the   editor stores the ACSII codes for the letters and numbers in successive 

RAM locations. If any typing mistake is done editor will alert us   to correct it. If we leave out a 

program statement an editor will let you move everything down and insert a line. After typing all  

the program we have to save the program . This we call it as source file.  The next step is to 

process the source file with an assembler.                         

 Ex: Sample. asm 

2.Assembler :  An Assembler is used to translate the assembly language mnemonics into 

machine language( i.e binary codes).  When you run the assembler it reads the source file of your 

program from where you have saved it. The assembler generates a filee with the extension  .hex. 

This file consists of hexadecimal values encoding a sequence of data and their starting offset or 

absolute address.  

Preview from Notesale.co.uk

Page 385 of 501



 
 
 

387 
 

 Two 16-bit timer/counters 

 Full duplex UART 

 6-source/5-vector interrupt structure with two priority levels 

 On-chip clock oscillator  

 It is a 40 pin dip (dual-in-line) package. 

 Eight bit cpu with rigisters A(accumlater) and B. 

 8051 available in both NMOS & CMOS. 

 Sixteen bit program counter (PC) and data pointer (DPTR). 

 Eight bit program status word (PSW). 

 FOUR register banks,each containing 8-registers. 

 FOUR ports, each port having 8-bits. 

 FULL DUPLEX serial data reciver/ transmitter. 

 

 

ARCHITECTURE & BLOCK DIAGRAM OF 8051 MICROCONTROLLER: 

The architecture of the 8051 microcontroller can be understood from the block diagram. 

It has Harward architecture with RISC (Reduced Instruction Set Computer)   concept. The block 

diagram of 8051 microcontroller is shown  in Fig 3. below1.It  consists of an 8-bit ALU, one 8-

bit  PSW(Program Status Register), A and B registers , one 16-bit Program counter , one 16-bit 

Data pointer register(DPTR),128 bytes of RAM and 4kB of ROM and four parallel I/O ports 

each of 8-bit width.  

ARCHITECTURE OF 8051 

 

Preview from Notesale.co.uk

Page 387 of 501



 
 
 

397 
 

CODE segment is accessed  using the program counter (PC) for opcode  fetches and by DPTR 

for data. The external ROM is accessed when the EA(active low)  pin is connected to ground or 

the contents of program counter exceeds 0FFFH.When the Internal ROM address is exceeded the 

8051 automatically fetches the code bytes from the external program memory. 

 

 

Interfacing memories Preview from Notesale.co.uk

Page 397 of 501



 
 
 

407 
 

 

Port 2  : Port 2 is also an eight bit parallel port. (pins 21- 28). It can be used as input or output 

port. As this port is provided with internal pull-up resistors it  does not need any external pull-up 

resistors. Upon reset, Port 2 is configured as an output port. If the port is to be used as input port, 

all the port bits must be made high by sending FF to the port. For ex, 

MOV A, #0FFH         ; A=FF hex 

 MOV P2, A                ; make P2 an input port by writing all 1‟s to it 

 

Dual role of port 2 : Port2  lines are also associated with the higher order address lines A8-A15. 

In systems based on the 8751, 8951, and DS5000, Port2 is used as simple I/O port.. But, in 8031-

based systems, port 2 is used along with P0 to provide the 16-bit address for the external 

memory. Since an 8031 is capable of accessing 64K bytes of external memory, it needs a path 

for the 16 bits of the address. While P0 provides the lower 8 bits via A0-A7, it is the job of P2 to 

provide bits A8-A15 of the address. In other words, when 8031 is connected to external memory, 

Port 2 is used for the upper 8 bits of the 16 bit address, and it cannot be used for I/O operations. 

PORT 3 : Port3 is also an 8-bit parallel port  with dual function.( pins 10 to 17). The port pins 

can  be used  for I/O operations    as well as for  control  operations. The details of these 

Preview from Notesale.co.uk

Page 407 of 501



 
 
 

427 
 

 

INTERFACING DC MOTOR- 8051  

A DC motor runs with the help of Direct Current. It produces torque by using both electricity and 

magnetic fields. The DC motor has rotor, stator, field magnet, brushes, shaft, commutator. The 

DC motor requires more current to produce initial torque than in running state.Interfacing the DC 

motor directly to 8051 microcontroller is not possible. Because the DC motor uses large current 

(200-300mA in small DC motors) to run. When this current flow into the 8051 microcontroller, 

the IC will  get damaged. Therefore we use  a driving circuit  with an  opto isolator and a L298 

Dual H-Bridge driver. The opto-isolator provides additional protection to the microcontroller.  

 

 

                                                                                      

Continuous, sustained operation of the motor will cause the L293 Dual H-Bridge driver to 

overheat. So,a suitable heat sink must be used. 

 

 

 

 

 

 

Preview from Notesale.co.uk

Page 427 of 501



 
 
 

435 
 

38. Why 8085 processor is called an 8 bit processor? 

Because 8085 processor has 8 bit ALU (Arithmetic Logic Review). 

 

 

39. Expand HCMOS? 

High-density n- type Complimentary Metal Oxide Silicon field effect transistor. 

 

 

40. What does microprocessor speed depend on? 

The processing speed depends on DATA BUS WIDTH. 

 

41. Give examples for Maskable interrupts? 

RST 7.5, RST6.5, RST5.5 are Maskable interrupts 

 

42. What is Tri-state logic? 

Three Logic Levels are used and they are High, Low, High impedance state. The high and low are 

normal logic levels & high impedance state is electrical open circuit conditions. Tri-state logic 

has a third line called enable line. 

 

 

43. Give an example of one address microprocessor? 

8085 is a one address microprocessor. 

 

 

44. In what way interrupts are classified in 8085? 

In 8085 the interrupts are classified as Hardware and Software interrupts. 

 

 

45. What are Hardware interrupts? 

TRAP, RST7.5, RST6.5, RST5.5, INTR. 

 

 

46. What are Software interrupts? 

RST0, RST1, RST2, RST3, RST4, RST5, RST6, RST7. 

 

 

47. Which interrupt has the highest priority? 

TRAP has the highest priority. 

 

 

Preview from Notesale.co.uk

Page 435 of 501



 
 
 

444 
 

interrupt service.  

If two or more interrupts go high at the same time, the 8085 will service   

them  on priority  basis. The TRAP  has the  highest  priority followed b ye RST  7.5,  

RST 6.5, RST 5.5. The priority of interrupts in 8085 is shown in the table.   

  

 Interrupts      Priority                  

TRAP           1  

RST 7.5         2  

RST 6.5         3  

RST 5.5         4  

INTR            5  

                 

116. What is a microcomputer?  
   A  computer  that  is  designed  using  a  microprocessor  as  its  CPU  is  called  

microcomputer.  

 

117.  What is the signal classification of 8085  
    All the signals of 8085 can be classified into 6 groups  

•   Address bus  

•   Data bus  

•   Control and status signals  

•   Power supply and frequency signals  

•   Externally initiated signals  

•   Serial I/O ports  

  

118. What are operations performed on data in 8085  
The various operations performed are  

•   Store 8-bit data  

•   Perform arithmetic and logical operations  

•   Test for conditions  

•   Sequence the  execution of instructions  

•   Store  data  temporarily during  execution  in the defined R/W  

memory locations called the stack  

 

119.  Steps involved to fetch a byte in 8085  

                                      i.  The PC places the 16-bit memory address on the address bus  

ii.  The  control  unit  sends  the  control  signal  RD  to  enable  the  memory  

chip  

iii.  The byte from the memory location is placed on the data bus  

iv.  The byte is placed in the instruction decoder  of the  microprocessor  and  

the task is carried out according to the instruction  

  

120. How many interrupts does 8085 have, mention them  
The 8085 has 5 interrupt signals; they are  INTR, RST7.5, RST6.5, RST5.5  

and TRAP  

  

Preview from Notesale.co.uk

Page 444 of 501



 
 
 

449 
 

to  

override the declared type of a variable.  

  

145.Explain about MODEL  
This directive provides  short cuts  in  defining segments.  It  initializes memory  model  

before  defining  any  segment.  The  memory  model  can  be  SMALL,  MEDIUM,  

COMPACT or LARGE.   

 

 

 

 
 

 

 

 

 

 

8086 : 

1. What is the purpose of segment registers in 8086? 

There are 4 segment registers present in 8086. They are 

1. Code Segment (CS) register 

2. Data Segment (DS) register 

3. Stack Segment (SS) register 

4. Extra Segment (ES) register 

The code segment register gives the segment address of the current code segment.  

The data segment register points out where the operands are stored in the memory. 

The stack segment registers points out the address of the current stack. 

The Extra segment registers points out where the large amount of data is stored in the 

memory. 

2. What do you mean by pipelining in an 8086 processor?[NOV/DEC 2006] 

Preview from Notesale.co.uk

Page 449 of 501



 
 
 

457 
 

49. Give example for Non-Maskable interrupts? 

Trap is known as Non-Maskable interrupts, which is used in emergency condition. 

 

50. What are the various segment registers in 8086? 

Code, Data, Stack, Extra Segment registers in 8086. 

 

51. Which Stack is used in 8086? 

FIFO (First In First Out) stack is used in 8086.In this type of Stack the first stored information is 

retrieved first. 

52. Where does CPU Enhanced mode originate from? 

Intel‟s 80386 was the first 32-bit processor, and since the company had to backward-

support the 8086. All the modern Intel-based processors run in the Enhanced mode, 

capable of switching between Real mode (just like the real 8086) and Protected mode, 

which is the current mode of operation. 

 

53. How many bit combinations are there in a byte? 

Byte contains 8 combinations of bits. 

 

54. Have you studied buses? What types? 

There are three types of buses. 

Address bus: This is used to carry the Address to the memory to fetch either Instruction 

or Data. 

Data bus : This is used to carry the Data from the memory. 

Control bus : This is used to carry the Control signals like RD/WR, Select etc. 

 

55. What is the Maximum clock frequency in 8086? 

5 Mhz is the Maximum clock frequency in 8086. 

 

56. What are the different functional units in 8086? 

Bus Interface Unit and Execution unit, are the two different functional units in 8086. 

 

57. What are the various segment registers in 8086? 

Code, Data, Stack, Extra Segment registers in 8086. 

Preview from Notesale.co.uk

Page 457 of 501



 
 
 

460 
 

d. Register indirect addressing mode 

e. Indexed addressing mode 

f. Register relative addressing mode 

g. Based indexed addressing mode 

h. Relative based indexed addressing mode 

i. Intra segment direct mode 

j. Intra segment indirect mode 

k. Inter segment direct mode 

l. Inter segment indirect mode 

75. What are the types of instructions in instruction set of 8086? 

 Data copy / Transfer instructions 

 Arithmetic and Logical instructions 

 Branch instructions 

 Machine control instructions 

 Flag manipulation instructions 

 String instructions 

76. List some functions of BIU? 

 Sends address of the memory or I/O 

 Fetches instructions from memory 

 Reads data from port / memory 

 Writes data into port / memory 

 Supports instruction queuing 

 Provides address relocation facility 

77. Define assembler directives? 

 There are some instructions in the assembly language program which are not a part of 

processor instruction set. These are instructions to assembler and are referred as pseudo 

operations or assembler directives. 

78. List some features of 8086? 

 16 bit microprocessor 

 Has a 16 bit data bus, 20 bit address bus 

 Can generate 16 bit I / O address 

 Provides fourteen 16 bit registers 

 Has multiplexed address and data bus 

 Can operate in minimum and maximum mode 

79. Define instruction pipelining? 

Preview from Notesale.co.uk

Page 460 of 501



 
 
 

464 
 

101. List the commands that can be executed by 8237? 

1. Clear First / Last Flip flop 

2. Clear Mask Register  

3. Master Clear Command 

102. List the advantages of loosely coupled systems over the tightly couples 

systems? 

a. More number of CPUs can be added in a loosely coupled system to improve the 

system performance. 

b. System structure is modular and hence easy to maintain and trouble shoot. 

c. Fault in a single module does not lead to a complete system break down. 

d. It is more fault tolerant due to independent processing modules. 

e. More suitable to parallel applications due to its modular organization. 

 

103.  Explain PROC & ENDP  
PROC directive  defines  the procedures in  the program. The procedure name must  be  

unique. After PROC  the  term  NEAR  or  FAR  are used  to specify  the  type  of 

procedure.  

Example FACT  PROC FA R. ENDP  is used along with PROC  and defines the end of 

the  

procedure.  

  

104. Explain SEGMENT & ENDS  
An assembly program in .EXE format consists of one or more segments. The starts of  

these  segments  are  defined  by  SEGMENT  and  the  end  of  the  segment  is  

indicated  by  

ENDS directive. Format Name SEGMENT  

  

                             Name ENDS  

105. Explain TITLE & TYPE  
The TITLE directive helps to control the format of a listing of an assembled program.  

It  causes  a  title  for  the  program  to  print  on  line  2  of  each  page  of  the program  

listing.  

Maximum 60 characters are allowed. Format TITLE text.  

TYPE  operator  tells  the  assembler  to  determine  the  type  of  specified  variable  in  

bytes. For bytes the assembler gives a value 1, for word 2 & double word 4.  

         

106. Define SOP  
The  segment  override  prefix  allows  the programmer to  deviate from the  default  

segment  

  Eg  :  MOV CS : [BX] , AL  

  

107. Define variable  
A  variable  is  an  identifier  that  is  associated  with  the  first  byte  of  data  item.  In  

assembly language statement: COUNT DB 20H, COUNT is the variable.  

  

Preview from Notesale.co.uk

Page 464 of 501



 
 
 

466 
 

Library  files are collection of procedures that can be used in  other  programs.  These  

procedures  are  assembled  and  compiled  into  a  library  file  by  the  LIB  program.    

The  

library  file is invoked when a  program is linked with linker program. when a  library 

file  

is  linked  only  the  required  procedures  are  copied  into  the  program.  Use  of  

library  files  

increase s/w reusability & reduce s/w development time.  

  

113. What are Macros  
Macro  is  a  group  of  instruction.  The  macro  assembler  generates  the  code  in  the  

program each time where the macro is called. Macros are defined  by MACRO & 

ENDM  

                        directives.  Creating  macro  is  similar  to  creating  new  opcodes  that  

can  be  used  in  the  

program  

INIT MACRO  

MOV AX, data  

MOV DS  

MOV ES, AX  

ENDM  

  

114.  How do 8086 interrupts occur  
An 8086 interrupt can come from any of the following three sources  

•   External signals  

•   Special instructions in the program  

•   Condition produced by instruction  

  

115. What are the 8086 interrupt types  
Dedicated interrupts  

•   Type 0: Divide by zero interrupt  

•   Type 1: Single step interrupt  

•   Type 2:Non maskable interrupt  

•   Type 3: Breakpoint  

•   Type 4: Overflow interrupt  

Software interrupts  

•   Type 0-255  

  

116. What is interrupt service routine  
Interrupt  means  to  break  the  sequence  of  operation.  While  the  CPU  is  executing  

a  

program  an  interrupt  breaks  the  normal  sequence  of  execution  of  instructions  &  

diverts  

its execution to some other program.  This  program  to  which the control  is  

transferred  is  

called the interrupt service routine.  

Preview from Notesale.co.uk

Page 466 of 501



 
 
 

477 
 

It is  a word stored in a register (control register)  used to  control the  operation of  a    

program digital device.  

168.  What is the purpose of control word written to control register in 8255?  
The control  words  written  to  control  register specify  an  I/O function for  each  

I.O port. The  bit  D   of the control  word determines  either  the  I/O  function  of the  

7 

BSR function.  

  

169. What is the size of ports in 8255?  
Port-A  :  8-bits  

Port-B  :  8-bits  

Port-C   :  4-bits  

U 

Port-C   :  4-bits  

L 

170. What is interfacing?  

An interface is a shared boundary between the devices which  involves  sharing  

information. Interfacing is  the  process of  making two  different  systems 

communicate  

with each other.    

171. What is memory mapping?  
The assignment of  memory addresses  to various registers in  a  memory  chip is  

called as memory mapping.  

  

172.  What is I/O mapping?  
The  assignment  of  addresses  to  various  I/O  devices  in  the  memory  chip  is  

called as I/O mapping.  

  

173.  What is an USART?  
USART  stands  for  universal  synchronous/Asynchronous  Receiver/  

Transmitter.  It is a  programmable  communication  interface  that can  communicate  

by  

using either synchronous or asynchronous serial data.  

174. What is the use of 8251 chip?  
8251  chip  is  mainly  used  as  the  asynchronous  serial  interface  between  the  

processor and the external equipment.  

  

175.  The 8279 is a programmable __________ interface.  
Keyboard/Display  

  

176.  List the major components of the keyboard/Display interface.  
a.  Keyboard section  

b.  Scan section  

c.  Display section  

d.  CPU interface section  

  

Preview from Notesale.co.uk

Page 477 of 501



 
 
 

490 
 

2.Display modes  

 Left entry (Type writer mode)  

 Right entry (Calculator mode)  

 

39. What are the different functional units in 8279?  

 CPU interface section  

 Keyboard section  

 Display section  

 Scan section  

40. What are the priority modes in 8259?  

 Fully nested mode  

 Special fully nested mode c.   Rotating Priority mode  

 Special Masked mode e.   Polled mode  

   

41. What is IMR(Interrupt mask register)?  

IMR stores the masking bits of the interrupt lines to be masked. This register can be programmed 

by an operation command word (OCW).  

   

42. What is priority resolver?  

It determines the priorities of the bits set in the Interrupt request register (IRR),  bit 

corresponding to the highest priority interrupt input is set in the ISR during INTA input.  

   

43. What is the use of IRR?  

The interrupt request register is used to store all the interrupt levels which are requesting the 

service. The eight interrupt inputs sets corresponding bits of the Interrupt Request Register upon 

the service request.  

   

44. What is Interrupt service register(ISR)?  

 The interrupt service register stores all the levels that are currently being serviced.  

Preview from Notesale.co.uk

Page 490 of 501


