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Preface    xiii

students to work on signficant independent design projects and to succeed in a later 

course in computer architecture and advanced digital design. 

  Instructor Resources 

 Instructors can download the following classroom‐ready resources from the publisher’s 

website for the text (www.pearsonhighered.com/mano): 

    • Source code and test benches for all Verilog HDL examples in the test  

   • All figures and tables in the text  

   • Source code for all HDL models in the solutions manual       

 •  A downloadable solutions manual with graphics suitable for classroom presentation  

  HDL Simulators 

 The Companion Website identifies web URLs to two simulators provided by Synapti-

CAD. The first simulator is  VeriLogger Pro,  a traditional Verilog simulator that can be 

used to simulate the HDL examples in the book and to verify the solutions of HDL 

problems. This simulator accepts the syntax of the IEEE‐1995 standard and will be 

useful to those who have legacy models. As an interactive simulator,  Verilogger Ex-
treme  accepts the syntax of IEEE‐2001 as well as IEEE‐1995, allowing the designer to 

simulate and analyze design ideas before a complete simulation model or schematic is 

available. This technology is particularly useful for students because they can quickly 

enter Boolean and  D  flip‐flop or latch input equations to check equivalency or to ex-

periment with flip‐flops and latch designs. Students can access the Companion Website 

at www.pearsonhighered.com/mano.  

  Chapter Summary 

 The following is a brief summary of the topics that are covered in each chapter. 

   Chapter  1    presents the various binary systems suitable for representing information 

in digital systems. The binary number system is explained and binary codes are illus-

trated. Examples are given for addition and subtraction of signed binary numbers and 

decimal numbers in binary‐coded decimal (BCD) format. 

   Chapter  2    introduces the basic postulates of Boolean algebra and shows the correla-

tion between Boolean expressions and their corresponding logic diagrams. All possible 

logic operations for two variables are investigated, and the most useful logic gates used 

in the design of digital systems are identified. This chapter also introduces basic CMOS 

logic gates. 

   Chapter  3    covers the map method for simplifying Boolean expressions. The map 

method is also used to simplify digital circuits constructed with AND‐OR, NAND, or 

NOR gates. All other possible two‐level gate circuits are considered, and their method 

of implementation is explained. Verilog HDL is introduced together with simple exam-

ples of gate‐level models. 
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xiv    Preface

   Chapter  4    outlines the formal procedures for the analysis and design of combina-

tional circuits. Some basic components used in the design of digital systems, such as 

adders and code converters, are introduced as design examples. Frequently used digital 

logic functions such as parallel adders and subtractors, decoders, encoders, and multi-

plexers are explained, and their use in the design of combinational circuits is illustrated. 

HDL examples are given in gate‐level, dataflow, and behavioral models to show the 

alternative ways available for describing combinational circuits in Verilog HDL. The 

procedure for writing a simple test bench to provide stimulus to an HDL design is 

presented. 

   Chapter  5    outlines the formal procedures for analyzing and designing clocked (syn-

chronous) sequential circuits. The gate structure of several types of flip‐flops is presented 

together with a discussion on the difference between level and edge triggering. Specific 

examples are used to show the derivation of the state table and state diagram when 

analyzing a sequential circuit. A number of design examples are presented with empha-

sis on sequential circuits that use D‐type flip‐flops. Behavioral modeling in Verilog HDL 

for sequential circuits is explained. HDL Examples are given to illustrate Mealy and 

Moore models of sequential circuits. 

   Chapter  6    deals with various sequential circuit components such as registers, shift 

registers, and counters. These digital components are the basic building blocks from 

which more complex digital systems are constructed. HDL descriptions of shift registers 

and counter are presented. 

   Chapter  7    deals with random access memory (RAM) and programmable logic 

devices. Memory decoding and error correction schemes are discussed. Combinational 

and sequential programmable devices such as ROMs, PLAs, PALs, CPLDs, and FPGAs 

are presented. 

   Chapter  8    deals with the register transfer level (RTL) representation of digital sys-

tems. The algorithmic state machine (ASM) chart is introduced. A number of examples 

demonstrate the use of the ASM chart, ASMD chart, RTL representation, and HDL 

description in the design of digital systems. The design of a finite state machine to con-

trol a datapath is presented in detail, including the realistic situation in which status 

signals from the datapath are used by the state machine that controls it. This chapter is 

the most important chapter in the book as it provides the student with a systematic 

approach to more advanced design projects. 

   Chapter  9    outlines experiments that can be performed in the laboratory with hard-

ware that is readily available commercially. The operation of the ICs used in the 

experiments is explained by referring to diagrams of similar components introduced 

in previous chapters. Each experiment is presented informally and the student is 

expected to design the circuit and formulate a procedure for checking its operation 

in the laboratory. The lab experiments can be used in a stand‐alone manner too and 

can be accomplished by a traditional approach, with a breadboard and TTL circuits, 

or with an HDL/synthesis approach using FPGAs. Today, software for synthesizing 

an HDL model and implementing a circuit with an FPGA is available at no cost from 

vendors of FPGAs, allowing students to conduct a significant amount of work in their 

personal environment before using prototyping boards and other resources in a lab. 
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8    Chapter 1  Digital Systems and Binary Numbers

 Therefore, the answer is    (0.6875)10 = (0. a-1 a-2 a-3 a-4)2 = (0.1011)2.    

 To convert a decimal fraction to a number expressed in base r, a similar procedure is 

used. However, multiplication is by r instead of 2, and the coefficients found from the 

integers may range in value from 0 to    r - 1    instead of 0 and 1.  

■

  EXAMPLE 1.4 

 Convert    (0.513)10    to octal. 

    0.513 * 8 = 4.104

 0.104 * 8 = 0.832

 0.832 * 8 = 6.656

 0.656 * 8 = 5.248

 0.248 * 8 = 1.984

 0.984 * 8 = 7.872   

 The answer, to seven significant figures, is obtained from the integer part of the products: 

   (0.513)10 = (0.406517c )8   

 The conversion of decimal numbers with both integer and fraction parts is done by 

converting the integer and the fraction separately and then combining the two answers. 

Using the results of Examples 1.1 and 1.3, we obtain 

   (41.6875)10 = (101001.1011)2   

 From Examples 1.2 and 1.4, we have 

   (153.513)10 = (231.406517)8     

■

  1 . 4     O C TA L  A N D  H E X A D E C I M A L  N U M B E R S 

 The conversion from and to binary, octal, and hexadecimal plays an important role in digi-

tal computers, because shorter patterns of hex characters are easier to recognize than long 

patterns of 1’s and 0’s. Since    23 = 8    and    24 = 16,    each octal digit corresponds to three 

binary digits and each hexadecimal digit corresponds to four binary digits. The first 16 num-

bers in the decimal, binary, octal, and hexadecimal number systems are listed in  Table   1.2   .  

 The conversion from binary to octal is easily accomplished by partitioning the binary 

number into groups of three digits each, starting from the binary point and proceeding 

to the left and to the right. The corresponding octal digit is then assigned to each group. 

The following example illustrates the procedure: 

   
(10 110 001 101 011 # 111 100 000 110)2 = (26153.7406)8

2 6 1 5 3 7 4 0 6
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Section 1.4  Octal and Hexadecimal Numbers    9

 Conversion from binary to hexadecimal is similar, except that the binary number is 

divided into groups of four digits: 

   
(10 1100 0110 1011 # 1111 0010)2 = (2C6B.F2)16

2 C 6 B F 2
   

 The corresponding hexadecimal (or octal) digit for each group of binary digits is easily 

remembered from the values listed in  Table   1.2   . 

 Conversion from octal or hexadecimal to binary is done by reversing the preceding 

procedure. Each octal digit is converted to its three‐digit binary equivalent. Similarly, 

each hexadecimal digit is converted to its four‐digit binary equivalent. The procedure is 

illustrated in the following examples: 

   
(673.124)8 = (110 111 011 # 001 010 100)2

6 7 3 1 2 4
   

 and 

   
(306.D)16 = (0011 0000 0110 # 1101)2

3 0 6 D
   

 Binary numbers are difficult to work with because they require three or four times 

as many digits as their decimal equivalents. For example, the binary number 111111111111 

is equivalent to decimal 4095. However, digital computers use binary numbers, and it is 

sometimes necessary for the human operator or user to communicate directly with the 

 Table 1.2 
 Numbers with Different Bases 

 Decimal 
(base 10) 

 Binary 
(base 2) 

 Octal 
(base 8) 

 Hexadecimal 
(base 16) 

 00  0000  00  0 

 01  0001  01  1 

 02  0010  02  2 

 03  0011  03  3 

 04  0100  04  4 

 05  0101  05  5 

 06  0110  06  6 

 07  0111  07  7 

 08  1000  10  8 

 09  1001  11  9 

 10  1010  12  A 

 11  1011  13  B 

 12  1100  14  C 

 13  1101  15  D 

 14  1110  16  E 

 15  1111  17  F 
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10    Chapter 1  Digital Systems and Binary Numbers

machine by means of such numbers. One scheme that retains the binary system in the 

computer, but reduces the number of digits the human must consider, utilizes the rela-

tionship between the binary number system and the octal or hexadecimal system. By this 

method, the human thinks in terms of octal or hexadecimal numbers and performs the 

required conversion by inspection when direct communication with the machine is nec-

essary. Thus, the binary number 111111111111 has 12 digits and is expressed in octal as 

7777 (4 digits) or in hexadecimal as FFF (3 digits). During communication between 

people (about binary numbers in the computer), the octal or hexadecimal representa-

tion is more desirable because it can be expressed more compactly with a third or a 

quarter of the number of digits required for the equivalent binary number. Thus,  most 
computer manuals use either octal or hexadecimal numbers to specify binary quantities . 
The choice between them is arbitrary, although hexadecimal tends to win out, since it 

can represent a byte with two digits.  

  1 . 5     C O M P L E M E N T S  O F  N U M B E R S 

 Complements are used in digital computers to  simplify the subtraction operation  and for 

logical manipulation. Simplifying operations leads to simpler, less expensive circuits to 

implement the operations. There are two types of complements for each base‐r system: 

the radix complement and the diminished radix complement. The first is referred to as 

the r’s complement and the second as the    (r - 1)>s    complement. When the value of the 

base r is substituted in the name, the two types are referred to as the 2’s complement and 

1’s complement for binary numbers and the 10’s complement and 9’s complement for 

decimal numbers. 

  Diminished Radix Complement 

 Given a number N in base r having n digits, the    (r - 1)>s    complement of  N , i.e., its 

diminished radix complement, is defined as    (rn - 1) - N.    For decimal numbers,    r = 10

   and    r - 1 = 9,    so the 9’s complement of N is    (10n - 1) - N.    In this case,    10n    represents 

a number that consists of a single 1 followed by n 0’s.    10n - 1    is a number represented 

by n 9’s. For example, if    n = 4,    we have    104 = 10,000    and    104 - 1 = 9999.    It follows 

that the 9’s complement of a decimal number is obtained by subtracting each digit from 9. 

Here are some numerical examples: 

   The 9>s complement of 546700 is 999999 - 546700 = 453299.

The 9>s complement of 012398 is 999999 - 012398 = 987601.   

 For binary numbers,    r = 2    and    r - 1 = 1,    so the 1’s complement of N is    (2n - 1) - N.    

Again, 2n is represented by a binary number that consists of a 1 followed by n 0’s.    2n - 1    

is a binary number represented by n 1’s. For example, if    n = 4,    we have    24 = (10000)2    

and    24 - 1 = (1111)2.    Thus, the 1’s complement of a binary number is obtained by 

subtracting each digit from 1. However, when subtracting binary digits from 1, we can 
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14    Chapter 1  Digital Systems and Binary Numbers

  EXAMPLE 1.8 

 Repeat Example 1.7, but this time using 1’s complement. 

    (a)     X - Y = 1010100 - 1000011

X =       1010100

1>s complement of Y = +   0111100

Sum =      10010000

End@around carry = +    1

Answer: X - Y =     0010001    

   (b)     Y - X = 1000011 - 1010100

Y =      1000011

1>s complement of X = +   0101011

Sum =      1101110     

 There is no end carry. Therefore, the answer is    Y - X = -(1>s complement of 1101110) =    

   -0010001.     

■

 Note that the negative result is obtained by taking the 1’s complement of the sum, since 

this is the type of complement used. The procedure with end‐around carry is also appli-

cable to subtracting unsigned decimal numbers with 9’s complement.   

  1 . 6     S I G N E D  B I N A RY  N U M B E R S 

 Positive integers (including zero) can be represented as unsigned numbers. However, to 

represent negative integers, we need a notation for negative values. In ordinary arith-

metic, a negative number is indicated by a minus sign and a positive number by a plus 

sign. Because of hardware limitations, computers must represent everything with binary 

digits. It is customary to represent the sign with a bit placed in the leftmost position of 

the number. The convention is to make the sign bit 0 for positive and 1 for negative. 

 It is important to realize that both signed and unsigned binary numbers consist of a 

string of bits when represented in a computer. The user determines whether the number 

is signed or unsigned. If the binary number is signed, then the leftmost bit represents the 

sign and the rest of the bits represent the number. If the binary number is assumed to 

be unsigned, then the leftmost bit is the most significant bit of the number. For example, 

the string of bits 01001 can be considered as 9 (unsigned binary) or as    +9    (signed binary) 

because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of 

25 when considered as an unsigned number and the binary equivalent of    -9    when con-

sidered as a signed number. This is because the 1 that is in the leftmost position designates 

a negative and the other four bits represent binary 9. Usually, there is no confusion in 

interpreting the bits if the type of representation for the number is known in advance. 
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28    Chapter 1  Digital Systems and Binary Numbers

  Register Transfer 

 A digital system is characterized by its registers and the components that perform data 

processing. In digital systems, a register transfer operation is a basic operation that con-

sists of a transfer of binary information from one set of registers into another set of 

registers. The transfer may be direct, from one register to another, or may pass through 

data‐processing circuits to perform an operation.  Figure   1.1    illustrates the transfer of infor-

mation among registers and demonstrates pictorially the transfer of binary information 

from a keyboard into a register in the memory unit. The input unit is assumed to have a 

keyboard, a control circuit, and an input register. Each time a key is struck, the control 

circuit enters an equivalent eight‐bit alphanumeric character code into the input register. 

We shall assume that the code used is the ASCII code with an odd‐parity bit. The informa-

tion from the input register is transferred into the eight least significant cells of a processor 

register. After every transfer, the input register is cleared to enable the control to insert a 

new eight‐bit code when the keyboard is struck again. Each eight‐bit character transferred 

to the processor register is preceded by a shift of the previous character to the next eight 

cells on its left. When a transfer of four characters is completed, the processor register is 

full, and its contents are transferred into a memory  register. The content stored in the 

MEMORY UNIT

PROCESSOR UNIT

INPUT UNIT

J O H N
Memory
Register

8 cells 8 cells 8 cells

8 cells

8 cells

Keyboard CONTROL

01001010010011111100100011001110

Processor
Register

Input
Register

J

O

H

N

 FIGURE 1.1 
 Transfer of information among registers       
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Section 1.8  Binary Storage and Registers    29

memory register shown in  Fig.   1.1    came from the transfer of the characters “J,” “O,” “H,” 

and “N” after the four appropriate keys were struck. 

  To process discrete quantities of information in binary form, a computer must be 

provided with devices that hold the data to be processed and with circuit elements that 

manipulate individual bits of information.  The device most commonly used for holding 
data is a register.  Binary variables are manipulated by means of digital logic circuits. 

 Figure   1.2    illustrates the process of adding two 10‐bit binary numbers. The memory unit, 

which normally consists of millions of registers, is shown with only three of its registers. 

The part of the processor unit shown consists of three registers—R1, R2, and R3—

together with digital logic circuits that manipulate the bits of R1 and R2 and transfer into 

R3 a binary number equal to their arithmetic sum. Memory registers store information 

and are incapable of processing the two operands. However, the information stored in 

memory can be transferred to processor registers, and the results obtained in processor 

registers can be transferred back into a memory register for storage until needed again. 

The diagram shows the contents of two operands transferred from two memory registers 

MEMORY UNIT

PROCESSOR UNIT

Operand 1

Operand 2

Sum

R1

R2

R3

0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 1

0 0 1 1 1 0 0 0 0 1

0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0

0 1 0 0 1 0 0 0 1 1
Digital logic
circuits for

binary addition

 FIGURE 1.2  
 Example of binary information processing       
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Section 1.9  Binary Logic    31

AND and OR are the same as those used for multiplication and addition. However, 

binary logic should not be confused with binary arithmetic. One should realize that an 

arithmetic variable designates a number that may consist of many digits. A logic vari-

able is always either 1 or 0. For example, in binary arithmetic, we have    1 + 1 = 10    (read 

“one plus one is equal to 2”), whereas in binary logic, we have    1 + 1 = 1    (read “one 

OR one is equal to one”). 

 For each combination of the values of x and y, there is a value of z specified by the 

definition of the logical operation. Definitions of logical operations may be listed in a 

compact form called truth tables. A truth table is a table of all possible combinations of 

the variables, showing the relation between the values that the variables may take and 

the result of the operation. The truth tables for the operations AND and OR with vari-

ables x and y are obtained by listing all possible values that the variables may have when 

combined in pairs. For each combination, the result of the operation is then listed in a 

separate row. The truth tables for AND, OR, and NOT are given in  Table   1.8   . These 

tables clearly demonstrate the definition of the operations. 

    Logic Gates 

 Logic gates are electronic circuits that operate on one or more input signals to pro-

duce an output signal. Electrical signals such as voltages or currents exist as analog 

signals having values over a given continuous range, say, 0 to 3 V, but in a digital 

system these voltages are interpreted to be either of two recognizable values, 0 or 1. 

Voltage‐operated logic circuits respond to two separate voltage levels that represent a 

binary variable equal to logic 1 or logic 0. For example, a particular digital system may 

define logic 0 as a signal equal to 0 V and logic 1 as a signal equal to 3 V. In practice, 

each voltage level has an acceptable range, as shown in  Fig.   1.3   . The input terminals of 

digital circuits accept binary signals within the allowable range and respond at the 

output terminals with binary signals that fall within the specified range. The intermedi-

ate region between the allowed regions is crossed only during a state transition. Any 

desired information for computing or control can be operated on by passing binary 

signals through various combinations of logic gates, with each signal representing a 

particular binary variable. When the physical signal is in a particular range it is inter-

preted to be either a 0 or a 1. 

 Table 1.8 
 Truth Tables of Logical Operations 

 AND  OR  NOT 

  x    y      x # y      x    y    x + y    x    x�  

 0  0  0  0  0  0  0  1 

 0  1  0  0  1  1  1  0 

 1  0  0  1  0  1     

 1  1  1  1  1  1     
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32    Chapter 1  Digital Systems and Binary Numbers

  The graphic symbols used to designate the three types of gates are shown in  Fig.   1.4   . 

The gates are blocks of hardware that produce the equivalent of logic‐1 or logic‐0 output 

signals if input logic requirements are satisfied. The input signals x and y in the AND and 

OR gates may exist in one of four possible states: 00, 10, 11, or 01. These input signals 

are shown in  Fig.   1.5    together with the corresponding output signal for each gate. The 

timing diagrams illustrate the idealized response of each gate to the four input signal 

combinations. The horizontal axis of the timing diagram represents the time, and the 

vertical axis shows the signal as it changes between the two possible voltage levels. In 

reality, the transitions between logic values occur quickly, but not instantaneously. The 

low level represents logic 0, the high level logic 1. The AND gate responds with a logic 

1 output signal when both input signals are logic 1. The OR gate responds with a logic 

1 output signal if any input signal is logic 1. The NOT gate is commonly referred to as 

an inverter. The reason for this name is apparent from the signal response in the timing 

diagram, which shows that the output signal inverts the logic sense of the input signal. 

Volts

Signal
range for

logic 1

Signal
range for

logic 0

0

1

2

3

Transition occurs
between these limits

 FIGURE 1.3  
 Signal levels for binary logic values       

x x�

(c) NOT gate or inverter(a) Two-input AND gate

x z � x � y

y

(b) Two-input OR gate

z � x �yx

y

 FIGURE 1.4  
 Symbols for digital logic circuits       
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42    Chapter 2  Boolean Algebra and Logic Gates

 These rules are exactly the same as the AND, OR, and NOT operations, respectively, 

defined in Table 1.8. We must now show that the Huntington postulates are valid for the 

set    B = {0, 1}    and the two binary    operators + and # .    

    1.   That the structure is closed with respect to the two operators is obvious from the 

tables, since the result of each operation is either 1 or 0 and    1, 0 H B.     

   2.   From the tables, we see that 

     (a)      0 + 0 = 0 0 + 1 = 1 + 0 = 1;     

    (b)      1 # 1 = 1   1 # 0 = 0 # 1 = 0.      

   This establishes the two identity elements, 0 for    +     and 1 for    # ,    as defined by 

postulate 2.  

   3.   The commutative laws are obvious from the symmetry of the binary operator tables.  

   4.     (a)   The distributive law    x # (y + z) = (x # y) + (x # z)    can be shown to hold from 

the operator tables by forming a truth table of all possible values of x, y, and z. For 

each combination, we derive    x # (y + z)    and show that the value is the same as the 

value of    (x # y) + (x # z):    

 x  y  z     y �  z        x # (y �z)        x # y        x # z        (x # y) �(x # z)    

 0  0  0  0  0  0  0  0 

 0  0  1  1  0  0  0  0 

 0  1  0  1  0  0  0  0 

 0  1  1  1  0  0  0  0 

 1  0  0  0  0  0  0  0 

 1  0  1  1  1  0  1  1 

 1  1  0  1  1  1  0  1 

 1  1  1  1  1  1  1  1 

    (b)   The distributive law    of + over # can    be shown to hold by means of a truth table 

similar to the one in part (a).    

   5.   From the complement table, it is easily shown that 

     (a)      x + x � = 1,    since    0 + 0� = 0 + 1 = 1    and    1 + 1� = 1 + 0 = 1.     

    (b)      x # x� = 0,    since    0 # 0� = 0 # 1 = 0    and    1 # 1� = 1 # 0 = 0.      

   Thus, postulate 1 is verified.  

   6.   Postulate 6 is satisfied because the two‐valued Boolean algebra has two elements, 

1 and 0, with    1 � 0.      

 We have just established a two‐valued Boolean algebra having a set of two elements, 

1 and 0, two binary operators with rules equivalent to the AND and OR operations, and 

a complement operator equivalent to the NOT operator. Thus, Boolean algebra has been 

defined in a formal mathematical manner and has been shown to be equivalent to the 

binary logic presented heuristically in Section 1.9. The heuristic presentation is helpful 

in understanding the application of Boolean algebra to gate‐type circuits. The formal 
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Section 2.5  Boolean Functions    47

that combines x with    y�z.    In logic‐circuit diagrams, the variables of the function are taken 

as the inputs of the circuit and the binary variable    F1    is taken as the output of the circuit. 

The schematic expresses the relationship between the output of the circuit and its inputs. 

Rather than listing each combination of inputs and outputs, it indicates how to compute 

the logic value of each output from the logic values of the inputs.  
 There is only one way that a Boolean function can be represented in a truth table. 

However, when the function is in algebraic form, it can be expressed in a variety of ways, 

all of which have equivalent logic. The particular expression used to represent the function 

will dictate the interconnection of gates in the logic‐circuit diagram. Conversely, the inter-

connection of gates will dictate the logic expression. Here is a key fact that motivates our 

use of Boolean algebra: By manipulating a Boolean expression according to the rules of 

Boolean algebra, it is sometimes possible to obtain a simpler expression for the same 

function and thus reduce the number of gates in the circuit and the number of inputs to 

the gate. Designers are motivated to reduce the complexity and number of gates because 

their effort can significantly reduce the cost of a circuit. Consider, for example, the fol-

lowing Boolean function: 

   F2 = x�y�z + x�yz + xy�    

 A schematic of an implementation of this function with logic gates is shown in 

 Fig.   2.2   (a). Input variables x and y are complemented with inverters to obtain    x�    and 

   y�.    The three terms in the expression are implemented with three AND gates. The 

OR gate forms the logical OR of the three terms. The truth table for    F2    is listed in 

 Table   2.2   . The function is equal to 1 when    xyz = 001    or 011 or when    xy = 10    (irre-

spective of the value of z) and is equal to 0 otherwise. This set of conditions produces 

four 1’s and four 0’s for    F2.     
 Now consider the possible simplification of the function by applying some of the 

identities of Boolean algebra: 

   F2 = x�y�z + x�yz + xy� = x�z(y� + y) + xy� = x�z + xy�   

 The function is reduced to only two terms and can be implemented with gates as shown 

in  Fig.   2.2   (b). It is obvious that the circuit in (b) is simpler than the one in (a), yet both 

implement the same function. By means of a truth table, it is possible to verify that the 

two expressions are equivalent. The simplified expression is equal to 1 when    xz = 01    or 

when    xy = 10.    This produces the same four 1’s in the truth table. Since both expressions 

F1
x

y
z

 FIGURE 2.1  
 Gate implementation of    F1 � x � y�z          
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56    Chapter 2  Boolean Algebra and Logic Gates

 Since there is a total of eight minterms or maxterms in a function of three variables, we 

determine the missing terms to be 0, 2, 4, and 5. The function expressed as a product of 

maxterms is 

   F(x, y, z) = �(0, 2, 4, 5)   

 the same answer as obtained in Example 2.5. 

   Standard Forms 

 The two canonical forms of Boolean algebra are basic forms that one obtains from read-

ing a given function from the truth table. These forms are very seldom the ones with the 

least number of literals, because each minterm or maxterm must contain, by definition, 

all the variables, either complemented or uncomplemented. 

 Another way to express Boolean functions is in standard form. In this configuration, 

the terms that form the function may contain one, two, or any number of literals. There 

are two types of standard forms: the sum of products and products of sums. 

 The sum of products is a Boolean expression containing AND terms, called product 
terms, with one or more literals each. The sum denotes the ORing of these terms. An 

example of a function expressed as a sum of products is 

   F1 = y� + xy + x�yz�   

 The expression has three product terms, with one, two, and three literals. Their sum is, 

in effect, an OR operation. 

 The logic diagram of a sum‐of‐products expression consists of a group of AND gates 

followed by a single OR gate. This configuration pattern is shown in  Fig.   2.3   (a). Each 

product term requires an AND gate, except for a term with a single literal. The logic sum 

is formed with an OR gate whose inputs are the outputs of the AND gates and the 

single literal. It is assumed that the input variables are directly available in their comple-

ments, so inverters are not included in the diagram. This circuit configuration is referred 

to as a two‐level implementation. 

Table 2.6
Truth Table for F � xy � x�z

x y z F

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Minterms

Maxterms
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Problems    69

     P R O B L E M S 

   (Answers to problems marked with * appear at the end of the text.)  

    2.1   Demonstrate the validity of the following identities by means of truth tables: 

    (a)   DeMorgan’s theorem for three variables:    (x +  y +  z)� = x�y�z�    and    (xyz)� =
x� + y� + z�     

   (b)   The distributive law:  x  +  yz  = ( x  +  y )( x  +  z )  

   (c)   The distributive law:  x(y + z) = xy + xz   

   (d)   The associative law:  x + (y + z) = (x + y) + z   

   (e)   The associative law and  x(yz) = (xy)z      

    2.2   Simplify the following Boolean expressions to a minimum number of literals: 

    (a)  *  xy + xy �     (b)  *    (x + y) (x + y�)     

   (c)  *  xyz + x � y + xyz �     (d)  *    (A + B)� (A� + B�)�     
   (e)     (a + b + c�)(a� b� + c)      (f)    a�bc + abc� + abc + a�bc�      

    2.3   Simplify the following Boolean expressions to a minimum number of literals: 

    (a)  *    ABC + A�B + ABC�        (b)*    x � yz + xz   

   (c)  *    (x + y)� (x� + y�)        (d)  *  xy + x(wz + wz�)   

   (e)  *    (BC� + A�D) (AB� + CD�)        (f)      (a� + c�) (a + b� + c�)      

    2.4   Reduce the following Boolean expressions to the indicated number of literals: 

    (a)  *    A�C� + ABC + AC�    to three literals  

   (b)  *    (x�y� + z)� + z + xy + wz    to three literals  

   (c)  *    A�B(D� + C�D) + B(A + A�CD)    to one literal  

   (d)  *    (A� + C) (A� + C�) (A + B + C�D)    to four literals  

   (e)     ABC'D + A'BD + ABCD  to two literals     

    2.5   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.2.   

    2.6   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.3.   

    2.7   Draw logic diagrams of the circuits that implement the original and simplified expressions 

in Problem 2.4.   

    2.8   Find the complement of  F = wx + yz;  then show that    FF� = 0    and    F + F� = 1.      

    2.9   Find the complement of the following expressions: 

    (a)  *  xy� + x�y      (b)    (a + c) (a + b�) (a� + b + c�)   

   (c)     z + z�(v�w + xy)      

    2.10   Given the Boolean functions    F1    and  F 2  ,  show that 

    (a)   The Boolean function    E = F1 + F2    contains the sum of the minterms of    F1    and    F2.     

   (b)   The Boolean function    G = F1F2    contains only the minterms that are common to    F1    

and    F2.        

    2.11   List the truth table of the function: 

    (a)  *  F = xy + xy� + y�z      (b)    F =   bc + a�c�      

    2.12   We can perform logical operations on strings of bits by considering each pair of correspond-

ing bits separately (called bitwise operation). Given two eight‐bit strings   A  = 10110001 

and  B  = 10101100, evaluate the eight‐bit result after the following logical operations: 

  (a)* AND  (b) OR  (c)* XOR  (d)* NOT  A   (e) NOT  B    
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Section 3.2  The Map Method    79

 If a function is not expressed in sum-of-minterms form, it is possible to use the map to 

obtain the minterms of the function and then simplify the function to an expression with a 

minimum number of terms. It is necessary, however, to make sure that the algebraic expres-

sion is in sum-of-products form. Each product term can be plotted in the map in one, two, 

or more squares. The minterms of the function are then read directly from the map. 

  EXAMPLE 3.4 

 For the Boolean function 

   F = A�C + A�B + AB�C + BC   

    (a)   Express this function as a sum of minterms.  

   (b)   Find the minimal sum-of-products expression.   

 Note that F is a sum of products. Three product terms in the expression have two literals 

and are represented in a three-variable map by two squares each. The two squares cor-

responding to the first term,    A�C,    are found in  Fig.   3.7    from the coincidence of    A�    (first 

row) and  C  (two middle columns) to give squares 001 and 011. Note that, in marking 

1’s in the squares, it is possible to find a 1 already placed there from a preceding term. 

This happens with the second term,    A�B,    which has 1’s in squares 011 and 010. Square 

011 is common with the first term,    A�C,    though, so only one 1 is marked in it. Continu-

ing in this fashion, we determine that the term    AB�C    belongs in square 101, correspond-

ing to minterm 5, and the term  BC  has two 1’s in squares 011 and 111. The function has 

a total of five minterms, as indicated by the five 1’s in the map of  Fig.   3.7   .  The minterms 

are read directly from the map to be 1, 2, 3, 5, and 7. The function can be expressed in 

sum-of-minterms form as  

   F (A, B, C) = �(1, 2, 3, 5, 7)   

 The sum-of-products expression, as originally given, has too many terms. It can be 

simplified, as shown in the map, to an expression with only two terms: 

   F = C + A�B      

0

1

00 01 11 10

C

B

A
BC

A

1 1

1 1

A�B

C

1
m0 m1 m3 m2

m6m7m5m4

 FIGURE 3.7 
 Map of  Example   3.4   ,    A�C � A�B � AB�C � BC � C � A�B          

■
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84    Chapter 3  Gate-Level Minimization

that cover minterms    m3, m9,    and    m11.    There are four possible ways that the function can 

be expressed with four product terms of two literals each: 

     F = BD + B�D� + CD + AD   

      = BD + B�D� + CD + AB�    

    = BD + B�D� + B�C + AD    

   = BD + B�D� + B�C + AB�   

 The previous example has demonstrated that the identification of the prime implicants in 

the map helps in determining the alternatives that are available for obtaining a simplified 

expression. 

 The procedure for finding the simplified expression from the map requires that we 

first determine all the essential prime implicants. The simplified expression is obtained 

from the logical sum of all the essential prime implicants, plus other prime implicants 

that may be needed to cover any remaining minterms not covered by the essential prime 

implicants. Occasionally, there may be more than one way of combining squares, and 

each combination may produce an equally simplified expression.   

    Five-Variable Map 

 Maps for more than four variables are not as simple to use as maps for four or fewer 

variables. A five-variable map needs 32 squares and a six-variable map needs 64 squares. 

When the number of variables becomes large, the number of squares becomes excessive 

and the geometry for combining adjacent squares becomes more involved.  

 Maps for more than four variables are difficult to use and will not be considered here. 

  3 . 4     P R O D U C T- O F - S U M S  S I M P L I F I C AT I O N 

 The minimized Boolean functions derived from the map in all previous examples were 

expressed in sum-of-products form. With a minor modification, the product-of-sums 

form can be obtained. 

 The procedure for obtaining a minimized function in product-of-sums form follows 

from the basic properties of Boolean functions. The 1’s placed in the squares of the 

map represent the minterms of the function. The minterms not included in the standard 

sum-of-products form of a function denote the complement of the function. From this 

observation, we see that the complement of a function is represented in the map by 

the squares not marked by 1’s. If we mark the empty squares by 0’s and combine them 

into valid adjacent squares, we obtain a simplified sum-of-products expression of the 

complement of the function (i.e., of    F�   ). The complement of    F�    gives us back the func-

tion  F  in product-of-sums form (a consequence of DeMorgan’s theorem). Because of 

the generalized DeMorgan’s theorem, the function so obtained is automatically in 

product-of-sums form. The best way to show this is by example. 
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96    Chapter 3  Gate-Level Minimization

 A two-level implementation with NOR gates requires that the function be simplified 

into product-of-sums form. Remember that the simplified product-of-sums expression 

is obtained from the map by combining the 0’s and complementing. A product-of-sums 

expression is implemented with a first level of OR gates that produce the sum terms 

followed by a second-level AND gate to produce the product. The transformation from 

the OR–AND diagram to a NOR diagram is achieved by changing the OR gates to 

NOR gates with OR-invert graphic symbols and the AND gate to a NOR gate with an 

invert-AND graphic symbol. A single literal term going into the second-level gate must 

be complemented.  Figure   3.24    shows the NOR implementation of a function expressed 

as a product of sums: 

   F = (A + B)(C + D)E   

 The OR–AND pattern can easily be detected by the removal of the bubbles along the 

same line. Variable  E  is complemented to compensate for the third bubble at the input 

of the second-level gate. 

 The procedure for converting a multilevel AND–OR diagram to an all-NOR diagram 

is similar to the one presented for NAND gates. For the NOR case, we must convert 

each OR gate to an OR-invert symbol and each AND gate to an invert-AND symbol. 

Any bubble that is not compensated by another bubble along the same line needs an 

inverter, or the complementation of the input literal. 

 The transformation of the AND–OR diagram of  Fig.   3.21   (a) into a NOR diagram is 

shown in  Fig.   3.25   . The Boolean function for this circuit is 

   F = (AB� + A�B)(C + D�)   

OR
x
y

x � y

Inverter x x�

x

y

AND (x� � y�)� � xy

 FIGURE 3.22 
 Logic operations with NOR gates       

x
y
z

x
y
z

x�y�z� � (x � y � z)�(x � y � z)�

(a) OR-invert (b) Invert-AND

 FIGURE 3.23 
 Two graphic symbols for the NOR gate       
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120    Chapter 3  Gate-Level Minimization

    3.12   Simplify the following Boolean functions: 

    (a)  *    F1A, B, C, D2 = �11, 3, 5, 7, 13, 152     

   (b)       F1A, B, C, D2 = �11, 3, 6, 9, 11, 12, 142        

    3.13   Simplify the following expressions to (1) sum-of-products and (2) products-of-sums: 

    (a)  *    x� z� + y� z� + yz� + xy     

   (b)       ACD� + C�D + AB� + ABCD     

   (c)       1A� + B + D�2 1A� + B� + C�2 1A� + B� + C2 1B� + C + D�2     
   (d)       BCD� + ABC� + ACD        

    3.14   Give three possible ways to express the following Boolean function with eight or fewer literals: 

   F = A�BC�D + AB�CD + A�B�C� + ACD�     

    3.15   Simplify the following Boolean function  F , together with the don’t-care conditions  d , and 

then express the simplified function in sum-of-minterms form: 

    (a)       F1x, y, z2 = �10, 1, 4, 5, 62        (b)  *    F (A, B, C, D) = � (0, 6, 8, 13, 14)

             d1x, y, z2 = �12, 3, 72  d (A, B, C, D) = � (2, 4, 10)     

   (c)       F1A, B, C, D2 = �15, 6, 7, 12, 14, 15, 2        (d)       F1A, B, C, D2 = �14, 12, 7, 2, 10,2

           d1A, B, C, D2 = �13, 9, 11, 152   d1A, B, C, D2 = �10, 6, 82        

    3.16   Simplify the following functions, and implement them with two-level NAND gate circuits: 

    (a)        F1A, B, C, D2 = AC�D� + A�C + ABC + AB�C + A�C�D�     
   (b)        F1A, B, C, D2 = A�B�C�D + CD + AC�D     

   (c)        F1A, B, C2 = 1A� + C� + D�2 1A� + C�2 1C� + D�2     
   (d)        F1A, B, C, D2 = A� + B + D� + B�C        

    3.17*   Draw a NAND logic diagram that implements the complement of the following function: 

   F1A, B, C, D2 = � 10, 1, 2, 3, 6, 10, 11, 142     

    3.18   Draw a logic diagram using only two-input NOR gates to implement the following function: 

   F1A, B, C, D2 = (A { B)'(C { D)      

    3.19   Simplify the following functions, and implement them with two-level NOR gate circuits: 

    (a)  *    F = wx� + y� z� + w� yz�     

   (b)       F1w, x, y, z2 = � 10, 3, 12, 152     

   (c)       F (x, y, z) = [(x + y)(x = z)]�        

    3.20   Draw the multiple-level NOR circuit for the following expression: 

   CD1B + C2A + 1BC� + DE�2     

    3.21   Draw the multiple-level NAND circuit for the following expression: 

   w1x + y + z2 + xyz     

    3.22   Convert the logic diagram of the circuit shown in  Fig.   4.4    into a multiple-level NAND circuit.   

    3.23   Implement the following Boolean function  F , together with the don’t-care conditions  d , 

using no more than two NOR gates: 

   F1A, B, C, D2 = � 12, 4, 10, 12, 14, 2

d1A, B, C, D2 = � 10, 1, 5, 82   

  Assume that both the normal and complement inputs are available.   

Preview from Notesale.co.uk

Page 138 of 565



124    Chapter 3  Gate-Level Minimization

   7.  M ano , M. M. and C. R. K ime . 2004. Logic and Computer Design Fundamentals, 3rd ed. 

Upper Saddle River, NJ: Prentice Hall. 

   8.  M c C luskey , E. J. 1986. Logic Design Principles. Englewood Cliffs, NJ: Prentice-Hall. 

   9.  P alnitkar , S. 1996. Verilog HDL: A Guide to Digital Design and Synthesis. Mountain View, 

CA: SunSoft Press (a Prentice Hall title).  

  WEB  SEARCH TOP ICS 

     Boolean minimization  

    Karnaugh map  

    Wired logic  

    Emitter-coupled logic  

    Open-collector logic  

    Quine McCluskey method  

    Expresso software  

    Consensus theorem  

    Don’t-care conditions        

Preview from Notesale.co.uk

Page 142 of 565



Section 4.4  Design Procedure    129

 This process is illustrated with the circuit of  Fig.   4.2   . In  Table   4.1   , we form the 

eight possible combinations for the three input variables. The truth table for    F2    is 

determined directly from the values of  A ,  B , and  C , with    F2    equal to 1 for any com-

bination that has two or three inputs equal to 1. The truth table for    F�2    is the comple-

ment of    F2.    The truth tables for    T1    and    T2    are the OR and AND functions of the 

input variables, respectively. The values for    T3    are derived from    T1    and    F�2:T3    is equal 

to 1 when both    T1    and    F�2    are equal to 1, and    T3    is equal to 0 otherwise. Finally,    F1    is 

equal to 1 for those combinations in which either    T2    or    T3    or both are equal to 1. 

Inspection of the truth table combinations for  A, B, C,     F1,    and    F2    shows that it is 

identical to the truth table of the full adder given in Section 4.5 for  x, y, z, S , and  C , 

respectively.  
 Another way of analyzing a combinational circuit is by means of logic simulation. 

This is not practical, however, because the number of input patterns that might be 

needed to generate meaningful outputs could be very large. But simulation has a very 

practical application in verifying that the functionality of a circuit actually matches its 

specification. In Section 4.12, we demonstrate the logic simulation and verification of 

the circuit of  Fig.   4.2   , using Verilog HDL.  

  4 . 4     D E S I G N  P R O C E D U R E 

 The design of combinational circuits starts from the specification of the design objective 

and culminates in a logic circuit diagram or a set of Boolean functions from which the 

logic diagram can be obtained. The procedure involves the following steps: 

    1.   From the specifications of the circuit, determine the required number of inputs 

and outputs and assign a symbol to each.  

   2.   Derive the truth table that defines the required relationship between inputs and 

outputs.  

 Table 4.1 
 Truth Table for the Logic Diagram of  Fig.   4.2    

  A    B    C    F  2          F�2   T  1    T  2    T  3    F  1  

 0  0  0  0  1  0  0  0  0 
 0  0  1  0  1  1  0  1  1 

 0  1  0  0  1  1  0  1  1 

 0  1  1  1  0  1  0  0  0 

 1  0  0  0  1  1  0  1  1 

 1  0  1  1  0  1  0  0  0 

 1  1  0  1  0  1  0  0  0 

 1  1  1  1  0  1  1  0  1 
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132    Chapter 4  Combinational Logic

implemented with three or more levels of gates: 

    z = D�

 y = CD + C�D� = CD + 1C + D2�

x = B�C + B�D + BC�D� = B�1C + D2 + BC�D�

 = B�1C + D2 + B1C + D2�

 w = A + BC + BD = A + B1C + D2   

 The logic diagram that implements these expressions is shown in  Fig.   4.4   . Note that the OR 

gate whose output is    C + D    has been used to implement partially each of three outputs. 

 Not counting input inverters, the implementation in sum-of-products form requires 

seven AND gates and three OR gates. The implementation of  Fig.   4.4    requires four AND 

gates, four OR gates, and one inverter. If only the normal inputs are available, the first 
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 Maps for BCD-to-excess-3 code converter       
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136    Chapter 4  Combinational Logic

in  Fig.   4.8   . The  S  output from the second half adder is the exclusive-OR of  z  and the 

output of the first half adder, giving 

    S = z { 1x { y2

 = z�1xy� + x�y2 + z1xy� + x�y2�

 = z�1xy� + x�y2 + z1xy + x�y�2

 = xy�z� + x�yz� + xyz + x�y�z   

The carry output is

   C = z1xy� + x�y2 + xy = xy�z + x�yz + xy    

  Binary Adder 

 A binary adder is a digital circuit that produces the arithmetic sum of two binary num-

bers. It can be constructed with full adders connected in cascade, with the output carry 

from each full adder connected to the input carry of the next full adder in the chain. 
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 FIGURE 4.7 
 Implementation of full adder in sum-of-products form       
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 K-Maps for full adder           
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Section 4.9  Decoders    153

output can be equal to 0 at any given time; all other outputs are equal to 1. The output 

whose value is equal to 0 represents the minterm selected by inputs  A  and  B . The circuit 

is disabled when  E  is equal to 1, regardless of the values of the other two inputs. When 

the circuit is disabled, none of the outputs are equal to 0 and none of the minterms are 

selected. In general, a decoder may operate with complemented or uncomplemented 

outputs. The enable input may be activated with a 0 or with a 1 signal. Some decoders 

have two or more enable inputs that must satisfy a given logic condition in order to 

enable the circuit. 

 A decoder with enable input can function as a  demultiplexer— a circuit that receives 

information from a single line and directs it to one of    2n    possible output lines. The 

selection of a specific output is controlled by the bit combination of  n  selection lines. 

The decoder of  Fig.   4.19    can function as a one-to-four-line demultiplexer when  E  is 

taken as a data input line and  A  and  B  are taken as the selection inputs. The single 

input variable  E  has a path to all four outputs, but the input information is directed to 

only one of the output lines, as specified by the binary combination of the two selection 

lines  A  and  B . This feature can be verified from the truth table of the circuit. For 

example, if the selection lines    AB = 10,    output    D2    will be the same as the input value 

 E , while all other outputs are maintained at 1. Because decoder and demultiplexer 

operations are obtained from the same circuit, a decoder with an enable input is 

referred to as a  decoder –  demultiplexer . 

 Decoders with enable inputs can be connected together to form a larger decoder 

circuit.  Figure   4.20    shows two 3-to-8-line decoders with enable inputs connected to form 

a 4-to-16-line decoder. When  w  � 0, the top decoder is enabled and the other is disabled. 

The bottom decoder outputs are all 0’s, and the top eight outputs generate minterms 

0000 to 0111. When  w  � 1, the enable conditions are reversed: The bottom decoder 

outputs generate minterms 1000 to 1111, while the outputs of the top decoder are all 

0’s. This example demonstrates the usefulness of enable inputs in decoders and other 

  FIGURE 4.20 
    4 * 16    decoder constructed with two    3 * 8    decoders       

x

y

z

w

D0 to D7

D8 to D15

3 � 8
decoder

E

3 � 8
decoder

E

Preview from Notesale.co.uk

Page 171 of 565



154    Chapter 4  Combinational Logic

combinational logic components. In general, enable inputs are a convenient feature for 

interconnecting two or more standard components for the purpose of combining them 

into a similar function with more inputs and outputs.  

  Combinational Logic Implementation 

 A decoder provides the    2n    minterms of  n  input variables. Each asserted output of the 

decoder is associated with a unique pattern of input bits. Since any Boolean function 

can be expressed in sum-of-minterms form, a decoder that generates the minterms of 

the function, together with an external OR gate that forms their logical sum, provides 

a hardware implementation of the function. In this way, any combinational circuit with 

 n  inputs and  m  outputs can be implemented with an  n -to-2  n  -line decoder and  m  OR 

gates. 

 The procedure for implementing a combinational circuit by means of a decoder and 

OR gates requires that the Boolean function for the circuit be expressed as a sum of 

minterms. A decoder is then chosen that generates all the minterms of the input vari-

ables. The inputs to each OR gate are selected from the decoder outputs according to 

the list of minterms of each function. This procedure will be illustrated by an example 

that implements a full-adder circuit. 

 From the truth table of the full adder (see  Table   4.4   ), we obtain the functions for the 

combinational circuit in sum-of-minterms form: 

   S(x, y, z) = �(1, 2, 4, 7)

C(x, y, z) = �(3, 5, 6, 7)   

 Since there are three inputs and a total of eight minterms, we need a three-to-eight-line 

decoder. The implementation is shown in  Fig.   4.21   . The decoder generates the eight 

minterms for  x ,  y , and  z . The OR gate for output  S  forms the logical sum of minterms 1, 

2, 4, and 7. The OR gate for output  C  forms the logical sum of minterms 3, 5, 6, and 7. 
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 FIGURE 4.21 
 Implementation of a full adder with a decoder       
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input is 0, the output is disabled and the gate goes to a high-impedance state, regardless 

of the value in the normal input. The high-impedance state of a three-state gate provides 

a special feature not available in other gates. Because of this feature, a large number of 

three-state gate outputs can be connected with wires to form a common line without 

endangering loading effects. 

 The construction of multiplexers with three-state buffers is demonstrated in  Fig.   4.30   . 

Figure 4.30(a) shows the construction of a two-to-one-line multiplexer with 2 three-state 

buffers and an inverter. The two outputs are connected together to form a single output 

line. (Note that this type of connection cannot be made with gates that do not have 

three-state outputs.) When the select input is 0, the upper buffer is enabled by its control 

input and the lower buffer is disabled. Output  Y  is then equal to input  A . When the select 

input is 1, the lower buffer is enabled and  Y  is equal to  B . 

 The construction of a four-to-one-line multiplexer is shown in  Fig.   4.30(b)   . The out-

puts of 4 three-state buffers are connected together to form a single output line. The 

control inputs to the buffers determine which one of the four normal inputs    I0    through 

Normal input A Output Y � A if C � 1
High-impedance if C � 0

Control input C

 FIGURE 4.29 
 Graphic symbol for a three-state buffer       
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 FIGURE 4.30 
 Multiplexers with three-state gates       
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Section 4.12  HDL Models of Combinational Circuits    165

includes 12 basic gates as predefined primitives. Four of these primitive gates are of the 

three-state type. The other eight are the same as the ones listed in Section 2.8. They are 

all declared with the lowercase keywords  and, nand, or, nor, xor, xnor, not,  and  buf . 
Primitives such as  and  are  n -input primitives. They can have any number of scalar inputs 

(e.g., a three-input  and  primitive). The  buf  and  not  primitives are  n -output primitives. 

A single input can drive multiple output lines distinguished by their identifiers. 

 The Verilog language includes a functional description of each type of gate, too. The 

logic of each gate is based on a four-valued system. When the gates are simulated, 

the simulator assigns one value to the output of each gate at any instant. In addition to 

the two logic values of 0 and 1, there are two other values:  unknown  and  high impedance . 

An unknown value is denoted by  x  and a high impedance by  z . An unknown value is 

assigned during simulation when the logic value of a signal is ambiguous—for instance, 

if it cannot be determined whether its value is 0 or 1 (e.g., a flip-flop without a reset 

condition). A high-impedance condition occurs at the output of three-state gates that 

are not enabled or if a wire is inadvertently left unconnected. The four-valued logic truth 

tables for the  and, or, xor,  and  not  primitives are shown in  Table   4.9   . The truth table for 

the other four gates is the same, except that the outputs are complemented. Note that 

for the  and  gate, the output is 1 only when both inputs are 1 and the output is 0 if any 

input is 0. Otherwise, if one input is  x  or  z , the output is  x . The output of the  or  gate is 0 

if both inputs are 0, is 1 if any input is 1, and is  x  otherwise.  
 When a primitive gate is listed in a module, we say that it is  instantiated  in the module. 

In general, component instantiations are statements that reference lower level compo-

nents in the design, essentially creating unique copies (or  instances ) of those components 

in the higher level module. Thus, a module that uses a gate in its description is said to 
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 FIGURE 4.31 
 Relationship of Verilog constructs to truth tables, Boolean equations, and schematics       
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166    Chapter 4  Combinational Logic

 instantiate  the gate. Think of instantiation as the HDL counterpart of placing and 

 connecting parts on a circuit board. 

 We now present two examples of gate-level modeling. Both examples use identifiers 

having multiple bit widths, called  vectors . The syntax specifying a vector includes within 

square brackets two numbers separated with a colon. The following Verilog statements 

specify two vectors: 

   output  [0: 3] D;

   wire  [7: 0] SUM;   

 The first statement declares an output vector  D  with four bits, 0 through 3. The second 

declares a wire vector  SUM  with eight bits numbered 7 through 0. ( Note : The first (left-

most) number (array index) listed is always the most significant bit of the vector.) The 

individual bits are specified within square brackets, so  D[2]  specifies bit 2 of  D . It is also 

possible to address parts (contiguous bits) of vectors. For example,  SUM[2: 0]  specifies 

the three least significant bits of vector  SUM . 

 HDL Example 4.1 shows the gate-level description of a two-to-four-line decoder. 

(See  Fig.   4.19   .) This decoder has two data inputs  A  and  B  and an enable input  E . The 

four outputs are specified with the vector  D . The  wire  declaration is for internal connec-

tions. Three  not  gates produce the complement of the inputs, and four  nand  gates provide 

the outputs for  D . Remember that  the output is always listed first in the port list of a 
primitive , followed by the inputs. This example describes the decoder of  Fig.   4.19    and 

follows the procedures established in Section 3.10. Note that the keywords  not  and  nand  

are written only once and do not have to be repeated for each gate, but commas must 

be inserted at the end of each of the gates in the series, except for the last statement, 

which must be terminated with a semicolon. 

 Table 4.9 
 Truth Table for Predefined Primitive Gates 

 and  0  1  x  z  or  0  1  x  z 

 0  0  0  0  0  0  0  1  x  x 

 1  0  1  x  x  1  1  1  1  1 

 x  0  x  x  x  x  x  1  x  x 

 z  0  x  x  x  z  x  1  x  x 

 xor  0  1  x  z  not  input  output     

 0  0  1  x  x    0  1     

 1  1  0  x  x    1  0     

 x  x  x  x  x    x  x     

 z  x  x  x  x    z  x     
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Section 4.12  HDL Models of Combinational Circuits    167

   HDL Example 4.1 (Two-to-Four-Line Decoder) 

  // Gate-level description of two-to-four-line decoder
  // Refer to  Fig.   4.19    with symbol  E  replaced by  enable , for clarity.

   module  decoder_2x4_gates (D, A, B, enable);
    output  [0: 3] D;
    input   A, B;
    input   enable;
    wire   A_not,B_not, enable_not;

   not

   G1  (A_not, A),
   G2  (B_not, B),
   G3  (enable_not, enable);

   nand

   G4  (D[0], A_not, B_not, enable_not),
   G5  (D[1], A_not, B, enable_not),
   G6  (D[2], A, B_not, enable_not),
   G7  (D[3], A, B, enable_not);

   endmodule 

 Two or more modules can be combined to build a hierarchical description of a design. 

There are two basic types of design methodologies: top down and bottom up. In a 

  top-down  design, the top-level block is defined and then the subblocks necessary to 

build the top-level block are identified. In a  bottom-up  design, the building blocks are 

first identified and then combined to build the top-level block. Take, for example, the 

binary adder of  Fig.   4.9   . It can be considered as a top-block component built with four 

full-adder blocks, while each full adder is built with two half-adder blocks. In a top-down 

design, the four-bit adder is defined first, and then the two adders are described. In a 

bottom-up design, the half adder is defined, then each full adder is constructed, and then 

the four-bit adder is built from the full adders. 

 A bottom-up hierarchical description of a four-bit adder is shown in HDL 

 Example 4.2. The half adder is defined by instantiating primitive gates. The next mod-

ule describes the full adder by instantiating and connecting two half adders. The third 

module describes the four-bit adder by instantiating and connecting four full adders. 

Note that the first character of an identifier cannot be a number, but can be an under-

score, so the module name  _4bitadder  is valid. An alternative name that is meaningful, 

but does not require a leading underscore, is  adder_4_bit . The instantiation is done by 

using the name of the module that is instantiated together with a new (or the same) 

set of port names. For example, the half adder  HA1  inside the full adder module is 

instantiated with ports  S1 ,  C1 ,  x,  and  y . This produces a half adder with outputs  S1  and 

 C1  and inputs  x  and  y . 
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176    Chapter 4  Combinational Logic

 Binary numbers in Verilog are specified and interpreted with the letter  b  preceded 

by a prime. The size of the number is written first and then its value. Thus,    2�b01    speci-

fies a two-bit binary number whose value is 01. Numbers are stored as a bit pattern in 

memory, but they can be referenced in decimal, octal, or hexadecimal formats with the 

letters    d� o�,    and    h�,    respectively. For example, 4�HA � 4�d10 � 4�b1010 and have the 

same internal representation in a simulator. If the base of the number is not specified, 

its interpretation defaults to decimal. If the size of the number is not specified, the 

system assumes that the size of the number is at least 32 bits; if a host simulator has a 

larger word length—say, 64 bits—the language will use that value to store unsized 

numbers. The integer data type (keyword integer) is stored in a 32-bit representation. 

The underscore (_) may be inserted in a number to improve readability of the code 

(e.g.,    16�b0101_1110_0101_0011   ). It has no other effect. 

 The  case  construct has two important variations:  casex  and  casez . The first will treat 

as don’t-cares any bits of the  case  expression or the  case  item that have logic value  x  or 

 z . The  casez  construct treats as don’t-cares only the logic value  z , for the purpose of 

detecting a match between the  case  expression and a  case  item. 

 The list of case items need not be complete. If the list of  case  items does not include 

all possible bit patterns of the  case  expression, no match can be detected. Unlisted  case  

items, i.e., bit patterns that are not explicitly decoded can be treated by using the  default  
keyword as the last item in the list of  case  items. The associated statement will execute 

when no other match is found. This feature is useful, for example, when there are more 

possible state codes in a sequential machine than are actually used. Having a  default  
case item lets the designer map all of the unused states to a desired next state without 

having to elaborate each individual state, rather than allowing the synthesis tool to 

arbitrarily assign the next state. 

 The examples of behavioral descriptions of combinational circuits shown here are 

simple ones. Behavioral modeling and procedural assignment statements require knowl-

edge of sequential circuits and are covered in more detail in Section 5.6.  

  Writing a Simple Test Bench 

 A test bench is an HDL program used for describing and applying a stimulus to an HDL 

model of a circuit in order to test it and observe its response during simulation. Test 

benches can be quite complex and lengthy and may take longer to develop than the 

design that is tested. The results of a test are only as good as the test bench that is used 

to test a circuit. Care must be taken to write stimuli that will test a circuit thoroughly, 

exercising all of the operating features that are specified. However, the test benches 

considered here are relatively simple, since the circuits we want to test implement only 

combinational logic. The examples are presented to demonstrate some basic features of 

HDL stimulus modules.  Chapter   8    considers test benches in greater depth. 

 In addition to employing the  always  statement, test benches use the  initial  statement 

to provide a stimulus to the circuit being tested. We use the term “ always  statement” 

loosely. Actually,  always  is a Verilog language construct specifying  how  the associated 

statement is to execute (subject to the event control expression). The  always  statement 
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182    Chapter 4  Combinational Logic

     P R O B L E M S 

 (Answers to problems marked with * appear at the end of the text. Where appropriate, a logic 

design and its related HDL modeling problem are cross-referenced.) 

    4.1   Consider the combinational circuit shown in  Fig.   P4.1   . (HDL—see Problem 4.49.) 

A

B

C

D

T1

T3

T4

F1

F2

T2

 FIGURE P4.1        

    (a)*    Derive the Boolean expressions for    T1    through    T4.    Evaluate the outputs    F1    and    F2    

as a function of the four inputs.  

   (b)   List the truth table with 16 binary combinations of the four input variables. Then list 

the binary values for    T1    through    T4    and outputs    F1    and    F2    in the table.  

   (c)   Plot the output Boolean functions obtained in part (b) on maps and show that the 

simplified Boolean expressions are equivalent to the ones obtained in part (a).     

    4.2*   Obtain the simplified Boolean expressions for output  F  and  G  in terms of the input 

 variables in the circuit of  Fig.   P4.2   . 

F

G

A

B

C

D

 FIGURE P4.2          

    4.3   For the circuit shown in  Fig.   4.26    (Section 4.11), 

    (a)   Write the Boolean functions for the four outputs in terms of the input variables.  

   (b)*    If the circuit is described in a truth table, how many rows and columns would there 

be in the table?     

    4.4   Design a combinational circuit with three inputs and one output. 

    (a)*    The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise.  

   (b)   The output is 1 when the binary value of the inputs is an even number.     
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206    Chapter 5  Synchronous Sequential Logic

0 is detected in a stream of 1s. It consists of two  D  flip-flops  A  and  B,  an input  x  and an 

output  y . Since the  D  input of a flip-flop determines the value of the next state (i.e., the 

state reached after the clock transition), it is possible to write a set of state equations 

for the circuit:  
    A(t + 1) = A(t)x(t) + B(t)x(t)

 B(t + 1) = A�(t)x(t)    

 A state equation is an algebraic expression that specifies the condition for a flip-flop 

state transition. The left side of the equation, with    (t + 1),    denotes the next state of the 

flip-flop one clock edge later. The right side of the equation is a Boolean expression that 

specifies the present state and input conditions that make the next state equal to 1. Since 

all the variables in the Boolean expressions are a function of the present state, we can 

omit the designation ( t ) after each variable for convenience and can express the state 

equations in the more compact form 

   A(t + 1) - Ax + Bx

B(t + 1) - A�x    

 The Boolean expressions for the state equations can be derived directly from the gates 

that form the combinational circuit part of the sequential circuit, since the  D  values of 

the combinational circuit determine the next state. Similarly, the present-state value of 

the output can be expressed algebraically as 

   y(t) = [A(t) + B(t)]x�(t)   

 By removing the symbol  (t)  for the present state, we obtain the output Boolean equation: 

   y = (A + B)x�    

  State Table 

 The time sequence of inputs, outputs, and flip-flop states can be enumerated in a  state 
table  (sometimes called a  transition table ). The state table for the circuit of  Fig.   5.15    is 

shown in  Table   5.2   . The table consists of four sections labeled  present state, input, next 
state,  and  output . The present-state section shows the states of flip-flops  A  and  B  at 

any given time  t . The input section gives a value of  x  for each possible present state. 

The next-state section shows the states of the flip-flops one clock cycle later, at time 

   t + 1.    The output section gives the value of  y  at time  t  for each present state and input 

condition.  
 The derivation of a state table requires listing all possible binary combinations of 

present states and inputs. In this case, we have eight binary combinations from 000 to 

111. The next-state values are then determined from the logic diagram or from the state 

equations. The next state of flip-flop  A  must satisfy the state equation 

   A(t + 1) = Ax + Bx   
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Section 5.5  Analysis of Clocked Sequential Circuits     213

   K = 0,    the next state is 1. When    J = 0    and    K = 1,    the next state is 0. When    J = K = 0,    

there is no change of state and the next-state value is the same as that of the present 

state. When    J = K = 1,    the next-state bit is the complement of the present-state bit. 

Examples of the last two cases occur in the table when the present state  AB  is 10 and 

input  x  is 0.  JA  and  KA  are both equal to 0 and the present state of  A  is 1. Therefore, the 

next state of  A  remains the same and is equal to 1. In the same row of the table,  JB  and 

 KB  are both equal to 1. Since the present state of  B  is 0, the next state of  B  is comple-

mented and changes to 1.   
 The next-state values can also be obtained by evaluating the state equations from the 

characteristic equation. This is done by using the following procedure: 

    1.   Determine the flip-flop input equations in terms of the present state and input 

variables.  

   2.   Substitute the input equations into the flip-flop characteristic equation to obtain 

the state equations.  

   3.   Use the corresponding state equations to determine the next-state values in the 

state table.   

 The input equations for the two  JK  flip-flops of  Fig.   5.18    were listed a couple of para-

graphs ago. The characteristic equations for the flip-flops are obtained by substituting 

 A  or  B  for the name of the flip-flop, instead of  Q : 

    A(t + 1) = JA� + K�A

 B(t + 1) = JB� + K�B    

 Substituting the values of    JA    and    KA    from the input equations, we obtain the state equa-

tion for  A : 

   A(t + 1) = BA� + (Bx�)� A = A�B + AB� + Ax   

 The state equation provides the bit values for the column headed “Next State” for  A  in 

the state table. Similarly, the state equation for flip-flop  B  can be derived from the char-

acteristic equation by substituting the values of    JB    and    KB:    

   B(t + 1) = x�B� + (A { x)�B = B�x� + ABx + A�Bx�    

 The state equation provides the bit values for the column headed “Next State” for  B  in 

the state table. Note that the columns in  Table   5.4    headed “Flip-Flop Inputs” are not 

needed when state equations are used. 

 The state diagram of the sequential circuit is shown in  Fig.   5.19   . Note that since the 

circuit has no outputs, the directed lines out of the circles are marked with one binary 

number only, to designate the value of input  x .  

  Analysis with  T  Flip-Flops 

 The analysis of a sequential circuit with  T  flip-flops follows the same procedure outlined 

for  JK  flip-flops. The next-state values in the state table can be obtained by using either 
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216    Chapter 5  Synchronous Sequential Logic

is generated. In the Mealy model, the output is a function of both the present state and 

the input. In the Moore model, the output is a function of only the present state. A circuit 

may have both types of outputs. The two models of a sequential circuit are commonly 

referred to as a finite state machine, abbreviated FSM. The Mealy model of a sequential 

circuit is referred to as a Mealy FSM or Mealy machine. The Moore model is referred 

to as a Moore FSM or Moore machine. 

 The circuit presented previously in  Fig.   5.15    is an example of a Mealy machine. Out-

put  y  is a function of both input  x  and the present state of  A  and  B . The corresponding 

state diagram in  Fig.   5.16    shows both the input and output values, separated by a slash 

along the directed lines between the states. 

 An example of a Moore model is given in  Fig.   5.18   . Here, the output is a function of 

the present state only. The corresponding state diagram in  Fig.   5.19    has only inputs marked 

along the directed lines. The outputs are the flip-flop states marked inside the circles. 

Another example of a Moore model is the sequential circuit of  Fig.   5.20   . The output 

depends only on flip-flop values, and that makes it a function of the present state only. 

The input value in the state diagram is labeled along the directed line, but the output 

value is indicated inside the circle together with the present state.  
  In a Moore model, the outputs of the sequential circuit are synchronized with the 

clock, because they depend only on flip-flop outputs that are synchronized with the 
clock.  In a Mealy model, the outputs may change if the inputs change during the clock 
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 FIGURE 5.21 
 Block diagrams of Mealy and Moore state machines       
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   #10 t_x_in = 1;
   #30 t_x_in = 0;
   #40 t_x_in = 1;
   #50 t_x_in = 0;
   #52 t_x_in = 1;
   #54 t_x_in = 0;
   #70 t_x_in = 1;
   #80 t_x_in = 1;
   #70 t_x_in = 0;
   #90 t_x_in = 1;
   #100 t_x_in = 0;
   #120 t_x_in = 1;
   #160 t_x_in = 0;
   #170 t_x_in = 1;
    join 
   endmodule   

 The circuit I HDL Example 5.5 detects a 0 following a sequence of 1s in a serial bit 

stream. Its Verilog model uses three always blocks that execute concurrently and inter-

act through common variables. The first  always  statement resets the circuit to the initial 

state    S0 = 00    and specifies the synchronous clocked operation. The statement  state <= 
next_state  is synchronized to a positive-edge transition of the clock. This means that any 

change in the value of  next_state  in the second  always  block can affect the value of  state  

only as a result of a  posedge  event of  clock . The second  always  block determines the 

value of the next state transition as a function of the present state and input. The value 

assigned to  state  by the nonblocking assignment is the value of  next_state  immediately 

before the rising edge of  clock . Notice how the multiway branch condition implements 

the state transitions specified by the annotated edges in the state diagram of  Fig.   5.16   . 

The third  always  block specifies the output as a function of the present state and the 

input. Although this block is listed as a separate behavior for clarity, it could be com-

bined with the second block. Note that the value of output  y_out  may change if the value 

of input  x_in  changes while the circuit is in any given state. 

 So let’s summarize how the model describes the behavior of the machine: At every ris-

ing edge of  clock,  if  reset  is not asserted, the state of the machine is updated by the first 

 always  block; when  state  is updated by the first  always  block, the change in  state  is detected 

by the sensitivity list mechanism of the second  always  block; then the second  always  block 

updates the value of  next_state  (it will be used by the first  always  block at the next tick of 

the clock); the third  always  block also detects the change in  state  and updates the value of 

the output. In addition, the second and third  always  blocks detect changes in  x_in  and 

update  next_state  and  y_out  accordingly. The test bench provided with  Mealy_Zero_ 
Detector  provides some waveforms to stimulate the model, producing the results shown in 

 Fig.   5.22   . Notice how t_ y_out  responds to changes in both the state and the input, and has 

a glitch (a transient logic value). We display both to  state [1:0] and  next_state [1:0] to illus-

trate how changes in  t_x_in  influence the value of next_state and t_y_out. The Mealy glitch 

in  t_y_out  is due to the (intentional) dynamic behavior of  t_x_in . The input,  t_x_in,  settles 
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226    Chapter 5  Synchronous Sequential Logic

to a value of 0 immediately before the clock, and at the clock, the state makes a transition 

from 0 to 1, which is consistent with  Fig.   5.16   . The output is 1 in state  S 1 immediately before 

the clock, and changes to 0 as the state enters  S 0. 

 The description of waveforms in the test bench uses the  fork . . . join  construct. State-

ments with the  fork . . . join  block execute in parallel, so the time delays are relative to 

a common reference of t = 0, the time at which the block begins execution.  2   It is usually 

more convenient to use the  fork . . . join  block instead of the  begin . . . end  block in 

describing waveforms. Notice that the waveform of reset is triggered “on the fly” to 

demonstrate that the machine recovers from an unexpected (asynchronous) reset con-

dition during any state.  
 How does our Verilog model  Mealy_Zero_Detector  correspond to hardware? The first 

 always  block corresponds to a  D  flip-flop implementation of the state register in  Fig.   5.21   ; 

the second  always  block is the combinational logic block describing the next state; the 

third  always  block describes the output combinational logic of the zero-detecting Mealy 

machine. The register operation of the state transition uses the nonblocking assignment 

operator (< =) because the (edge-sensitive) flip-flops of a sequential machine are updated 

concurrently by a common clock. The second and third  always  blocks describe combina-

tional logic, which is level sensitive, so they use the blocking (=) assignment operator. 

t_clock

t_reset

t_x_in

state[1:0]

next_state[1:0]

t_y_out

0

Stream of 1s

30 60 90

0 1

0

3

1

2

3 0

1 3

1

0

0

1 1

0

3

1

0

0

Mealy glitchvalid Mealy output

0

 FIGURE 5.22 
 Simulation output of Mealy_Zero_Detector       

 2  A  fork . . . join  block completes execution when the last executing statement within it completes its 

execution. 
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232    Chapter 5  Synchronous Sequential Logic

by letter symbols instead of their binary values. This is in contrast to a binary counter, 

wherein the binary value sequence of the states themselves is taken as the outputs.  
 There are an infinite number of input sequences that may be applied to the circuit; 

each results in a unique output sequence. As an example, consider the input sequence 

01010110100 starting from the initial state  a . Each input of 0 or 1 produces an output 

of 0 or 1 and causes the circuit to go to the next state. From the state diagram, we obtain 

the output and state sequence for the given input sequence as follows: With the circuit 

in initial state  a,  an input of 0 produces an output of 0 and the circuit remains in state  a . 

With present state  a  and an input of 1, the output is 0 and the next state is  b . With pres-

ent state  b  and an input of 0, the output is 0 and the next state is  c . Continuing this 

process, we find the complete sequence to be as follows:   

 state   a    a    b    c    d    e    f    f    g    f    g    a  
 input  0  1  0  1  0  1  1  0  1  0  0   
 output  0  0  0  0  0  1  1  0  1  0  0   

 In each column, we have the present state, input value, and output value. The next state 

is written on top of the next column. It is important to realize that in this circuit the states 

themselves are of secondary importance, because we are interested only in output 

sequences caused by input sequences. 

 Now let us assume that we have found a sequential circuit whose state diagram has 

fewer than seven states, and suppose we wish to compare this circuit with the circuit 

whose state diagram is given by  Fig.   5.25   . If identical input sequences are applied to the 

two circuits and identical outputs occur for all input sequences, then the two circuits are 

said to be equivalent (as far as the input–output is concerned) and one may be replaced 

by the other. The problem of state reduction is to find ways of reducing the number of 

states in a sequential circuit without altering the input–output relationships. 

a

b c

d eg

f

0/0
1/1 1/1

1/1

1/1

1/0

1/0
1/0 0/0

0/0

0/0

0/0

0/0

0/0

 FIGURE 5.25 
 State diagram       
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236    Chapter 5  Synchronous Sequential Logic

saved by using simpler decoding logic. This trade-off is not guaranteed, so it must be 

evaluated for a given design.   

  Table   5.10    is the reduced state table with binary assignment 1 substituted for the let-

ter symbols of the states. A different assignment will result in a state table with different 

binary values for the states. The binary form of the state table is used to derive the next-

state and output-forming combinational logic part of the sequential circuit. The com-

plexity of the combinational circuit depends on the binary state assignment chosen. 

 Sometimes, the name  transition table  is used for a state table with a binary assignment. 

This convention distinguishes it from a state table with symbolic names for the states. 

In this book, we use the same name for both types of state tables.   

  5 . 8     D E S I G N  P R O C E D U R E 

 Design procedures or methodologies specify hardware that will implement a desired 

behavior. The design effort for small circuits may be manual, but industry relies on 

automated synthesis tools for designing massive integrated circuits. The sequential build-

ing block used by synthesis tools is the  D  flip-flop. Together with additional logic, it can 

implement the behavior of  JK  and  T  flip-flops. In fact, designers generally do not con-

cern themselves with the type of flip-flop; rather, their focus is on correctly describing 

the sequential functionality that is to be implemented by the synthesis tool. Here we 

will illustrate manual methods using  D,   JK,  and  T  flip-flops. 

 The design of a clocked sequential circuit starts from a set of specifications and cul-

minates in a logic diagram or a list of Boolean functions from which the logic diagram 

can be obtained. In contrast to a combinational circuit, which is fully specified by a truth 

table, a sequential circuit requires a state table for its specification. The first step in the 

design of sequential circuits is to obtain a state table or an equivalent representation, 

such as a state diagram.3 

 A synchronous sequential circuit is made up of flip-flops and combinational gates. The 

design of the circuit consists of choosing the flip-flops and then finding a combinational 

 Table 5.10 
 Reduced State Table with Binary Assignment 1 

   Next State  Output 

 Present State   x � 0   x � 1   x � 0   x � 1 

 000  000  001  0  0 

 001  010  011  0  0 

 010  000  011  0  0 

 011  100  011  0  1 

 100  000  011  0  1 

3 We will examine later another important representation of a machine’s behavior—the algorithmic state 

machine (ASM) chart.
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238    Chapter 5  Synchronous Sequential Logic

 Table 5.11 
 State Table for Sequence Detector 

 Present 
State  Input 

 Next 
State  Output 

  A    B    x    A    B    y  

 0  0  0  0  0  0 

 0  0  1  0  1  0 

 0  1  0  0  0  0 

 0  1  1  1  0  0 

 1  0  0  0  0  0 

 1  0  1  1  1  0 

 1  1  0  0  0  1 

 1  1  1  1  1  1 

S0/0 S1/0

S3/1 S2/0

0

0

0
0

1

1

1

1

 FIGURE 5.27 
 State diagram for sequence detector       

  Synthesis Using  D  Flip-Flops 

 Once the state diagram has been derived, the rest of the design follows a straight-

forward synthesis procedure. In fact, we can design the circuit by using an HDL 

description of the state diagram and the proper HDL synthesis tools to obtain a 

synthesized netlist. (The HDL description of the state diagram will be similar to 

HDL Example 5.6 in Section 5.6.) To design the circuit by hand, we need to assign 

binary codes to the states and list the state table. This is done in  Table   5.11   . The table 

is derived from the state diagram of  Fig.   5.27    with a sequential binary assignment. 

We choose two  D  flip-flops to represent the four states, and we label their outputs 

 A  and  B . There is one input  x  and one output  y . The characteristic equation of the 

 D  flip-flop is    Q(t + 1) = DQ,    which means that the next-state values in the state 

table specify the  D  input condition for the flip-flop. The flip-flop input equations 
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and    5.26   . Write a test bench to compare the state sequences and input–output behaviors 

of the two machines.   

    5.38   Write and verify an HDL behavioral description of the machine described in Problem 5.16.   

    5.39   Write and verify a behavioral description of the machine specified in Problem 5.17.   

    5.40   Write and verify a behavioral description of the machine specified in Problem 5.18.   

    5.41   Write and verify a behavioral description of the machine specified in Problem 5.19. 

( Hint : See the discussion of the  default  case item preceding HDL Example 4.8 in 

 Chapter   4   .)   

    5.42   Write and verify an HDL structural description of the circuit shown in  Fig.   5.29   .   

    5.43   Write and verify an HDL behavioral description of the three-bit binary counter in  Fig.   5.34   .   

    5.44   Write and verify a Verilog model of a  D  flip-flop having asynchronous reset.   

    5.45   Write and verify an HDL behavioral description of the sequence detector described in  Fig.   5.27   .   

    5.46   A synchronous finite state machine has an input  x_in  and an output  y_out . When  x_in  

changes from 0 to 1, the output  y_out  is to assert for three cycles, regardless of the value 

of  x_in,  and then de-assert for two cycles before the machine will respond to another 

assertion of  x_in . The machine is to have active-low synchronous reset. 

    (a)   Draw the state diagram of the machine.  

   (b)   Write and verify a Verilog model of the machine.     

    5.47   Write a Verilog model of a synchronous finite state machine whose output is the  sequence 

0, 2, 4, 6, 8 10, 12, 14, 0 . . . . The machine is controlled by a single input,  Run,  so that counting 

occurs while  Run  is asserted, suspends while  Run  is de-asserted, and resumes the count 

when  Run  is re-asserted. Clearly state any assumptions that you make.   

    5.48   Write a Verilog model of the Mealy FSM described by the state diagram in Fig. P5.48. 

Develop a test bench and demonstrate that the machine state transitions and output cor-

respond to its state diagram.               

  FIGURE P5.48           
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d c
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256    Chapter 6  Registers and Counters

outputs can be sampled at any time to obtain the binary information stored in the register. 

The input  Clear_b  goes to the active‐low  R  (reset) input of all four flip‐flops. When this 

input goes to 0, all flip‐flops are reset asynchronously. The  Clear_b  input is useful for clear-

ing the register to all 0’s prior to its clocked operation. The  R  inputs must be maintained 

 FIGURE 6.1 
 Four‐bit register       
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264    Chapter 6  Registers and Counters

   3.   A shift‐right control to enable the shift‐right operation and the serial input and 

output lines associated with the shift right.  

   4.   A shift‐left control to enable the shift‐left operation and the serial input and output 
lines associated with the shift left.  

   5.   A parallel‐load control to enable a parallel transfer and the n input lines associ-

ated with the parallel transfer.  

   6.   n parallel output lines.  

   7.   A control state that leaves the information in the register unchanged in response 

to the clock. Other shift registers may have only some of the preceding functions, 

with at least one shift operation.   

 A register capable of shifting in one direction only is a  unidirectional  shift register. 

One that can shift in both directions is a  bidirectional  shift register. If the register has 

both shifts and parallel‐load capabilities, it is referred to as a  universal shift register.  
 The block diagram symbol and the circuit diagram of a four‐bit universal shift register 

that has all the capabilities just listed are shown in  Fig.   6.7   . The circuit consists of four  D  

flip‐flops and four multiplexers. The four multiplexers have two common selection inputs 

   s1    and    s0.    Input 0 in each multiplexer is selected when    s1s0 = 00,    input 1 is selected when 

   s1s0 = 01,    and similarly for the other two inputs. The selection inputs control the mode 

of operation of the register according to the function entries in  Table   6.3   . When    s1s0 = 00,    

the present value of the register is applied to the  D  inputs of the flip‐flops. This condition 

forms a path from the output of each flip‐flop into the input of the same flip‐flop, so that 

the output recirculates to the input in this mode of operation. The next clock edge trans-

fers into each flip‐flop the binary value it held previously, and no change of state occurs. 

Shift register A

Shift register B

Clear

SI
S

SI

 x

y
Serial
input

Shift
control

CLK

J

C

K

SO

SO

 FIGURE 6.6 
 Second form of serial adder       
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 FIGURE 6.8 
 Four‐bit binary ripple counter       
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Section 6.3  Ripple Counters    269

count goes from 0011 to 0010, then to 0000, and finally to 0100. The flip‐flops change 

one at a time in succession, and the signal propagates through the counter in a ripple 

fashion from one stage to the next. 

 A binary counter with a reverse count is called a  binary countdown counter . In a 

countdown counter, the binary count is decremented by 1 with every input count pulse. 

The count of a four‐bit countdown counter starts from binary 15 and continues to binary 

counts 14, 13, 12, . . . , 0 and then back to 15. A list of the count sequence of a binary 

countdown counter shows that the least significant bit is complemented with every count 

pulse. Any other bit in the sequence is complemented if its previous least significant bit 

goes from 0 to 1. Therefore, the diagram of a binary countdown counter looks the same 

as the binary ripple counter in  Fig.   6.8   , provided that all flip‐flops trigger on the positive 

edge of the clock. (The bubble in the  C  inputs must be absent.) If negative‐edge‐triggered 

flip‐flops are used, then the  C  input of each flip‐flop must be connected to the comple-

mented output of the previous flip‐flop. Then, when the true output goes from 0 to 1, the 

complement will go from 1 to 0 and complement the next flip‐flop as required. 

    BCD Ripple Counter 

 A decimal counter follows a sequence of 10 states and returns to 0 after the count of 9. 

Such a counter must have at least four flip‐flops to represent each decimal digit, since 

a decimal digit is represented by a binary code with at least four bits. The sequence of 

states in a decimal counter is dictated by the binary code used to represent a decimal 

digit. If BCD is used, the sequence of states is as shown in the state diagram of  Fig.   6.9   . 

A decimal counter is similar to a binary counter, except that the state after 1001 (the 

code for decimal digit 9) is 0000 (the code for decimal digit 0). 

 The logic diagram of a BCD ripple counter using  JK  flip‐flops is shown in  Fig.   6.10   . 

The four outputs are designated by the letter symbol  Q,  with a numeric subscript equal 

to the binary weight of the corresponding bit in the BCD code. Note that the output of 

   Q1    is applied to the  C  inputs of both    Q2    and    Q8    and the output of    Q2    is applied to the 

 C  input of    Q4.    The  J  and  K  inputs are connected either to a permanent 1 signal or to 

outputs of other flip‐flops. 

 A ripple counter is an asynchronous sequential circuit. Signals that affect the flip‐flop 

transition depend on the way they change from 1 to 0. The operation of the counter can 

0000 0001 0010 0011 0100

1001 1000 0111 0110 0101

 FIGURE 6.9 
 State diagram of a decimal BCD counter       
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 FIGURE 6.10 
 BCD ripple counter       

be explained by a list of conditions for flip‐flop transitions. These condi-

tions are derived from the logic diagram and from knowledge of how a 

 JK  flip‐flop operates. Remember that when the  C  input goes from 1 to 0, 

the flip‐flop is set if    J = 1,    is cleared if    K = 1,    is complemented if 

   J = K = 1,    and is left unchanged if    J = K = 0.    
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Section 6.4  Synchronous Counters    275

in the same count. When the up and down inputs are both 1, the circuit counts up. This 

set of conditions ensures that only one operation is performed at any given time. Note 

that the up input has priority over the down input.  

  BCD Counter 

 A BCD counter counts in binary‐coded decimal from 0000 to 1001 and back to 0000. 

Because of the return to 0 after a count of 9, a BCD counter does not have a regular 

pattern, unlike a straight binary count. To derive the circuit of a BCD synchronous 

counter, it is necessary to go through a sequential circuit design procedure. 

 The state table of a BCD counter is listed in  Table   6.5   . The input conditions for the 

 T  flip‐flops are obtained from the present‐ and next‐state conditions. Also shown in the 

table is an output  y,  which is equal to 1 when the present state is 1001. In this way,  y  can 

enable the count of the next‐higher significant decade while the same pulse switches the 

present decade from 1001 to 0000. 

 The flip‐flop input equations can be simplified by means of maps. The unused states 

for minterms 10 to 15 are taken as don’t‐care terms. The simplified functions are 

    TQ1 = 1

 TQ2 = Q�8Q1   

      TQ4 = Q2Q1

 TQ8 = Q8Q1 + Q4Q2Q1

 y = Q8Q1   

 The circuit can easily be drawn with four  T  flip‐flops, five AND gates, and one OR 

gate. Synchronous BCD counters can be cascaded to form a counter for decimal  numbers 

of any length. The cascading is done as in  Fig.   6.11   , except that output  y  must be con-

nected to the count input of the next‐higher significant decade.  

 Table 6.5 
 State Table for BCD Counter 

 Present State  Next State  Output  Flip‐Flop Inputs 

  Q  8     Q 4    Q  2    Q  1    Q  8  Q    4    Q  2      Q1    y    TQ  8    TQ  4    TQ  2    TQ  1  

 0  0  0  0  0  0  0  1  0  0  0  0  1 

 0  0  0  1  0  0  1  0  0  0  0  1  1 

 0  0  1  0  0  0  1  1  0  0  0  0  1 

 0  0  1  1  0  1  0  0  0  0  1  1  1 

 0  1  0  0  0  1  0  1  0  0  0  0  1 

 0  1  0  1  0  1  1  0  0  0  0  1  1 

 0  1  1  0  0  1  1  1  0  0  0  0  1 

 0  1  1  1  1  0  0  0  0  1  1  1  1 

 1  0  0  0  1  0  0  1  0  0  0  0  1 

 1  0  0  1  0  0  0  0  1  1  0  0  1 
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  Variables of type reg retain their value until they are assigned a new value by an 

assignment statement. Consider the following alternative case statement for the shift 

register model: 

   always @  ( posedge  CLK,  negedge  Clear_b) // V2001, 2005
    if  (Clear_b == 0) A_par <= 4’b0000;
    else 
     case  ({s1, s0})
   2'b00: A_par <= A_par; // No change
   2'b01: A_par <= {MSB_in, A_par[3: 1]}; // Shift right
   2'b10: A_par <= {A_par[2: 0], LSB_in}; // Shift left
   2'b11: A_par <= I_par; // Parallel load of input
     endcase 
   endmodule  

     case  ({s1, s0})
   // 2'b00: A_par <= A_par; // No change
   2'b01: A_par <= {MSB_in, A_par [3: 1]}; // Shift right
   2'b10: A_par <= {A_par [2: 0], LSB_in}; // Shift left
   2'b11: A_par <= I_par; // Parallel load of input
     endcase 

  Without the case item    2�b00,    the  case  statement would not find a match between 

   5s1, s06     and the case items, so register  A_par  would be left unchanged. 

 A structural model of the universal shift register can be described by referring to the 

logic diagram of  Fig.   6.7   (b). The diagram shows that the register has four multiplexers and 

four  D  flip‐flops. A mux and flip‐flop together are modeled as a stage of the shift register. 

The stage is a structural model, too, with an instantiation and interconnection of a module 

for a mux and another for a  D  flip‐flop. For simplicity, the lowest‐level modules of the 

structure are behavioral models of the multiplexer and flip‐flop. Attention must be paid 

to the details of connecting the stages correctly. The structural description of the register 

is shown in HDL Example 6.2. The top‐level module declares the inputs and outputs and 

then instantiates four copies of a stage of the register. The four instantiations specify the 

interconnections between the four stages and provide the detailed construction of the 

register as specified in the logic diagram. The behavioral description of the flip‐flop uses 

a single edge‐sensitive cyclic behavior (an  always  block). The assignment statements use 

the nonblocking assignment operator (<=) the model of the mux employs a single level‐

sensitive behavior, and the assignments use the blocking assignment operator (=). 

   HDL Example 6.2 (Universal Shift Register‐Structural Model) 

 // Structural description of a 4-bit universal shift register (see  Fig.   6.7   )
   module  Shift_Register_4_str ( // V2001, 2005
    output  [3: 0] A_par, // Parallel output
    input  [3: 0] I_par, // Parallel input
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     P R O B L E M S 

  (Answers to problems marked with * appear at the end of the book. Where appropriate, a logic 

design and its related HDL modeling problem are cross-referenced.) 

Note: For each problem that requires writing and verifying a Verilog description, a test plan is to 

be written to identify which functional features are to be tested during the simulation and how 

they will be tested. For example, a reset on the fly could be tested by asserting the reset signal 

while the simulated machine is in a state other than the reset state. The test plan is to guide the 

development of a test bench that will implement the plan. Simulate the model using the test bench 

and verify that the behavior is correct. If synthesis tools and an ASIC cell library or a field pro-

grammable gate array (FPGA) tool suite are available, the Verilog descriptions developed for 

Problems 6.34–6.51 can be assigned as synthesis exercises. The gate‐level circuit produced by the 

synthesis tools should be simulated and compared to the simulation results for the pre‐synthesis 

model  . 

 In some of the HDL problems, there may be a need to deal with the issue of unused states (see 

the discussion of the  default   case  item preceding HDL Example 4.8 in  Chapter   4   ).  

    6.1   Include a 2‐input NAND gate in the register of  Fig.   6.1    and connect the gate output to the 

 C  inputs of all the flip‐flops. One input of the NAND gate receives the clock pulses from 

the clock generator, and the other input of the NAND gate provides a parallel load control. 

Explain the operation of the modified register. Explain why this circuit might have opera-

tional problems.   

    6.2   Include a synchronous clear input to the register of  Fig.   6.2   . The modified register will have 

a parallel load capability and a synchronous clear capability. The register is cleared syn-

chronously when the clock goes through a positive transition and the clear input is equal 

to 1. (HDL—see Problem 6.35(a), (b).)   

    6.3   What is the difference between serial and parallel transfer? Explain how to convert serial 

data to parallel and parallel data to serial. What type of register is needed?   

    6.4*   The contents of a four‐bit register is initially 0110. The register is shifted six times to the 

right with the serial input being 1011100. What is the content of the register after each 

shift?   

    6.5   The four‐bit universal shift register shown in  Fig.   6.7    is enclosed within one IC component 

package. (HDL—see Problem 6.52.) 

    (a)   Draw a block diagram of the IC showing all inputs and outputs. Include two pins for 

the power supply.  

   (b)   Draw a block diagram using two of these ICs to produce an eight‐bit universal shift 

register.     

    6.6   Design a four‐bit shift register with parallel load using  D  flip‐flops. There are two control 

inputs:  shift  and  load . When  shift  = 1, the content of the register is shifted by one posi-

tion. New data are transferred into the register when  load  = 1 and  shift  = 0. If both 

control inputs are equal to 0, the content of the register does not change. (HDL—see 

Problem 6.35(c), (d).)   

    6.7   Draw the logic diagram of a four‐bit register with four  D  flip‐flops and four 4 × 1 mul-

tiplexers with mode selection inputs  s  1  and  s  0 . The register operates according to the 

following function table. (HDL—see Problem 6.35(e), (f).)   
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    6.17*   Design a four‐bit binary synchronous counter with  D  flip‐flops.   

    6.18   What operation is performed in the up–down counter of  Fig.   6.13    when both the up and 

down inputs are enabled? Modify the circuit so that when both inputs are equal to 1, the 

counter does not change state. (HDL—see Problem 6.35(l).)   

    6.19   The flip‐flop input equations for a BCD counter using  T  flip‐flops are given in Section 6.4. 

Obtain the input equations for a BCD counter that uses (a)  JK  flip‐flops and (b)*  D  flip‐

flops. Compare the three designs to determine which one is the most efficient.   

    6.20   Enclose the binary counter with parallel load of  Fig.   6.14    in a block diagram showing, all 

inputs and outputs. 

    (a)   Show the connections of four such blocks to produce a 16‐bit counter with parallel 

load.  

   (b)   Construct a binary counter that counts from 0 through binary 127.     

    6.21*   The counter of  Fig.   6.14    has two control inputs— Load  ( L ) and  Count  ( C )—and a data 

input, ( I i  ). 

    (a)   Derive the flip‐flop input equations for  J  and  K  of the first stage in terms of  L,   C,  

and  I.   
   (b)   The logic diagram of the first stage of an equivalent circuit is shown in  Fig.   P6.21   . 

Verify that this circuit is equivalent to the one in (a).      

J

K

CLK

Load (L)

Count (C)

Data (I)

 FIGURE P6.21       
    6.22   For the circuit of  Fig.   6.14   , give three alternatives for a mod‐10 counter (i.e., the count 

evolves through a sequence of 12 distinct states). 

    (a)   Using an AND gate and the load input.  

   (b)   Using the output carry.  

   (c)   Using a NAND gate and the asynchronous clear input.     

    6.23   Design a timing circuit that provides an output signal that stays on for exactly twelve clock 

cycles. A start signal sends the output to the 1 state, and after twelve clock cycles the signal 

returns to the 0 state. (HDL—see Problem 6.45.)   

    6.24*   Design a counter with  T  flip‐flops that goes through the following binary repeated se-

quence: 0, 1, 3, 7, 6, 4. Show that when binary states 010 and 101 are considered as don’t 

care conditions, the counter may not operate properly. Find a way to correct the design. 

(HDL—see Problem 6.55.)   

    6.25   It is necessary to generate six repeated timing signals    T0    through    T5    similar to the ones 

shown in  Fig.   6.17   (c). Design the circuit using (HDL—see Problem 6.46.): 

    (a)   flip‐flops only.  

   (b)   a counter and a decoder.     
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302    Chapter 7  Memory and Programmable Logic

a memory is dependent on the total number of words that can be stored in the memory 

and is independent of the number of bits in each word. The number of bits in the address 

is determined from the relationship    2k Ú  m,    where  m  is the total number of words and 

 k  is the number of address bits needed to satisfy the relationship. 

  Write and Read Operations 

 The two operations that RAM can perform are the write and read operations. As alluded 

to earlier, the write signal specifies a transfer‐in operation and the read signal specifies 

a transfer‐out operation. On accepting one of these control signals, the internal circuits 

inside the memory provide the desired operation. 

 The steps that must be taken for the purpose of transferring a new word to be stored 

into memory are as follows: 

    1.   Apply the binary address of the desired word to the address lines.  

   2.   Apply the data bits that must be stored in memory to the data input lines.  

   3.   Activate the write input.   

 The memory unit will then take the bits from the input data lines and store them in the 

word specified by the address lines. 

 The steps that must be taken for the purpose of transferring a stored word out of 

memory are as follows: 

    1.   Apply the binary address of the desired word to the address lines.  

   2.   Activate the read input.   

Memory content

10110101010111010000000000

10101011100010010000000001

00001101010001100000000010

0

1

2

1111111101

1111111110

1111111111

Memory address

Binary Decimal

1021

1022

1023

1001110100010100

0000110100011110

1101111000100101

•
•
•
•

•
•
•
•

 FIGURE 7.3 
 Contents of a    1024 * 16    memory       
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Section 7.4  Error Detection and Correction    313

 The 4 parity bits,    P1, P2, P4,    and    P8,    are in positions 1, 2, 4, and 8, respectively. The 8 bits 

of the data word are in the remaining positions. Each parity bit is calculated as follows: 

    P1 = XOR of bits (3, 5, 7, 9, 11) = 1 { 1 { 0 { 0 { 0 = 0

 P2 = XOR of bits (3, 5, 7, 10, 11) = 1 { 0 { 0 { 1 { 0 = 0

 P4 = XOR of bits (5, 6, 7, 12) =  1 { 0 { 0 { 0 = 1

 P8 = XOR of bits (9, 10, 11, 12) = 0 { 1 { 0 { 0 = 1    

 Remember that the exclusive‐OR operation performs the odd function: It is equal to 1 

for an odd number of 1’s in the variables and to 0 for an even number of 1’s. Thus, each 

parity bit is set so that the total number of 1’s in the checked positions, including the 

parity bit, is always even. 

 The 8‐bit data word is stored in memory together with the 4 parity bits as a 12‐bit 

composite word. Substituting the 4  P  bits in their proper positions, we obtain the 12‐bit 

composite word stored in memory:   

   0  0  1  1  1  0  0  1  0  1  0  0 

 Bit position:  1  2  3  4  5  6  7  8  9  10  11  12 

 When the 12 bits are read from memory, they are checked again for errors. The parity is 

checked over the same combination of bits, including the parity bit. The 4 check bits are 

evaluated as follows: 

    C1 = XOR of bits (1, 3, 5, 7, 9, 11)

 C2 = XOR of bits (2, 3, 6, 7, 10, 11)

 C4 = XOR of bits (4, 5, 6, 7, 12)

 C8 = XOR of bits (8, 9, 10, 11, 12)    

 A 0 check bit designates even parity over the checked bits and a 1 designates odd parity. 

Since the bits were stored with even parity, the result,    C = C8C4C2C1 = 0000,    indicates 

that no error has occurred. However, if    C � 0,    then the 4‐bit binary number formed by 

the check bits gives the position of the erroneous bit. For example, consider the following 

three cases:   

 Bit position:  1  2  3  4  5  6  7  8  9  10  11  12   

   0  0  1  1  1  0  0  1  0  1  0  0  No error 

   1  0  1  1  1  0  0  1  0  1  0  0  Error in bit 1 

   0  0  1  1  0  0  0  1  0  1  0  0  Error in bit 5 

 In the first case, there is no error in the 12‐bit word. In the second case, there is an 

error in bit position number 1 because it changed from 0 to 1. The third case shows 

Preview from Notesale.co.uk

Page 331 of 565



Section 7.5  Read‐Only Memory    315

2, 3, 6, 7, and so on. Comparing these numbers with the bit positions used in generating 

and checking parity bits in the Hamming code, we note the relationship between the bit 

groupings in the code and the position of the 1‐bits in the binary count sequence. Note 

that each group of bits starts with a number that is a power of 2: 1, 2, 4, 8, 16, etc. These 

numbers are also the position numbers for the parity bits.  

  Single‐Error Correction, Double‐Error Detection 

 The Hamming code can detect and correct only a single error. By adding another parity 

bit to the coded word, the Hamming code can be used to correct a single error and detect 

double errors. If we include this additional parity bit, then the previous 12‐bit coded 

word becomes    001110010100P13,    where    P13    is evaluated from the exclusive‐OR of the 

other 12 bits. This produces the 13‐bit word 0011100101001 (even parity). When the 

13‐bit word is read from memory, the check bits are evaluated, as is the parity  P  over 

the entire 13 bits. If    P = 0,    the parity is correct (even parity), but if    P = 1,    then the 

parity over the 13 bits is incorrect (odd parity). The following four cases can arise:  

     If    C = 0    and    P = 0,    no error occurred.  

    If    C � 0    and    P = 1,    a single error occurred that can be corrected.  

    If    C � 0    and    P = 0,    a double error occurred that is detected, but that cannot be 

corrected.  

    If    C = 0    and    P = 1,    an error occurred in the    P13    bit.   

 This scheme may detect more than two errors, but is not guaranteed to detect all such 

errors. 

 Integrated circuits use a modified Hamming code to generate and check parity bits 

for single‐error correction and double‐error detection. The modified Hamming code 

uses a more efficient parity configuration that balances the number of bits used to cal-

culate the XOR operation. A typical integrated circuit that uses an 8‐bit data word and 

a 5‐bit check word is IC type 74637. Other integrated circuits are available for data words 

of 16 and 32 bits. These circuits can be used in conjunction with a memory unit to correct 

a single error or detect double errors during write and read operations.   

  7 . 5     R E A D ‐ O N LY  M E M O RY 

 A read‐only memory (ROM) is essentially a memory device in which permanent binary 

information is stored. The binary information must be specified by the designer and is 

then embedded in the unit to form the required interconnection pattern. Once the pat-

tern is established, it stays within the unit even when power is turned off and on again. 

 A block diagram of a ROM consisting of  k  inputs and  n  outputs is shown in  Fig.   7.9   . 

The inputs provide the address for memory, and the outputs give the data bits of the 

stored word that is selected by the address. The number of words in a ROM is deter-

mined from the fact that  k  address input lines are needed to specify    2k    words. Note that 

ROM does not have data inputs, because it does not have a write operation. Integrated 
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318    Chapter 7  Memory and Programmable Logic

  Combinational Circuit Implementation 

 In Section 4.9, it was shown that a decoder generates the    2k    minterms of the  k  input 

variables. By inserting OR gates to sum the minterms of Boolean functions, we were 

able to generate any desired combinational circuit. The ROM is essentially a device that 

includes both the decoder and the OR gates within a single device to form a minterm 

generator. By choosing connections for those minterms which are included in the func-

tion, the ROM outputs can be programmed to represent the Boolean functions of the 

output variables in a combinational circuit. 

 The internal operation of a ROM can be interpreted in two ways. The first interpreta-

tion is that of a memory unit that contains a fixed pattern of stored words. The second 

interpretation is that of a unit which implements a combinational circuit. From this point 

of view, each output terminal is considered separately as the output of a Boolean func-

tion expressed as a sum of minterms. For example, the ROM of  Fig.   7.11    may be consid-

ered to be a combinational circuit with eight outputs, each a function of the five input 

variables. Output    A7    can be expressed in sum of minterms as 

   A7(I4, I3, I2, I1, I0) = �(0, 2, 3, c, 29)   

 (The three dots represent minterms 4 through 27, which are not specified in the figure.) 

A connection marked with   *    in the figure produces a minterm for the sum. All other 

crosspoints are not connected and are not included in the sum. 

 In practice, when a combinational circuit is designed by means of a ROM, it is not 

necessary to design the logic or to show the internal gate connections inside the unit. All 

that the designer has to do is specify the particular ROM by its IC number and provide 

the applicable truth table. The truth table gives all the information for programming the 

ROM. No internal logic diagram is needed to accompany the truth table. 

5 � 32
decoder

A7

I0

I1

I2

I3

I4

A6 A5 A4 A3 A2 A1 A0

0

1

2

3

28

29

30

31

.

.

.

 FIGURE 7.11 
 Programming the ROM according to  Table   7.3          
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324    Chapter 7  Memory and Programmable Logic

 The size of a PLA is specified by the number of inputs, the number of product terms, 

and the number of outputs. A typical integrated circuit PLA may have 16 inputs, 48 

product terms, and eight outputs. For  n  inputs,  k  product terms, and  m  outputs, the inter-

nal logic of the PLA consists of  n  buffer–inverter gates,  k  AND gates,  m  OR gates, and 

 m  XOR gates. There are    2n * k    connections between the inputs and the AND array, 

   k * m    connections between the AND and OR arrays, and  m  connections associated 

with the XOR gates. 

 In designing a digital system with a PLA, there is no need to show the internal con-

nections of the unit as was done in  Fig.   7.14   . All that is needed is a PLA programming 

table from which the PLA can be programmed to supply the required logic. As with a 

ROM, the PLA may be mask programmable or field programmable. With mask pro-

gramming, the customer submits a PLA program table to the manufacturer. This table 

is used by the vendor to produce a custom‐made PLA that has the required internal 

logic specified by the customer. A second type of PLA that is available is the field‐

programmable logic array, or FPLA, which can be programmed by the user by means 

of a commercial hardware programmer unit. 

 In implementing a combinational circuit with a PLA, careful investigation must be 

undertaken in order to reduce the number of distinct product terms, since a PLA has a 

finite number of AND gates. This can be done by simplifying each Boolean function to 

a minimum number of terms. The number of literals in a term is not important, since all 

the input variables are available anyway. Both the true value and the complement of 

each function should be simplified to see which one can be expressed with fewer prod-

uct terms and which one provides product terms that are common to other functions. 

   EXAMPLE 7.2 

 Implement the following two Boolean functions with a PLA: 

     F1(A, B, C) = g(0, 1, 2, 4)

 F2(A, B, C) = g(0, 5, 6, 7)   

 The two functions are simplified in the maps of  Fig.   7.15   . Both the true value and the 

complement of the functions are simplified into sum‐of‐products form. The combination 

that gives the minimum number of product terms is 

   F1 = (AB + AC + BC)�   

 and 

   F2 = AB + AC + A�B�C�   

 This combination gives four distinct product terms: AB, AC, BC, and    A�B�C�.    The PLA 

programming table for the combination is shown in the figure. Note that output    F1    is 

the true output, even though a C is marked over it in the table. This is because    F1    is 

generated with an AND–OR circuit and is available at the output of the OR gate. The 

XOR gate complements the function to produce the true    F1    output. 
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Section 7.7  Programmable Array Logic    325

   The combinational circuit used in Example 7.2 is too simple for implementing with 

a PLA. It was presented merely for purposes of illustration. A typical PLA has a large 

number of inputs and product terms. The simplification of Boolean functions with so 

many variables should be carried out by means of computer‐assisted simplification pro-

cedures. The computer‐aided design (CAD) program simplifies each function and its 

complement to a minimum number of terms. The program then selects a minimum 

number of product terms that cover all functions in the form in which they are true or 

in their complemented form. The PLA programming table is then generated and the 

required fuse map obtained. The fuse map is applied to an FPLA programmer that goes 

through the hardware procedure of blowing the internal fuses in the integrated circuit.  

  7 . 7     P R O G R A M M A B L E  A R R AY  L O G I C 

 The PAL is a programmable logic device with a fixed OR array and a programmable 

AND array. Because only the AND gates are programmable, the PAL is easier to pro-

gram than, but is not as flexible as, the PLA.  Figure   7.16    shows the logic configuration of 

a typical PAL with four inputs and four outputs. Each input has a buffer–inverter gate, 

and each output is generated by a fixed OR gate. There are four sections in the unit, 

each composed of an AND–OR array that is  three wide,  the term used to indicate that 

there are three programmable AND gates in each section and one fixed OR gate. Each 

AND gate has 10 programmable input connections, shown in the diagram by 10 vertical 

lines intersecting each horizontal line. The horizontal line symbolizes the multiple‐input 

configuration of the AND gate. One of the outputs is connected to a buffer–inverter 

gate and then fed back into two inputs of the AND gates. 

 Commercial PAL devices contain more gates than the one shown in  Fig.   7.16   . A typical 

PAL integrated circuit may have eight inputs, eight outputs, and eight sections, each con-

sisting of an eight‐wide AND–OR array. The output terminals are sometimes driven by 

three‐state buffers or inverters. 

 In designing with a PAL, the Boolean functions must be simplified to fit into each 

section. Unlike the situation with a PLA, a product term cannot be shared among two 

or more OR gates. Therefore, each function can be simplified by itself, without regard 
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1 0 0 0
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PLA programming table

Product
term

Inputs

A  B  C

Outputs
(C) (T)

F1 F2

AB 1 11 1 – 1
AC 2 11 – 1 1
BC 3 1– 1 1 –
A�B�C� 4 –0 0 0 1

 FIGURE 7.15  
 Solution to Example 7.2

■       
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programming table for the four Boolean functions. The table is divided into four sec-

tions with three product terms in each, to conform with the PAL of  Fig.   7.16   . The first 

two sections need only two product terms to implement the Boolean function. The 

last section, for output  z,  needs four product terms. Using the output from  w,  we can 

reduce the function to three terms.  
 The fuse map for the PAL as specified in the programming table is shown in  Fig.   7.17   . 

For each 1 or 0 in the table, we mark the corresponding intersection in the diagram with 

the symbol for an intact fuse. For each dash, we mark the diagram with blown fuses in both 

the true and complement inputs. If the AND gate is not used, we leave all its input fuses 

intact. Since the corresponding input receives both the true value and the complement of 

each input variable, we have    AA� = 0    and the output of the AND gate is always 0. 

 As with all PLDs, the design with PALs is facilitated by using CAD techniques. The 

blowing of internal fuses is a hardware procedure done with the help of special elec-

tronic instruments.  

  7 . 8     S E Q U E N T I A L  P R O G R A M M A B L E  D E V I C E S 

 Digital systems are designed with flip‐flops and gates. Since the combinational PLD 

consists of only gates, it is necessary to include external flip‐flops when they are used in 

the design. Sequential programmable devices include both gates and flip‐flops. In this 

way, the device can be programmed to perform a variety of sequential‐circuit functions. 

There are several types of sequential programmable devices available commercially, and 

each device has vendor‐specific variants within each type. The internal logic of these 

devices is too complex to be shown here. Therefore, we will describe three major types 

without going into their detailed construction: 

    1.   Sequential (or simple) programmable logic device (SPLD)  

   2.   Complex programmable logic device (CPLD)  

   3.   Field‐programmable gate array (FPGA)   

 The sequential PLD is sometimes referred to as a simple PLD to differentiate it from 

the complex PLD. The SPLD includes flip‐flops, in addition to the AND–OR array, 

within the integrated circuit chip. The result is a sequential circuit as shown in  Fig.   7.18   . 

A PAL or PLA is modified by including a number of flip‐flops connected to form a 

register. The circuit outputs can be taken from the OR gates or from the outputs of the 

AND–OR array
(PAL or PLA)

Flip-flops

Inputs

Outputs

 FIGURE 7.18  
 Sequential programmable logic device       
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364    Chapter 8  Design at the Register Transfer Level

operations. These operations are implemented with digital hardware components such 

as adders, decoders, multiplexers, counters, and shift registers. Control information pro-

vides command signals that coordinate and execute the various operations in the data 

section of the machine in order to accomplish the desired data‐processing tasks. 

 The design of the logic of a digital system can be divided into two distinct efforts. One 

part is concerned with designing the digital circuits that perform the data‐processing 

operations. The other part is concerned with designing the control circuits that deter-

mine the sequence in which the various manipulations of data are performed. 

 The relationship between the control logic and the data‐processing operations in a 

digital system is shown in  Fig.   8.2   . The data‐processing path, commonly referred to as 

the  datapath unit,  manipulates data in registers according to the system’s requirements. 

The  control unit  issues a sequence of commands to the datapath unit. Note that an 

internal feedback path from the datapath unit to the control unit provides status condi-

tions that the control unit uses together with the external (primary) inputs to determine 

the sequence of control signals (outputs of the control unit) that direct the operation 

of the datapath unit. We’ll see later that understanding how to model this feedback 

relationship with an HDL is very important.  

 The control logic that generates the signals for sequencing the operations in the 

datapath unit is a finite state machine (FSM), i.e., a synchronous sequential circuit. The 

control commands for the system are produced by the FSM as functions of the primary 

inputs, the status signals, and the state of the machine. In a given state, the outputs of 

the controller are the inputs to the datapath unit and determine the operations that it 

will execute. Depending on status conditions and other external inputs, the FSM goes 

to its next state to initiate other operations. The digital circuits that act as the control 

logic provide a time sequence of signals for initiating the operations in the datapath and 

also determine the next state of the control subsystem itself. 

Control unit
(FSM)

Input
data

Datapath
unit

Output
data

Control
signals

Status
signals

Input
signals

(external)

 FIGURE 8.2  
 Control and datapath interaction       
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 The steps to form an ASMD chart are:  

   1.   Form an ASM chart showing only the states of the controller and the input signals 2  

that cause state transitions,  

   2.   Convert the ASM chart into an ASMD chart by annotating the edges of the ASM 

chart to indicate the concurrent register operations of the datapath unit (i.e., reg-

ister operations that are concurrent with a state transition), and  

   3.   Modify the ASMD chart to identify the control signals that are generated by the 

controller and that cause the indicated operations in the datapath unit.   

 The ASMD chart produced by this process clearly and completely specifies the finite 

state machine of the controller, identifies the registers operations of the datapath unit, 

identifies signals reporting the status of the datapath to the controller, and links register 

operations to the signals that control them. 

 One important use of a state machine is to control register operations on a datapath 

in a sequential machine that has been partitioned into a controller and a datapath. An 

ASMD chart links the ASM chart of the controller to the datapath it controls in a man-

ner that serves as a universal model representing all synchronous digital hardware 

design. ASMD charts help clarify the design of a sequential machine by separating the 

design of its datapath from the design of the controller, while maintaining a clear rela-

tionship between the two units. Register operations that occur concurrently with state 

transitions are annotated on a path of the chart, rather than in state boxes or in condi-

tional boxes on the path, because these registers are not part of the controller. The 

outputs generated by the controller are the signals that control the registers of the 

datapath and cause the register operations annotated on the ASMD chart.   

  8 . 5     D E S I G N  E X A M P L E  ( A S M D  C H A R T ) 

 We will now present a simple example demonstrating the use of the ASMD chart and 

the register transfer representation. We start from the initial specifications of a system 

and proceed with the development of an appropriate ASMD chart from which the 

digital hardware is then designed. 

 The datapath unit is to consist of two  JK  flip‐flops  E  and  F,  and one four‐bit binary 

counter  A[3: 0] . The individual flip‐flops in  A  are denoted by    A3,  A2,  A1, and A0, with A3    

holding the most significant bit of the count. A signal,  Start,  initiates the system’s oper-

ation by clearing the counter  A  and flip‐flop  F . At each subsequent clock pulse, the 

counter is incremented by 1 until the operations stop. Counter bits    A2    and    A3    determine 

the sequence of operations: 

    If    A2 = 0   ,  E  is cleared to 0 and the count continues.  

  If    A2 = 1   ,  E  is set to 1; then, if    A3 = 0   , the count continues, but if    A3 = 1   ,  F  is set to 
1 on the next clock pulse and the system stops counting.  

2 In general, the inputs to the control unit are external (primary) inputs and status signals that originate in 

the datapath unit.
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the ASMD chart ( Fig.   8.9   (d)). Note that nonblocking assignments are used (with 

symbol 6 =) for the register transfer operations. This ensures that the register opera-

tions and state transitions are concurrent, a feature that is especially crucial during 

control state  S_1 . In this state,  A  is incremented by 1 and the value of  A2  ( A[2])  is 

checked to determine the operation to execute at register  E  at the next clock. To 

accomplish a valid synchronous design, it is necessary to ensure that  A[2]  is checked 

before  A  is incremented. If blocking assignments were used, one would have to place 

the two statements that check  E  first and the  A  statement that increments last. How-

ever, by using nonblocking assignments, we accomplish the required synchronization 

without being concerned about the order in which the statements are listed. The 

counter  A  in  Datapath_RTL  is cleared synchronously because  clr_A_F  is synchro-

nized to the clock. 

 The cyclic behaviors of the controller and the datapath interact in a chain reaction: 

At the active edge of the clock, the state and datapath registers are updated. A change 

in the state, a primary input, or a status input causes the level‐sensitive behaviors of 

the controller to update the value of the next state and the outputs. The updated values 

are used at the next active edge of the clock to determine the state transition and the 

updates of the datapath. 

 Note that the manual method of design developed (1) a block diagram ( Fig.   8.9   (a)) 

showing the interface between the datapath and the controller, (2) an ASMD chart for 

the system ( Fig.   8.9   (d)), (3) the logic equations for the inputs to the flip‐flops of the 

controller, and (4) a circuit that implements the controller ( Fig.   8.12   ). In contrast, an 

RTL model describes the state transitions of the controller and the operations of the 

datapath as a step toward automatically synthesizing the circuit that implements them. 

The descriptions of the datapath and controller are derived directly from the ASMD 

chart in both cases.     

   HDL Example 8.2  

  // RTL description of design example (see  Fig.   8.11   )
   module  Design_Example_RTL (A, E, F, Start, clock, reset_b);
   // Specify ports of the top-level module of the design
   // See block diagram,  Fig.   8.10   
    output  [3: 0] A;
    output  E, F;
    input  Start, clock, reset_b;
   // Instantiate controller and datapath units
   Controller_RTL M0 (set_E, clr_E, set_F, clr_A_F, incr_A, A[2], A[3], Start, clock, reset_b);
   Datapath_RTL M1 (A, E, F, set_E, clr_E, set_F, clr_A_F, incr_A, clock);
   endmodule 

   module  Controller_RTL (set_E, clr_E, set_F, clr_A_F, incr_A, A2, A3, Start, clock, reset_b);
    output reg  set_E, clr_E, set_F, clr_A_F, incr_A;
    input  Start, A2, A3, clock, reset_b;
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390    Chapter 8  Design at the Register Transfer Level

 The structural description was tested with the test bench that verified the RTL descrip-

tion to produce the results shown in  Fig.   8.13   . The only change necessary is the replacement 

of the instantiation of the example from  Design_Example_RTL  by  Design_Example_STR . 

The simulation results for  Design_Example_STR  matched those for  Design_Example_
RTL . However, a comparison of the two descriptions indicates that the RTL style is easier 

   module  JK_flip_flop_2 (Q, Q_not, J, K, CLK);
    output   Q, Q_not;
    input  J, K, CLK;
    reg   Q;
    assign  Q_not = ~Q;
    always   @ (posedge CLK) 
    case  ({J, K})
    2'b00: Q <= Q;
    2'b01: Q <= 1'b0;
    2'b10: Q <= 1'b1;
    2'b11: Q <= ~Q;
    endcase 

   endmodule 

   module t_Design_Example_STR; 
    reg  Start, clock, reset_b;
    wire  [3: 0] A;
    wire  E, F;

   // Instantiate design example

  Design_Example_STR M0 (A, E, F, Start, clock, reset_b);

  // Describe stimulus waveforms

   initial  #500  $finish ; // Stopwatch
   initial 

    begin 

   reset_b = 0;
   Start = 0;
   clock = 0;
   #5 reset_b = 1; Start = 1;
    repeat  (32)
     begin 

    #5 clock = ~ clock; // Clock generator
     end 

    end 

   initial 

    $monitor  ("A = %b E = %b F = %b time = %0d", A, E, F,  $time );
   endmodule    
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product in the time span of a single clock cycle will synthesize the circuit of a parallel 

multiplier like the one discussed in Section 4.7. On the other hand, an RTL model of 

the algorithm adds shifted copies of the multiplicand to an accumulated partial prod-

uct. The values of the multiplier, multiplicand, and partial product are stored in regis-

ters, and the operations of shifting and adding their contents are executed under the 

control of a state machine. Among the many possibilities for distributing the effort of 

multiplication over multiple clock cycles, we will consider that in which only one par-

tial product is formed and accumulated in a single cycle of the clock. (One alternative 

would be to use additional hardware to form and accumulate two partial products in 

a clock cycle, but this would require more logic gates and either faster circuits or a 

slower clock.) Instead of providing digital circuits to store and add simultaneously as 

many binary numbers as there are 1’s in the multiplier, it is less expensive to provide 

only the hardware needed to sum two binary numbers and accumulate the partial 

products in a register. Second, instead of shifting the multiplicand to the left, the par-

tial product being formed is shifted to the right. This leaves the partial product and 

the multiplicand in the required relative positions. Third, when the corresponding bit 

of the multiplier is 0, there is no need to add all 0’s to the partial product, since doing 

so will not alter its resulting value. 

  Register Configuration 

 A block diagram for the sequential binary multiplier is shown in  Fig.   8.14   (a), and the 

register configuration of the datapath is shown in  Fig.   8.14   (b). The multiplicand is 

stored in register  B,  the multiplier is stored in register  Q,  and the partial product is 

formed in register  A  and stored in  A  and  Q . A parallel adder adds the contents of 

register  B  to register  A . The  C  flip‐flop stores the carry after the addition. The counter 

 P  is initially set to hold a binary number equal to the number of bits in the multiplier. 

This counter is decremented after the formation of each partial product. When the 

content of the counter reaches zero, the product is formed in the double register  A  

and  Q,  and the process stops. The control logic stays in an initial state until  Start  
becomes 1. The system then performs the multiplication. The sum of  A  and  B  forms 

the  n  most significant bits of the partial product, which is transferred to  A . The output 

carry from the addition, whether 0 or 1, is transferred to  C . Both the partial product 

in  A  and the multiplier in  Q  are shifted to the right. The least significant bit of  A  is 

shifted into the most significant position of  Q,  the carry from  C  is shifted into the most 

significant position of  A,  and 0 is shifted into  C . After the shift‐right operation, one 

bit of the partial product is transferred into  Q  while the multiplier bits in  Q  are shifted 

one position to the right. In this manner, the least significant bit of register  Q,  desig-

nated by  Q[0],  holds the bit of the multiplier that must be inspected next. The control 

logic determines whether to add or not on the basis of this input bit. The control logic 

also receives a signal,  Zero,  from a circuit that checks counter  P  for zero.  Q[0]  and 

 Zero  are status inputs for the control unit. The input signal  Start  is an external control 

input. The outputs of the control logic launch the required operations in the registers 

of the datapath unit.  
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in the block diagram of  Fig.   8.14   (a). The machine will be parameterized for a five‐bit data-

path to enable a comparison between its simulation data and the result of the multiplication 

with the numerical example listed in  Table   8.5   . The same model can be used for a datapath 

having a different size merely by changing the value of the parameters. The second part of 

the description declares all registers in the controller and the datapath, as well as the one‐

hot encoding of the states. The third part specifies implicit combinational logic (continuous 

assignment statements) for the concatenated register  CAQ,  the  Zero  status signal, and the 

 Ready  output signal. The continuous assignments for  Zero  and  Ready  are accomplished by 

assigning a Boolean expression to their  wire  declarations. The next section describes the 

control unit, using a single edge‐sensitive cyclic behavior to describe the state transitions, 

and a level‐sensitive cyclic behavior to describe the combinational logic for the next state 

and the outputs. Again, note that default assignments are made to  next_state,   Load_regs,  
 Decr_P,   Add_regs,  and  Shift_regs . The subsequent logic of the case statement assigns their 

value by exception. The state transitions and the output logic are written directly from the 

ASMD chart of  Fig.   8.15   (b). 

 The datapath unit describes the register operations within a separate edge‐sensitive 

cyclic behavior.  3   (For clarity, separate cyclic behaviors are used; we do not mix the 

description of the datapath with the description of the controller.) Each control input 

is decoded and is used to specify the associated operations. The addition and subtraction 

operations will be implemented in hardware by combinational logic. Signal  Load_regs  

causes the counter and the other registers to be loaded with their initial values, etc. 

Because the controller and datapath have been partitioned into separate units, the con-

trol signals completely specify the behavior of the datapath; explicit information about 

the state of the controller is not needed and is not made available to the datapath unit.  

 The next‐state logic of the controller includes a default case item to direct a synthesis 

tool to map any of the unused codes to  S_idle . The default case item and the default 

assignments preceding the case statement ensure that the machine will recover if it 

somehow enters an unused state. They also prevent unintentional synthesis of latches. 

(Remember, a synthesis tool will synthesize latches when what was intended to be com-

binational logic in fact fails to completely specify the input–output function of the logic.)    

 3   The width of the datapath here is  dp‐width . 

   HDL Example 8.5 (Sequential Multiplier)  

   module  Sequential_Binary_Multiplier (Product, Ready, Multiplicand, Multiplier, Start, 
clock, reset_b);
  // Default configuration: five-bit datapath
    parameter  dp_width = 5; // Set to width of datapath
    output   [2*dp_width -1: 0] Product;
    output  Ready;
    input  [dp_width -1: 0] Multiplicand, Multiplier;
    input   Start, clock, reset_b;
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   module  Datapath_STR (count, E, Zero, data, Load_regs, Shift_left, Incr_R2, clock);
    parameter  R1_size = 8, R2_size = 4;
    output  [R2_size -1: 0] count;
    output  E, Zero;
    input  [R1_size -1: 0] data;
    input  Load_regs, Shift_left, Incr_R2, clock;
    wire  [R1_size -1: 0] R1;
    wire  Zero;
    supply0  Gnd;
    supply1  Pwr;
    assign  Zero = (R1 == 0); // implicit combinational logic
   Shift_Reg M1 (R1, data, Gnd, Shift_left, Load_regs, clock, Pwr);
   Counter M2 (count, Load_regs, Incr_R2, clock, Pwr);
   D_flip_flop_AR M3 (E, w1, clock, Pwr);
   and (w1, R1[R1_size - 1], Shift_left);
   endmodule 

   module  Shift_Reg (R1, data, SI_0, Shift_left, Load_regs, clock, reset_b);
    parameter  R1_size = 8;
    output  [R1_size -1: 0] R1;
    input  [R1_size -1: 0] data;
    input  SI_0, Shift_left, Load_regs;
    input  clock, reset_b;
    reg  [R1_size -1: 0] R1;
    always   @  ( posedge  clock,  negedge  reset_b)
    if  (reset_b == 0) R1 <= 0;
    else   begin 
     if  (Load_regs) R1 <= data;  else 
     if  (Shift_left) R1 <= {R1[R1_size -2: 0], SI_0};  end 
   endmodule 

   module  Counter (R2, Load_regs, Incr_R2, clock, reset_b);
    parameter  R2_size = 4;
    output  [R2_size -1: 0] R2;
    input  Load_regs, Incr_R2;
    input   clock, reset_b;
    reg  [R2_size -1: 0] R2;
    always  @ (posedge clock, negedge reset_b)
    if  (reset_b == 0) R2 <= 0;
    else   if  (Load_regs) R2 <= {R2_size {1'b1}};  // Fill with 1
     else   if  (Incr_R2 == 1) R2 <= R2 + 1;
   endmodule 

   module  D_flip_flop_AR (Q, D, CLK, RST_b);
    output   Q;
    input  D, CLK, RST_b;
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a second door with a similar photocell that changes a signal y from 1 to 0 while the light 

is interrupted. The datapath circuit consists of an up–down counter with a display that 

shows how many people are in the room.   

    8.7*   Draw a block diagram and an ASMD chart for a circuit with two eight‐bit registers  RA  

and  RB  that receive two unsigned binary numbers. The circuit performs the subtraction 

operation 

   RA d RA - RB   

   Use the method for subtraction described in Section 1.5, and set a borrow flip‐flop to 1 if 

the answer is negative. Write and verify an HDL model of the circuit.   

    8.8*   Design a digital circuit with three 16‐bit registers  AR,   BR,  and  CR  that perform the 

following operations: 

    (a)   Transfer two 16‐bit signed numbers (in 2’s‐complement representation) to  AR  and  BR .  

   (b)   If the number in  AR  is negative, divide the number in  AR  by 2 and transfer the result 

to register  CR .  

   (c)   If the number in  AR  is positive but nonzero, multiply the number in  BR  by 2 and 

transfer the result to register  CR .  

   (d)   If the number in  AR  is zero, clear register  CR  to 0.  

   (e)   Write and verify a behavioral model of the circuit.     

    8.9*   Design the controller whose state diagram is given by  Fig.   8.11   (a). Use one flip‐flop per 

state (a one‐hot assignment). Write, simulate, verify, and compare RTL and structural 

models of the controller.   

    8.10   The state diagram of a control unit is shown in Fig.  P8.10 . It has four states and two 

inputs x and  y . Draw the equivalent ASM chart. Write and verify a Verilog model of the 

controller.   

  FIGURE P8.10  
 Control state diagram for Problems 8.10 and 8.11       

00

11 10

01

x � 1

x � 0
y � 1

x � 1
y � 0

x � 0

x � 1

x � 0, y � 0

x � 1, y � 1

y � 1 y � 0

x � 0

    8.11*   Design the controller whose state diagram is shown in Fig. P8.10. Use  D  flip‐flops.   

    8.12   Design the four‐bit counter with synchronous clear specified in  Fig.   8.10   . Repeat for 

asynchronous clear.   
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    8.13   Simulate  Design_Example_STR  (see HDL Example 8.4), and verify that its behavior 

matches that of the RTL description. Obtain state information by displaying  G0  and  G1  

as a concatenated vector for the state.    

    8.14   What, if any, are the consequences of the machine in  Design_Example_RTL  (see HDL 

Example 8.2) entering an unused state?   

    8.15    Simulate Design_Example_RTL  in HDL Example 8.2, and verify that it recovers from an 

unexpected reset condition during its operation, i.e., a “running reset” or a “reset on‐the‐fly.”   

    8.16*   Develop a block diagram and an ASMD chart for a digital circuit that multiplies two binary 

numbers by the repeated‐addition method. For example, to multiply 5 * 4, the digital system 

evaluates the product by adding the multiplicand four times: 5 + 5 + 5 + 5 = 20. Design the 

circuit. Let the multiplicand be in register  BR,  the multiplier in register  AR,  and the product 

in register  PR . An adder circuit adds the contents of  BR  to  PR . A zero‐detection signal indi-

cates whether  AR  is 0. Write and verify a Verilog behavioral model of the circuit.   

    8.17*   Prove that the multiplication of two n‐bit numbers gives a product of length less than or 

equal to 2 n  bits.   

    8.18*   In  Fig.   8.14   , the  Q  register holds the multiplier and the  B  register holds the multiplicand. 

Assume that each number consists of 16 bits. 

    (a)   How many bits can be expected in the product, and where is it available?  

   (b)   How many bits are in the  P  counter, and what is the binary number loaded into it 

initially?  

   (c)   Design the circuit that checks for zero in the  P  counter.     

    8.19   List the contents of registers  C, A, Q,  and  P  in a manner similar to  Table   8.5    during the 

process of multiplying the two numbers 11011 (multiplicand) and 10111 (multiplier).   

    8.20*   Determine the time it takes to process the multiplication operation in the binary multi-

plier described in Section 8.8. Assume that the  Q  register has n bits and the clock cycle is 

 t  ns.   

    8.21   Design the control circuit of the binary multiplier specified by the state diagram of  Fig.   8.16   , 

using multiplexers, a decoder, and a register.   

    8.22   Figure  P8.22  shows an alternative ASMD chart for a sequential binary multiplier. Write and 

verify an RTL model of the system. Compare this design with that described by the ASMD 

chart in  Fig.   8.15   (b).   

    8.23   Figure  P8.23  shows an alternative ASMD chart for a sequential binary multiplier. Write 

and verify an RTL model of the system. Compare this design with that described by the 

ASMD chart in  Fig.   8.15   (b).    

    8.24   The HDL description of a sequential binary multiplier given in HDL Example 8.5 

encapsulates the descriptions of the controller and the datapath in a single Verilog 

module. Write and verify a model that encapsulates the controller and datapath in 

separate modules.   

    8.25   The sequential binary multiplier described by the ASMD chart in  Fig.   8.15    does not consider 

whether the multiplicand or the shifted multiplier is 0. Therefore, it executes for a fixed 

number of clock cycles, independently of the data. 

    (a)   Develop an ASMD chart for a more efficient multiplier that will terminate execution 

as soon as either word is found to be zero.  
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    8.41   The block diagram and partially completed ASMD chart in  Fig.   P8.41    describe the be-

havior of a two‐stage pipeline that acts as a 2:1 decimator with a parallel input and output. 

Decimators are used in digital signal processors to move data from a datapath with a high 

clock rate to a datapath with a lower clock rate, converting data from a parallel format 

to a serial format in the process. In the datapath shown, entire words of data can be trans-

ferred into the pipeline at twice the rate at which the contents of the pipeline must be 

dumped into a holding register or consumed by some processor. The contents of the 

holding register  R0  can be shifted out serially, to accomplish an overall parallel‐to‐serial 

conversion of the data stream. The ASMD chart indicates that the machine has synchro-

nous reset to  S_idle,  where it waits until  rst  is de‐asserted and En is asserted. Note that 

synchronous transitions which would occur from the other states to  S_idle  under the 

action of  rst  are not shown. With  En  asserted, the machine transitions from  S_idle  to  S_1,  

accompanied by concurrent register operations that load the MSByte of the pipe with 

 Data  and move the content of  P1  to the LSByte ( P0 ). At the next clock, the state goes to 

 S_full,  and now the pipe is full. If  Ld  is asserted at the next clock, the machine moves to 

 S_1  while dumping the pipe into a holding register  R0 . If  Ld  is not asserted, the machine 

  FIGURE P8.41  
 Two‐stage pipeline register: Datapath unit and ASMD chart       
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a variable clock, a power supply, and IC socket strips. Some experiments may require 

additional switches, lamps, or IC socket strips. Extended breadboards with more solder-

less sockets and plug‐in switches and lamps may be needed. 

 Additional equipment required is a dual‐trace oscilloscope (for Experiments 1, 2, 8, 

and 15), a logic probe to be used for debugging, and a number of ICs. The ICs required 

for the experiments are of the TTL or CMOS series 7400. 

 The integrated circuits to be used in the experiments can be classified as small‐scale 

integration (SSI) or medium‐scale integration (MSI) circuits. SSI circuits contain indi-

vidual gates or flip‐flops, and MSI circuits perform specific digital functions. The eight 

SSI gate ICs  needed for the experiments—two‐input NAND, NOR, AND, OR, and 

XOR gates, inverters, and three‐input and four‐input NAND gates—are shown in 

 Fig.   9.1   . The pin assignments for the gates are indicated in the diagram. The pins are 

numbered from 1 to 14. Pin number 14 is marked    VCC,    and pin number 7 is marked GND 

(ground). These are the supply terminals, which must be connected to a power supply 

of 5 V for proper operation of the circuit. Each IC is recognized by its identification 

number; for example, the two‐input NAND gates are found inside the IC whose number 

is 7400. 

 Detailed descriptions of the MSI circuits can be found in data books published by 

the manufacturers. The best way to acquire experience with a commercial MSI circuit 

is to study its description in a data book that provides complete information on the 

internal, external, and electrical characteristics of integrated circuits. Various semicon-

ductor companies publish data books for the 7400 series. The MSI circuits that are 

needed for the experiments are introduced and explained when they are used for the 

first time. The operation of the circuit is explained by referring to similar circuits in 

previous chapters. The information given in this chapter about the MSI circuits should 

be sufficient for performing the experiments adequately. Nevertheless, reference to a 

data book will always be preferable, as it gives more detailed description of the circuits. 

 We will now demonstrate the method of presentation of MSI circuits adopted here. To 

illustrate, we introduce the ripple counter IC, type 7493. This IC is used in Experiment 1 

and in subsequent experiments to generate a sequence of binary numbers for verifying 

the operation of combinational circuits. 

 The information about the 7493 IC that is found in a data book is shown in Figs. 9.2(a) 

and (b). Part (a) shows a diagram of the internal logic circuit and its connection to 

external pins. All inputs and outputs are given symbolic letters and assigned to pin 

numbers. Part (b) shows the physical layout of the IC, together with its 14‐pin assign-

ment to signal names. Some of the pins are not used by the circuit and are marked as 

 NC  (no connection). The IC is inserted into a socket, and wires are connected to the 

various pins through the socket terminals. When drawing schematic diagrams in this 

chapter, we will show the IC in block diagram form, as in  Fig.   9.2   (c). The IC number 

(here, 7493) is written inside the block. All input terminals are placed on the left of the 

block and all output terminals on the right. The letter symbols of the signals, such as  A,  
 R1,  and  QA,  are written inside the block, and the corresponding pin numbers, such as 

14, 2, and 12, are written along the external lines.    VCC,    and  GND  are the power terminals 

connected to pins 5 and 10. The size of the block may vary to accommodate all input 
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  9 . 5     E X P E R I M E N T  4 :  C O M B I N AT I O N A L  C I R C U I T S 

 In this experiment, you will design, construct, and test four combinational logic circuits. 

The first two circuits are to be constructed with NAND gates, the third with XOR gates, 

and the fourth with a decoder and NAND gates. Reference to a parity generator can be 

found in Section 3.9. Implementation with a decoder is discussed in Section 4.9. 

  Design Example 

 Design a combinational circuit with four inputs— A,   B,   C,  and  D —and one output,  F .  F  

is to be equal to 1 when    A = 1,    provided that    B = 0,    or when    B = 1,    provided that 

either  C  or  D  is also equal to 1. Otherwise, the output is to be equal to 0. 

    1.   Obtain the truth table of the circuit.  

   2.   Simplify the output function.  

   3.   Draw the logic diagram of the circuit, using NAND gates with a minimum number 

of ICs.  

   4.   Construct the circuit and test it for proper operation by verifying the given 

conditions.    

  Majority Logic 

 A majority logic is a digital circuit whose output is equal to 1 if the majority of the inputs 

are 1’s. The output is 0 otherwise. Design and test a three‐input majority circuit using 

NAND gates with a minimum number of ICs.  

  Parity Generator 

 Design, construct, and test a circuit that generates an even parity bit from four message 

bits. Use XOR gates. Adding one more XOR gate, expand the circuit so that it generates 

an odd parity bit also.  

  Decoder Implementation 

 A combinational circuit has three inputs— x,   y,  and  z —and three outputs—   F1, F2,    and 

   F3.    The simplified Boolean functions for the circuit are 

   F1 = xz + x�y�z�

F2 = x�y + xy�z�

F3 = xy + x�y�z    

 Implement and test the combinational circuit, using a 74155 decoder IC and external 

NAND gates. 
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  9 . 7      E X P E R I M E N T  6 :  D E S I G N  W I T H  M U LT I P L E X E R S 

 In this experiment, you will design a combinational circuit and implement it with multi-

plexers, as explained in Section 4.11. The multiplexer to be used is IC type 74151, shown 

in  Fig.   9.9   . The internal construction of the 74151 is similar to the diagram shown in 

Fig. 4.25, except that there are eight inputs instead of four. The eight inputs are desig-

nated  D0  through  D7 . The three selection lines— C,   B,  and  A —select the particular input 

to be multiplexed and applied to the output. A strobe control  S  acts as an enable signal. 

The function table specifies the value of output  Y  as a function of the selection lines. 

Output  W  is the complement of  Y . For proper operation, the strobe input  S  must be 

connected to ground.  

  Design Specifications 

 A small corporation has 10 shares of stock, and each share entitles its owner to one vote 

at a stockholder’s meeting. The 10 shares of stock are owned by four people as follows: 

   Mr. W: 1 share  

  Mr. X: 2 shares  

  Mr. Y: 3 shares  

  Mrs. Z: 4 shares   
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preset and clear inputs. These inputs behave like a NAND  SR  latch and are independent 

of the clock or the  J  and  K  inputs. (The X’s indicate don’t‐care conditions.) The last four 

entries in the function table specify the operation of the clock with both the preset and 

clear inputs maintained at logic 1. The clock value is shown as a single pulse. The positive 

transition of the pulse changes the master flip‐flop, and the negative transition changes 

the slave flip‐flop as well as the output of the circuit. With    J = K = 0,    the output does 

not change. The flip‐flop toggles, or is complemented, when    J = K = 1.    Investigate the 

operation of one 7476 flip‐flop and verify its function table.     

 IC type 7474 consists of two  D  positive‐edge‐triggered flip‐flops with preset and 

clear. The pin assignment is shown in  Fig.   9.13   . The function table specifies the preset 

and clear operations and the clock’s operation. The clock is shown with an upward 

arrow to indicate that it is a positive‐edge‐triggered flip‐flop. Investigate the operation 

of one of the flip‐flops and verify its function table.   

  9 . 1 0     E X P E R I M E N T  9 :  S E Q U E N T I A L  C I R C U I T S 

 In this experiment, you will design, construct, and test three synchronous sequential circuits. 

Use IC type 7476 ( Fig.   9.12   ) or 7474 ( Fig.   9.13   ). Choose any type of gate that will minimize 

the total number of ICs. The design of synchronous sequential circuits is covered in Section 5.7.    

  Up–Down Counter with Enable 

 Design, construct, and test a two‐bit counter that counts up or down. An enable input E 

determines whether the counter is on or off. If    E = 0,    the counter is disabled and remains 

at its present count even though clock pulses are applied to the flip‐flops. If    E = 1,    the 

counter is enabled and a second input,  x,  determines the direction of the count. If    x = 1,    

the circuit counts upward with the sequence 00, 01, 10, 11, and the count repeats. If    x = 0,    

the circuit counts downward with the sequence 11, 10, 01, 00, and the count repeats. Do 

not use  E  to disable the clock. Design the sequential circuit with  E  and  x  as inputs.  

  State Diagram 

 Design, construct, and test a sequential circuit whose state diagram is shown in  Fig.   9.14   . 

Designate the two flip‐flops as  A  and  B,  the input as  x,  and the output as  y . 

 Connect the output of the least significant flip‐flop  B  to the input  x,  and predict the 

sequence of states and output that will occur with the application of clock pulses. Verify 

the state transition and output by testing the circuit.  

  Design of Counter 

 Design, construct, and test a counter that goes through the following sequence of binary 

states: 0, 1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, and back to 0 to repeat. Note that binary states 

4, 5, 8, and 9 are not used. The counter must be self‐starting; that is, if the circuit starts 

from any one of the four invalid states, the count pulses must transfer the circuit to one 

of the valid states to continue the count correctly. 
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Section 9.11  Experiment 10: Counters    461

 Check the circuit’s operation for the required count sequence. Verify that the counter 

is self‐starting. This is done by initializing the circuit to each unused state by means of 

the preset and clear inputs and then applying pulses to see whether the counter reaches 

one of the valid states.   

  9 . 1 1     E X P E R I M E N T  1 0 :  C O U N T E R S 

 In this experiment, you will construct and test various ripple and synchronous counter 

circuits. Ripple counters are discussed in Section 6.3 and synchronous counters are cov-

ered in Section 6.4. 

  Ripple Counter 

 Construct a four‐bit binary ripple counter using two 7476 ICs ( Fig.   9.12   ). Connect all 

asynchronous clear and preset inputs to logic 1. Connect the count‐pulse input to a 

pulser and check the counter for proper operation. 

 Modify the counter so that it will count downward instead of upward. Check that 

each input pulse decrements the counter by 1.  

  Synchronous Counter 

 Construct a synchronous four‐bit binary counter and check its operation. Use two 7476 

ICs and one 7408 IC.  

  Decimal Counter 

 Design a synchronous BCD counter that counts from 0000 to 1001. Use two 7476 ICs 

and one 7408 IC. Test the counter for the proper sequence. Determine whether the 

counter is self‐starting. This is done by initializing the counter to each of the six unused 

states by means of the preset and clear inputs. The application of pulses will transfer the 

counter to one of the valid states if the counter is self‐starting.  

00

11

01 10

0/0 0/1

1/1

1/1

0/1

0/0

1/0

1/0

 FIGURE 9.14  
 State diagram for Experiment 9       
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the registers and the flip‐flop. Another switch will be needed to specify whether register 

 B  is to accept parallel data or is to be shifted during the addition.  

  Testing the Adder 

 To test your serial adder, perform the binary addition    5 + 6 + 15 = 26.    This is done by 

first clearing the registers and the carry flip‐flop. Parallel load the binary value 0101 into 

register  B . Apply four pulses to add  B  to  A  serially, and check that the result in  A  is 0101. 

(Note that clock pulses for the 7476 must be as shown in  Fig.   9.12   .) Parallel load 0110 

into  B  and add it to  A  serially. Check that  A  has the proper sum. Parallel load 1111 into 

 B  and add to  A . Check that the value in  A  is 1010 and that the carry flip‐flop is set. 

 Clear the registers and flip‐flop and try a few other numbers to verify that your serial 

adder is functioning properly.  

  Serial Adder–Subtractor 

 If we follow the procedure used in Section 6.2 for the design of a serial subtractor (that 

subtracts    A - B   ), we will find that the output difference is the same as the output sum, but 

that the input to the J and K of the borrow flip‐flop needs the complement of  QD  (available 

in the 74195). Using the other two XOR gates from the 7486, convert the serial adder to a 

serial adder–subtractor with a mode control  M . When    M = 0,    the circuit adds    A + B.    When 

   M = 1,    the circuit subtracts    A - B    and the flip‐flop holds the borrow instead of the carry. 

 Test the adder part of the circuit by repeating the operations recommended to ensure 

that the modification did not change the operation. Test the serial subtractor part by 

performing the subtraction    15 -  4 -  5 -  13 =  -7.    Binary 15 can be transferred to reg-

ister A by first clearing it to 0 and adding 15 from B. Check the intermediate results 

during the subtraction. Note that    -7    will appear as the 2’s complement of 7 with a bor-

row of 1 in the flip‐flop.   

  9 . 1 4     E X P E R I M E N T  1 3 :  M E M O RY  U N I T 

 In this experiment, you will investigate the behavior of a random‐access memory (RAM) 

unit and its storage capability. The RAM will be used to simulate a read‐only memory 

(ROM). The ROM simulator will then be used to implement combinational circuits, as 

explained in Section 7.5. The memory unit is discussed in Sections 7.2 and 7.3. 

  IC RAM 

 IC type 74189 is a    16 * 4    RAM. The internal logic is similar to the circuit shown in Fig. 7.6 

for a    4 * 4    RAM. The pin assignments to the inputs and outputs are shown in  Fig.   9.18   . 

The four address inputs select 1 of 16 words in the memory. The least significant bit of the 

address is  A  and the most significant is    A3.    The chip select ( CS ) input must be equal to 0 

to enable the memory. If  CS  is equal to 1, the memory is disabled and all four outputs are 

in a high‐impedance state. The write enable ( WE ) input determines the type of operation, 

as indicated in the function table. The write operation is performed when    WE = 0.    This 
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data outputs to four 7404 inverters. Provide four indicator lamps for the address and 

four more for the outputs of the inverters. Connect input  CS  to ground and  WE  to a 

toggle switch (or a pulser that provides a negative pulse). Store a few words into the 

memory, and then read them to verify that the write and read operations are functioning 

properly. You must be careful when using the  WE  switch. Always leave the  WE  input in 

the read mode, unless you want to write into memory. The proper way to write is first to 

set the address in the counter and the inputs in the four toggle switches. Then, store the 

word in memory, flip the  WE  switch to the write position and return it to the read posi-

tion. Be careful not to change the address or the inputs when  WE  is in the write mode.  

  ROM Simulator 

 A ROM simulator is obtained from a RAM operated in the read mode only. The pattern 

of 1’s and 0’s is first entered into the simulating RAM by placing the unit momentarily 

in the write mode. Simulation is achieved by placing the unit in the read mode and tak-

ing the address lines as inputs to the ROM. The ROM can then be used to implement 

any combinational circuit. 

 Implement a combinational circuit using the ROM simulator that converts a four‐bit 

bi nary number to its equivalent Gray code as defined in Table 1.6. This is done as follows: 

Obtain the truth table of the code converter. Store the truth table into the 74189 mem-

ory by setting the  address inputs to the binary value and the data inputs to the corre-

sponding Gray code value. After all 16 entries of the table are written into memory, the 

ROM simulator is set by permanently connecting the  WE  line to logic 1. Check the code 

converter by applying the inputs to the  address lines and verifying the correct outputs 

in the data output lines.  

  Memory Expansion 

 Expand the memory unit to a    32 * 4    RAM using two 74189 ICs. Use the  CS  inputs to 

select between the two ICs. Note that since the data outputs are three‐stated, you can 

tie pairs of terminals together to obtain a logic OR operation between the two ICs. Test 

your circuit by using it as a ROM simulator that adds a three‐bit number to a two‐bit 

number to produce a four‐bit sum. For example, if the input of the ROM is 10110, then 

the output is calculated to be    101 + 10 = 0111.    (The first three bits of the input repre-

sent 5, the last two bits represent 2, and the output sum is binary 7.) Use the counter to 

provide four bits of the address and a switch for the fifth bit of the address.   

  9 . 1 5     E X P E R I M E N T  1 4 :  L A M P  H A N D B A L L 

 In this experiment, you will construct an electronic game of handball, using a single light 

to simulate the moving ball. The experiment demonstrates the application of a bidirec-

tional shift register with parallel load. It also shows the operation of the asynchronous 

inputs of flip‐flops. We will first introduce an IC that is needed for the experiment and 

then present the logic diagram of the simulated lamp handball game. 
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bidirectional shift  register. The rate at which the light moves is determined by the fre-

quency of the clock. The  circuit is first initialized with the  reset  switch. The  start  switch 

starts the game by placing the ball (an indicator lamp) at the extreme right. The player 

must press the pulser push button to start the ball moving to the left. The single light 

shifts to the left until it reaches the leftmost position (the wall), at which time the ball 

returns to the player by reversing the direction of shift of the moving light. When the 

light is again at the rightmost position, the player must press the pulser again to reverse 

the direction of shift. If the player presses the pulser too soon or too late, the ball dis-

appears and the light goes off. The game can be restarted by turning the start switch 

on and then off. The start switch must be open (logic 1) during the game.    

  Circuit Analysis 

 Prior to connecting the circuit, analyze the logic diagram to ensure that you understand 

how the circuit operates. In particular, try to answer the following questions: 

    1.   What is the function of the reset switch?  

   2.   How does the light in the rightmost position come on when the start switch is 

 grounded? Why is it necessary to place the start switch in the logic‐1 position 

before the game starts?  

   3.   What happens to the two mode‐control inputs,  S1  and  S0,  once the ball is set in 

motion?  

   4.   What happens to the mode‐control inputs and to the ball if the pulser is pressed 

while the ball is moving to the left? What happens if the ball is moving to the right, 

but has not yet reached the rightmost position?  

   5.   If the ball has returned to the rightmost position, but the pulser has not yet been 

pressed, what is the state of the mode‐control inputs if the pulser is pressed? What 

happens if it is not pressed?    

  Playing the Game 

 Wire the circuit of  Fig.   9.20   . Test the circuit for proper operation by playing the game. Note 

that the pulser must provide a positive‐edge transition and that both the reset and start 

 switches must be open (i.e., must be in the logic‐1 state) during the game. Start with a low 

clock rate, and increase the clock frequency to make the handball game more challenging.  

  Counting the Number of Losses 

 Design a circuit that keeps score of the number of times the player loses while playing 

the game. Use a BCD‐to‐seven‐segment decoder and a seven‐segment display, as in 

 Fig.   9.8   , to display the count from 0 through 9. Counting is done with either the 7493 as 

a ripple  decimal counter or the 74161 and a NAND gate as a synchronous decimal 

counter. The display should show 0 when the circuit is reset. Every time the ball disap-

pears and the light goes off, the display should increase by 1. If the light stays on during 

the play, the number in the display should not change. The final design should be an 
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automatic scoring circuit, with the decimal display incremented automatically each time 

the player loses when the light  disappears.  

  Lamp Ping‐Pong™ 

 Modify the circuit of  Fig.   9.20    so as to obtain a lamp Ping‐Pong game. Two players can 

participate in this game, with each player having his or her own pulser. The player with 

the right pulser returns the ball when it is in the extreme right position, and the player 

with the left pulser returns the ball when it is in the extreme left position. The only mod-

ification required for the Ping‐Pong game is a second pulser and a change of a few wires. 

 With a second start circuit, the game can be made to start by either one of the two 

players (i.e., either one serves). This addition is optional.   

  9 . 1 6     E X P E R I M E N T  1 5 :  C L O C K ‐ P U L S E  G E N E R AT O R 

 In this experiment, you will use an IC timer unit and connect it to produce clock pulses 

at a given frequency. The circuit requires the connection of two external resistors and 

two external capacitors. The cathode‐ray oscilloscope is used to observe the waveforms 

and measure the frequency of the pulses. 

  IC Timer 

 IC type 72555 (or 555) is a precision timer circuit whose internal logic is shown in  Fig.   9.21   . 

(The resistors,    RA    and    RB,    and the two capacitors are not part of the IC.) The circuit con-

sists of two voltage comparators, a flip‐flop, and an internal transistor. The voltage division 

from    VCC = 5 V    through the three internal resistors to ground produces    23    and    13    of    VCC    

(3.3 V and 1.7 V, respectively) into the fixed inputs of the comparators. When the threshold 

input at pin 6 goes above 3.3 V, the upper comparator resets the flip‐flop and the output 

goes low to about 0 V. When the trigger input at pin 2 goes below 1.7 V, the lower com-

parator sets the flip‐flop and the output goes high to about 5 V. When the output is low, 

   Q�    is high and the base–emitter junction of the transistor is forward biased. When the 

output is high,    Q�    is low and the transistor is cut off. (See Section 10.3.) The timer circuit 

is capable of producing accurate time delays controlled by an external  RC  circuit. In this 

experiment, the IC timer will be operated in the astable mode to produce clock pulses.  

  Circuit Operation 

  Figure   9.21    shows the external connections for astable operation of the circuit. Capacitor 

 C  charges through resistors    RA    and    RB    when the transistor is cut off and discharges through 

   RB    when the transistor is forward biased and conducting. When the charging voltage across 

capacitor  C  reaches 3.3 V, the threshold input at pin 6 causes the flip‐flop to reset and the 

transistor turns on. When the discharging voltage reaches 1.7 V, the trigger input at pin 2 

causes the flip‐flop to set and the transistor turns off. Thus, the output continually alternates 
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   (c)   Write a stimulus module (similar to HDL Example 3.3) and simulate the circuit 

to  verify the answer in part (a).  

   (d)   Implement the circuit with an FPGA and test its operation.    

  Supplement to Experiment 4 (Section 9.5) 

 The operation of a combinational circuit is verified by checking the output and compar-

ing it with the truth table for the circuit. HDL Example 4.10 (Section 4.12) demonstrates 

the procedure for obtaining the truth table of a combinational circuit by simulating it. 

    (a)   In order to get acquainted with this procedure, compile and simulate HDL 

Example 4.10 and check the output truth table.  

   (b)   In Experiment 4, you designed a majority logic circuit. Write the HDL gate‐level 

description of the majority logic circuit together with a stimulus for displaying the 

truth table. Compile and simulate the circuit and check the output response.  

   (c)   Implement the majority logic circuit units in an FPGA and test its operation.    

  Supplement to Experiment 5 (Section 9.6) 

 This experiment deals with code conversion. A BCD‐to‐excess‐3 converter was designed 

in Section 4.4. Use the result of the design to check it with an HDL simulator. 

    (a)   Write an HDL gate‐level description of the circuit shown in Fig. 4.4.  

   (b)   Write a dataflow description using the Boolean expressions listed in Fig. 4.3.  

   (c)   Write an HDL behavioral description of a BCD‐to‐excess‐3 converter.  

   (d)   Write a test bench to simulate and test the BCD‐to‐excess‐3 converter circuit in 

order to verify the truth table. Check all three circuits.  

   (e)   Implement the behavioral description with an FPGA and test the operation of the 

circuit.    

  Supplement to Experiment 7 (Section 9.8) 

 A four‐bit adder–subtractor is developed in this experiment. An adder–subtractor cir-

cuit is also developed in Section 4.5. 

    (a)   Write the HDL behavioral description of the 7483 four‐bit adder.  

   (b)   Write a behavioral description of the adder–subtractor circuit shown in  Fig.   9.11   .  

   (c)   Write the HDL hierarchical description of the four‐bit adder–subtractor shown in 

Fig. 4.13 (including V). This can be done by instantiating a modified version of the 

four‐bit adder described in HDL Example 4.2 (Section 4.12).  

   (d)   Write an HDL test bench to simulate and test the circuits of part (c). Check and 

verify the values that cause an overflow with    V = 1.     

   (e)   Implement the circuit of part (c) with an FPGA and test its operation.    
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letters for the arithmetic operands are  P  and  Q . The bit‐grouping symbols in the two 

types of inputs and the sum  output are the decimal equivalents of the weights of the 

bits to the power of 2. Thus, the input labeled 3 corresponds to the value of 2 3  = 8. The 

input carry is designated by  CI  and the output carry by  CO . When the digital compo-

nent represented by the outline is also a commercial integrated circuit, it is customary 

to write the IC pin number along each input and output. Thus, IC type 7483 is a four‐bit 

adder with look‐ahead carry. It is enclosed in a package with 16 pins. The pin numbers 

  FIGURE 10.1  
 Rectangular‐shape graphic symbols for gates       
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  FIGURE 10.2  
 Standard graphic symbol for a four‐bit parallel adder, IC type 7483       
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gate to enable the decoder. The output of the AND gate is labeled  EN  (enable) and is 

activated when  E  1  is at a low‐level state and  E  2  at a high‐level state.   

  1 0 . 2     Q U A L I F Y I N G  S Y M B O L S 

 The IEEE standard graphic symbols for logic functions provide a list of qualifying symbols 

to be used in conjunction with the outline. A qualifying symbol is added to the basic outline 

to designate the overall logic characteristics of the element or the physical characteristics 

of an input or output.  Table   10.1    lists some of the general qualifying symbols specified in 

the standard. A general qualifying symbol defines the basic function performed by the 

device represented in the diagram. It is placed near the top center position of the rectan-

gular‐shape outline. The general qualifying symbols for the gates, decoder, and adder were 

shown in previous diagrams. The other symbols are self‐explanatory and will be used later 

in diagrams representing the corresponding digital elements.  

 Some of the qualifying symbols associated with inputs and outputs are shown in 

 Fig.    10.4   . Symbols associated with inputs are placed on the left side of the column 

labeled  symbol . Symbols associated with outputs are placed on the right side of the 

column. The active‐low input or output symbol is the polarity indicator. As mentioned 

 Table 10.1 
 General Qualifying Symbols 

  Symbol    Description  

 &  AND gate or function 

 Ú 1  OR gate or function 

 1  Buffer gate or inverter 

 = 1  Exclusive‐OR gate or function 

 2k  Even function or even parity 

element 

 2k + 1  Odd function or odd parity element 

 X/Y  Coder, decoder, or code converter 

 MUX  Multiplexer 

 DMUX  Demultiplexer 

    a      Adder 

    q      Multiplier 

 COMP  Magnitude comparator 

 ALU  Arithmetic logic unit 

 SRG  Shift register 

 CTR  Counter 

 RCTR  Ripple counter 

 ROM  Read‐only memory 

 RAM  Random‐access memory 
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previously, it is equivalent to the logic negation when positive logic is assumed. The 

dynamic input is associated with the clock input in flip‐flop circuits. It indicates that the 

input is active on a transition from a low‐to‐high‐level signal. The three‐state output has 

a third high‐impedance state, which has no logic significance. When the circuit is enabled, 

the output is in the normal 0 or 1 logic state, but when the circuit is disabled, the three‐

state output is in a high‐impedance state. This state is equivalent to an open circuit. 

 The open‐collector output has one state that exhibits a high‐impedance condition. An 

 externally connected resistor is sometimes required in order to produce the proper logic 

level. The diamond‐shape symbol may have a bar on top (for high type) or on the bottom 

(for low type). The high or low type specifies the logic level when the output is not in 

the  high‐impedance state. For example, TTL‐type integrated circuits have special outputs 

called open‐collector outputs. These outputs are recognized by a diamond‐shape symbol 

with a bar under it. This indicates that the output can be either in a high‐impedance state 

or in a low‐level state. When used as part of a distribution function, two or more open‐

collector NAND gates when connected to a common resistor perform a positive‐logic 

AND function or a negative‐logic OR function.  

 The output with special amplification is used in gates that provide special driving 

capabilities. Such gates are employed in components such as clock drivers or bus‐oriented 

transmitters. The  EN  symbol designates an enable input. It has the effect of enabling all 

outputs when it is active. When the input marked with  EN  is inactive, all outputs are 

disabled. The symbols for flip‐flop inputs have the usual meaning. The  D  input is also 

associated with other storage elements such as memory input. 

 The symbols for shift right and shift left are arrows pointing to the right or the left, 

respectively. The symbols for count‐up and count‐down counters are the plus and minus 

symbols, respectively. An output designated by CT =  15 will be active when the contents 

of the register reach the binary count of 15. When nonstandard information is shown 

inside the outline, it is enclosed in square brackets [like this].  

  1 0 . 3     D E P E N D E N C Y  N O TAT I O N 

 The most important aspect of the standard logic symbols is the dependency notation. 

Dependency notation is used to provide the means of denoting the relationship between 

different inputs or outputs without actually showing all the elements and interconnections 

between them. We will first demonstrate the dependency notation with an example of the 

AND dependency and then define all the other symbols associated with this notation. 

 The AND dependency is represented with the letter  G  followed by a number. Any 

input or output in a diagram that is labeled with the number associated with  G  is consid-

ered to be ANDed with it. For example, if one input in the diagram has the label  G 1 and 

another input is labeled with the number 1, then the two inputs labeled  G 1 and 1 are 

considered to be ANDed together internally. 

 An example of AND dependency is shown in  Fig.   10.5   . In (a), we have a portion of 

a  graphic symbol with two AND dependency labels,  G 1 and  G 2. There are two inputs 

labeled with the number 1 and one input labeled with the number 2. The equivalent 
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  FIGURE 10.5  
 Example of  G  (AND) dependency       
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interpretation is shown in part (b) of the figure. Input  X  associated with  G 1 is considered 

to be ANDed with inputs  A  and  B,  which are labeled with a 1. Similarly, input  Y  is 

ANDed with input  C  to conform with the dependency between  G 2 and 2. 

 The standard defines 10 other dependencies. Each dependency is denoted by a letter 

symbol (except  EN ). The letter appears at the input or output and is followed by a 

number. Each input or output affected by that dependency is labeled with that same 

number. The 11 dependencies and their corresponding letter designation are as follows:       

  G   Denotes an AND (gate) relationship 

  V   Denotes an OR relationship 

  N   Denotes a negate (exclusive-OR) relationship 

  EN   Specifi es an enable action 

  C   Identifi es a control dependency 

  S   Specifi es a setting action 

  R   Specifi es a resetting action 

  M   Identifi es a mode dependency 

  A   Identifi es an address dependency 
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 The  V  and  N  dependencies are used to denote the Boolean relationships of OR and 

exclusive‐OR similar to the  G  that denotes the Boolean AND. The  EN  dependency is 

similar to the qualifying symbol  EN  except that a number follows it (for example,  EN  2). 

Only the outputs marked with that number are disabled when the input associated with 

 EN  is active. 

 The control dependency  C  is used to identify a clock input in a sequential element 

and to indicate which input is controlled by it. The set  S  and reset  R  dependencies are 

used to specify internal logic states of an  SR  flip‐flop. The  C,   S,  and  R  dependencies 

are explained in Section 10.5 in conjunction with the flip‐flop circuit. The mode  M  

dependency is used to identify inputs that select the mode of operation of the unit. The 

mode dependency is presented in Section 10.6 in conjunction with registers and coun-

ters. The address  A  dependency is used to identify the address input of a memory. It is 

introduced in Section 10.8 in conjunction with the memory unit. 

 The  Z  dependency is used to indicate interconnections inside the unit. It signifies the 

existence of internal logic connections between inputs, outputs, internal inputs, and inter-

nal outputs, in any combination. The  X  dependency is used to indicate the controlled 

transmission path in a CMOS transmission gate.  

  10 .4     SYMBOLS FOR COMBINATIONAL ELEMENTS 

 The examples in this section and the rest of this chapter illustrate the use of the standard 

in representing various digital components with graphic symbols. The examples demon-

strate actual commercial integrated circuits with the pin numbers included in the inputs 

and outputs. Most of the ICs presented in this chapter are included with the suggested 

experiments outlined in  Chapter   9   . 

 The graphic symbols for the adder and decoder were shown in Section 10.2. IC type 

74155 can be connected as a 3 * 8 decoder, as shown in  Fig.   10.6   . (The truth table of this 

decoder is shown in Fig. 9.7.) There are two  C  and two  G  inputs in the IC. Each pair must 

be con nected together as shown in the diagram. The enable input is active when in the 

low‐level state. The outputs are all active low. The inputs are assigned binary weights 1, 2, 

and 4, equivalent to 2 0 , 2 1 , and 2 2 , respectively. The outputs are assigned numbers from 0 

to 7. The sum of the weights of the inputs determines the output that is active. Thus, if the 

two input lines with weights 1 and 4 are activated, the total weight is 1 + 4 = 5 and output 

5 is activated. Of course, the  EN  input must be activated for any output to be active. 

 The decoder is a special case of a more general component referred to as a  coder . 

A coder is a device that receives an input binary code on a number of inputs and produces 

a different binary code on a number of outputs. Instead of using the qualifying symbol 

 X/Y,  the coder can be specified by the code name. For example, the 3‐to‐8‐line decoder 

of  Fig.   10.6    can be symbolized with the name  BIN/OCT  since the circuit converts a 3‐bit 

binary number into 8 octal values, 0 through 7.  

  Z   Indicates an internal interconnection 

  X   Indicates a controlled transmission 

Preview from Notesale.co.uk

Page 513 of 565



Section A.1  Complementary MOS    511

  FIGURE A.4  
 CMOS logic circuits       
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output lines when the two vertical control inputs have the value of 1 in the uncircled ter-

minal and 0 in the circled terminal. With an opposite polarity in the control inputs, the path 

disconnects and the circuit behaves like an open switch. The two selection inputs,    S1   and    S0,    

control the transmission path in the  TG  circuits. Inside each box is marked the condition 

for the transmission gate switch to be closed. Thus, if    S0 = 0    and    S1 = 0,    there is a closed 

path from input    I0    to output  Y  through the two  TG s marked with    S0 = 0    and    S1 = 0.    The 

other three inputs are disconnected from the output by one of the other  TG  circuits. 

  FIGURE A.9  
 Multiplexer with transmission gates       

Y

S0

S1

I0

I1

I2

I3

TG
(S1 � 1)

TG
(S0 � 1)

TG
(S1 � 0)

TG
(S0 � 0)

TG
(S0 � 1)

TG
(S0 � 0)
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   Answers to Selected Problems 

  C H A P T E R  1 

  1.2   (a) 32,768  (b) 67,108,864  (c) 6,871,947,674  

  1.3   (a)    (4310)5 = 580     (b)    (198)12 = 260     

  1.5   (a) 6  (b) 8  (c) 11  

  1.6   8  

  1.7      (62315)8     

  1.9   22.3125 (all three)  

  1.12   (a) 10000 and 110111  (b) 62 and 958  

  1.19   (a) 010087  (b) 008485  (c) 991515  (d) 989913  

  1.24   (a) 6   3   1   1   Decimal     

 0  0  0  0  0 

 0  0  0  1  1 

 0  0  1  1  2 

 0  1  0  0  3 

 0  1  1  0  4 (or 0101) 

 0  1  1  1  5 

 1  0  0  0  6 

 1  0  1  0  7 (or 1001) 

 1  0  1  1  8 

 1  1  0  0  9 
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  5.16      DA = Ax� + Bx    

     DB = A�x + Bx�     

  5.18      JA = KA = (BF + B�F�)E    

     JB = KB = E     

  5.19   (a)    DA = A�B�x_in    

      DB = A + C�x_in� + BCx_in    

      DC = Cx_in� + Ax_in + A�B�x_in�    

      y_out = A�x_in     

  5.23   (a)    RegA = 125,       RegB = 125    

  (b)    RegA = 125,       RegB = 30     

  5.26   (a) 

     Q(t + 1) = JQ� + K�Q    

     When Q = 0, Q(t + 1) = J    

     When Q = 1, Q(t + 1) = K�    

 module JK_Behavior (output reg Q, input J, K, CLK);
   always @ (posedge CLK)
   if (Q == 0)  Q <= J;
   else Q <= ~K;
  endmodule  

        5.31   The HDL description is available on the Companion Website. 

   Note: The statements must be written in an order that produces the effect of con-

current assignments.   

  C H A P T E R  6 

  6.4   0110; 0011; 0001; 1000; 1100; 1110;  0111; 1011  

  6.8      A = 0010,    0001, 1000, 1100.    Carry = 1,    1, 1, 0  

  6.9   (b)    JQ = x�y; KQ = (x� + y)�     

  6.14   (a) 4   

  6.15   30 ns; 33.3 MHz  

  6.16      1010 S 1011 S 0100    

     1100 S 1101 S 0100    

     1110 S 1111 S 0000     
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  6.17      DA0 = A0 { E    

     DA1 = A1 { (A0E)    

     DA2 = A2 { (A1A0E)    

     DA3 = A3 { (A2A1A0E)     

  6.19   (b)    DQ1 = Q1
=     

      DQ2 = Q2Q1
= + Q8

=Q2
=Q1    

      DQ4 = Q4Q1
= + Q4Q2

= + Q4
=Q2

=Q1    

      DQ8 = Q8Q1
= + Q4Q2Q1     

  6.21      JA0 = LI0 + L�C    

     KA0 = LI0
= + L�C     

  6.24       TA = A { B    

     TB = B { C    

     TC = AC + A�C� (not self@starting)    

          = AC + A�B�C   (self@starting)     

  6.26   The clock generator has a period of 12.5 ns. Use a 2‐bit counter to count four pulses.  

  6.28      DA = A { B    

     DB = AB� + C    

     DC = A�B�C�     

  6.34    The HDL description is available on the Companion Website. Simulations results 

for Problem 6.34 follow: 

 

Name
0 60 120

CLK

SI
SO

        

  6.35   (b) The HDL description is available on the Companion Website.  

  6.37   The HDL description is available on the Companion Website.  

  6.38   (a) The HDL description is available on the Companion Website.  
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  Block diagram and ASMD chart:  

  The HDL description is available on the Companion Website. Simulations results for 

Problems 8.7 follow:   

       

Name
0 40 80 120

clock
reset_b

state[1: 0]

start
Load_A_B
Subtract
carry
borrow
Convert

data_A[7: 0]
RA[7: 0]
data_B[7: 0]
RB[7: 0]

done
borrow
result[7: 0]

0 x

00

00

0

0 1

50

32

2

50

20

0

30

1e

14

1

14

20

2

226

e2
20

0

30

1e 32

1

50

2 0

00

0 50

32

1 2

32

50

50

Controller
Subtract

start

reset_b
clock

Datapath

Reg_A

borrow

carry

data_A

result

Convert

Load_A_B

done

data_B

...

...
Reg_B

...
result

8 8

8

 S0
 done

1

start

reset_b

Reg_A <= data_A
Reg_B <= data_B

Reg_A <= ~Reg_A + 1

S2

borrow

Reg_A <= Reg_A + ~ Reg_B + 1

1

 S1
 Subtract

Load_A_B

Convert
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0 60 120 180 240

0

0000

0

0000

0

0

0

0000

0

20

50

50

20

50

0032

20

0014

40

40

0

0000

0

0

0

0000

0

0

0000

20

20

20

0014

50

50

50

0032

100

100

0064

0

0

0000

0

0

0

0000

65516

50

50

0032

50

65516

ffec

65526

fff6

10 2
fffe

65534

1

ffff

65535

65535

20

0014

20

20

Name

reset_b

clock

start

AR_lt_0

AR_gt_0

AR_eq_0

state

Ld_AR_BR

Div_AR_x2_CR

Mul_BR_x2_CR

Clr_CR

done

data_AR[15: 0]

AR[15: 0]

AR[15: 0]

AR_mag[15: 0]

data_BR[15: 0]

BR[15: 0]

BR[15: 0]

BR_mag[15: 0]

CR[15: 0]

CR[15: 0]

CR_mag[15: 0]

Overflow

Reset on-the-fly

Multiply by 2 and xfer to CR Divide by 2 and xfer to CR

  8.9   Design equations: 

     DS_idle = S_2 + S_idle Start'     

     DS_1 = S_idle Start + S_1(A2 A3)'    

     DS_2 = A2 A3 S_1     

   The HDL description is available on the Companion Website. Simulations results 

for Problem 8.9 follow:   
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  8.11      DA = A�B + Ax    

     DB = A�B�x + A�By + xy     

  8.16   RTL notation: 

     s0: (initial state) If    start = 0    go back to state s0, If   (start = 1)    then 

   BR d multiplicand, AR d multiplier, PR d 0,    go to s1.  

    s1: (check AR for Zero)    Zero = 1    if    AR = 0,    if    (Zero = 1)    then go back to s0 

(done) If    (Zero = 0)    then go to s1,    PR d PR + BR, AR d AR - 1.      

   The internal architecture of the datapath consists of a double‐width register to 

hold the product (PR), a register to hold the multiplier (AR), a register to hold 

the multiplicand (BR), a double‐width parallel adder, and single‐width parallel 

adder. The single‐width adder is used to implement the operation of decrement-

ing the multiplier unit. Adding a word consisting entirely of 1s to the multiplier 

accomplishes the 2’s complelment subtraction of 1 from the multiplier. Fig-

ure 8.16 (a) below shows the ASMD chart, block diagram, and controller of othe 

circuit. Figure 8.16 (b) shows the internal architecture of the datapath. Figure 

8.16 (c) shows the results of simulating the circuit.     

       

0 60 120 180 240Name

reset_b
clock

Start
A2
A3

state[2: 0]

set_E
clr_E
set_F
clr_A_F
incr_A

A[3: 0]
E
F

1

0

2 1

0 1 2 3 4 5 6 7 8 9 a b

2

c

4

d

1

0 1

2
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  Complementary metal-oxide 

semiconductor (CMOS),  67   

  Complementary MOS (CMOS) circuits, 

 510 – 513  

 bilateral switch,  514 – 515  

 characteristics,  513  

 CMOS fabrication process,  513  

 CMOS logic circuit,  513  

 construction of exclusive-OR with 

transmission gates,  515  

 74C series,  513  

 four-to-one-line multiplexer,  515  

 IC type 74C04,  513  

 propagation delay time,  513  

 static power dissipation of,  513  

 transmission gate,  514 – 517   

  Complements,  10 – 14 ,  44 ,  55 ,  87  

 diminished radix,  10 – 11  

 radix,  11 – 12  

 subtracion with,  12 – 14   

  Computer-aided design (CAD) systems, 

 67 – 68 ,  118   

  Computer-aided design of VLSI circuits, 

 67 – 68   

  Consensus theorem,  49   

  Control characters,  25   

  Controller, register-and-decoder 

scheme for the design of a,  411   

  Control logic,  396 – 402  

 ASMD charts,  379 – 381 , 

 396 ,  398  

 block diagram,  393  

  D  fl ip-fl op,  401  

 Gray code,  397 – 398  

 inputs  Start  and  Zero  

decisions,  396  

 one fl ip-fl op per state,  401 – 402  

 one-hot assignment,  

397 ,  401 – 402  

 sequence-register-and-decoder 

(manual) method,  398 – 401  

 state assignment,  398  

 steps when implementing,  397   

  Counters: 

 defi ned,  255  

 HDL for: 

 ripple,  288 – 290  

 synchronous,  287 – 288  

 Johnson,  282 – 283  

 ring,  280 – 282  

 ripple: 

 BCD,  269 – 271  

 binary,  267 – 269  

 symbols,  502 – 504  

 synchronous: 

 BCD,  275  

 binary,  271 – 272  

 binary counter with parallel load, 

 276 – 278  

 up–down binary,  272 – 275  

 with unused states,  278 – 280   

  Counters (experiment) 

 binary counter with parallel load, 

 462 – 463  

 decimal counter,  461  

 ripple counter,  461  

 synchronous four-bit binary 

counter,  461   

  Count operation,  351   

  Crosspoint,  317    

  D 
  Datafl ow modeling, of combinational 

logic,  171 – 174   

  Datapath unit,  364   

  Decimal adder, of combinational 

circuits,  144 – 146   

  Decimal equivalent, of binary 

number,  4   

  Decimal number system,  4   

  Declaration of module,  112   

  Decoders,  150 – 155  

 combinational logic implementation, 

 154 – 155   

   default  keyword,  176   

  Degenerate forms, of gates,  98 – 99   

  Delay control operator,  218   

  DeMorgan’s theorem,  45 ,  49 – 50 ,  55 ,  62 , 

 84 ,  91 – 92   

  Dependency notation,  493 – 495   

  Depletion mode,  508   

  Design entry,  109   

  Design of combinational circuits, 

 129 – 133   

   D  fl ip-fl op,  198 – 200 ,  255 ,  263  

 analysis,  210  

 characteristic table,  202  

 in combinational PAL,  330  

 in control logic,  401  

 graphic symbol for the 

edge-triggered,  200  

 hold time,  199  

 master–slave,  517  

 positive-edge-triggered,  203  

 setup time,  199   

  Diffused channel,  508   

  Digital age,  1   

  Digital integrated circuits,  66 – 67  

 fan-in,  67  

 fan-out,  67  

 noise margin,  67  

 power dissipation,  67  

 propagation delay,  67   

  Digital logic circuits: 

 binary information process,  30  

 symbols for,  32   

  Digital logic family,  66 – 67   

  Digital logic gates,  60 – 65  

 extension of multiple inputs,  62 – 63  

 positive and negative logic,  63 – 65   

  Digital logic gates (experiment) 

 NAND circuit,  447 – 448  

 propagation delay,  447  

 truth table,  446  

 universal NAND gate,  447  

 waveforms,  446 – 447   

  Digital systems,  1 – 3  

 information-fl ow capabilities,  30   

  Digital versatile disk (DVD),  3   

  Diminished radix complement,  10 – 11   

   $display  task,  178 – 179 ,  181   

  Distributive law,  39 ,  42 ,  54 ,  57   

   D  latch,  195 – 196 ,  457   

  Documentation language,  109   

  Don’t-care conditions,  88   

  Don’t-care minterms,  88 – 90   

  Dopants,  507   

  Drain terminal,  508   

  Duality principle,  43   

  Dual theorem,  44    

  E 
  Edge-sensitive cyclic behavior,  354   

  Edge-triggered  D  fl ip-fl op,  330   

  Eight-bit alphanumeric character 

code,  28   

  Eight-bit code,  27   

  8, 4, –2, –1 code,  22 – 23   

  Electrically erasable PROM,  320   

  Electronic design automation (EDA),  68   

   else  statement,  222   

  Emitter-coupled logic (ECL),  67   

  Encoders,  155 – 157  

 priority,  156 – 157   

  End-around carry,  13   

   end  keyword,  115 ,  177 ,  217   

   endprimitive,   117   

   endtable,   117   

  Enhancement mode,  508   

  Erasable PROM,  320   

  Error-detecting and 

error-correcting codes: 

 Hamming,  312 – 315  

 single-error correction and double-

error detection,  315   

  ETX (end of text),  26   

  Event control expression,  175   

  Event control operator,  218   

  Excess-3 code,  22 – 23 ,  130   

  Exclusive-NOR function,  103    
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  F 
  Fan-in,  67   

  Fan-out,  67   

  Fault-free circuit,  110   

  Fault simulation,  110   

  Field,  39   

  Field-programmable gate array 

(FPGA),  68 ,  299 ,  329 – 330 ,  438 , 

 480 – 482 ,  See also  Xilinx FPGA  

  File separator (FS) control,  26   

   $finish  statement,  178   

   $finish  system,  115   

  Finite state machine (FSM),  364   

  Five-variable K-map,  84   

  Flash memory devices,  320   

  Flip-fl op, defi ned,  192   

  Flip-fl op circuits,  259  

 ASMD,  371  

 characteristic table,  201 – 202  

  Clear_b  input,  256  

 clear or direct reset,  203  

 clock response in,  197  

  D  fl ip-fl op,  198 – 200 ,  255 ,  263  

 analysis,  210  

 characteristic table,  202  

 in combinational PAL,  330  

 graphic symbol for the 

edge-triggered,  200  

 hold time,  199  

 master–slave,  517  

 positive-edge-triggered,  203  

 setup time,  199  

 direct inputs,  203  

 input equation,  209 – 210  

  JK  fl ip-fl op,  200 – 201 ,  263  

 analysis,  210 – 213  

 characteristic equation,  203  

 characteristic table,  202  

 master–slave,  198 ,  517  

 positive-edge-triggered,  199  

 signal transition,  197  

 symbols,  497 – 499  

  T  (toggle) fl ip-fl op,  200 – 201  

 analysis,  213 – 214  

 characteristic equation,  203  

 characteristic table,  202   

  Flip-fl op input equations,  209 – 210   

  Flip-fl ops (experiment) 

  D  latch,  457  

 IC type fl ip-fl op,  459 – 460  

 master–slave  D  fl ip-fl op,  458  

 positive-edge-triggered fl ip-fl op,  459  

  SR  latch,  457   

   forever  loop,  359   

   fork  …  join  block,  226   

   for  loop,  360   

  Four-bit data-storage register,  257   

  Four-bit register,  256   

  Four-bit universal shift register,  265   

  Four-digit binary equivalent,  9   

  Four-to-one-line multiplexer,  163   

  Four-variable Boolean functions, map 

minimization of,  80 – 84   

  Four-variable K-map,  80 – 84   

  Franklin, Benjamin,  507   

  Full-adder (FA) circuit,  261 – 262   

  Functional errors,  109   

  Functional verifi cation,  181   

  Function blocks,  332    

  G 
  Gate delays,  113 – 115   

  Gate instantiation,  112   

  Gate-level minimization,  73  

 AND–OR–INVERT 

implementation,  99 – 100  

 don’t-care conditions,  88 – 90  

 exclusive-OR (XOR) function, 

 103 – 108  

 odd function,  104 – 106  

 parity generation and checking, 

 106 – 108  

 hardware description language 

(HDL),  108 – 118  

 Boolean expressions,  115 – 116  

 gate delays,  113 – 115  

 user-defi ned primitives (UDPs), 

 116 – 118  

 map method: 

 fi ve-variable K-map,  84  

 four-variable K-map,  80 – 84  

 prime implicants of a function, 

 82 – 84  

 three-variable K-map,  75 – 76  

 two-variable K-map,  74 – 75  

 NAND circuits,  90 – 91  

 nondegenerate forms,  98 – 99  

 OR–AND–INVERT 

implementation,  100  

 product-of-sums simplifi cation, 

 84 – 88 ,  90  

 tabular summary and example, 

 100 – 102   

  Gates with multiple inputs,  33   

  Gate voltage,  508   

  General-purpose digital computer,  2   

  Giga (G) bytes,  5   

  Graphical user interfaces (GUIs),  1   

  Graphic symbols,  32   

  Gray code,  23 – 24 ,  397 – 398   

  Gray code to equivalent 

binary,  452    

  H 
  Half adder,  167   

  Hamming code,  312 – 315   

  Hand-held devices,  190   

  Hardware description language (HDL), 

 68 ,  108 – 118  

 algorithmic-based behavioral 

description,  381  

 of binary multiplier,  402 – 411  

 Boolean expressions,  115 – 116  

 circuit demonstrating,  111  

 combinational circuits,  164 – 181  

 behavioral modeling,  174 – 176  

 datafl ow modeling,  171 – 174  

 example of test bench,  176 – 181  

 three-state gates,  169 – 170  

 description of design example, 

 381 – 391  

 gate delays,  113 – 115  

 for ripple counter,  288 – 290  

 RTL description,  381 – 385  

 structural description,  381 ,  386 – 391  

 switch-level modeling,  517 – 520  

 for synchronous counter,  287 – 288  

 testing of design description,  385 – 386  

 transmission gate,  519 – 520  

 user-defi ned primitives (UDPs), 

 116 – 118   

  Hardware signal generators,  115   

  HDL-based design methodology,  3   

  Heuristics,  30   

  Hexadecimal (base-16) number system, 

 4 – 5 ,  8 – 10   

  High-impedance state,  162 – 163   

  Holes,  507   

  Horizontal tabulation (HT) control,  26   

  Huntington postulates,  42    

  I 
  7493 IC,  439 ,  442 – 443   

  IC type 74194,  470   

  IC type fl ip-fl op,  459 – 460   

  Identity element,  39   

   if-else  statement,  174   

   if  statement,  222   

   if-then  statement,  353   

  Implicit combinational logic,  116   

  Incompletely specifi ed functions,  88   

   initial  block,  177 ,  179 ,  358   

   initial  statement,  115 ,  177 ,  217 – 219   

   input  declaration,  117   

  3-input NAND gate,  63   

  3-input NOR gate,  63   

  Input–output signals for gates,  33   

  Input–output units,  2   

  Instantiation of module,  112   
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  R 
  Race-free design,  422 – 425   

  Radix complement,  11 – 12   

   R -allowable digits,  5   

  Random-access memory (RAM), 

 299 – 307  

 memory description in HDL,

  303 – 304  

 symbol,  504 – 505  

 timing waveforms,  304 – 306  

 types of memories,  306 – 307  

 write and read operations,  302 – 303   

  Read-only memory (ROM),  299 , 

 315 – 321  

 block diagram,  316  

 combinational circuit 

implementation,  318  

 example of 32×8,  316  

 hardware procedure,  317  

 inputs and outputs,  316  

 internal binary storage of,  317  

 truth table of,  317  

 types,  320   

  Record separator (RS) control,  26   

  Rectangular-shape symbols,  488 – 491   

  Register (s),  27  

 defi ned,  255  

 of excess-3 code,  27  

 four-bit,  256  

 HDL for,  284 – 287  

 loading or updating,  257  

 with parallel load,  257  

 shift,  258 – 266  

 serial addition,  261 – 263  

 serial transfer of information, 

 259 – 261  

 universal,  263 – 266  

 symbol,  499 – 502  

 transfer of information among,  28 – 30   

  Register transfer level (RTL),  3  

 algorithmic state machines (ASMs), 

 363 – 371  

 block,  368 – 369  

 chart,  365 – 368 ,  370 – 371  

 relationship between control 

logic and data-processing 

operations,  364  

 simplifi cations,  369  

 timing considerations,  369 – 370  

 combinational circuit functions,  354  

 control logic,  396 – 402  

 in HDL,  354 – 363  

 fl owchart for modeling, verifi cation, 

and synthesis,  363  

 logic synthesis,  361 – 363  

 loop statements,  358 – 361  

 operators,  355 – 358  

 procedural assignments,  355  

 HDL descriptions: 

 of binary circuits,  402 – 411  

 of combinational circuits, 

 381 – 391  

 latch-free design,  425 – 426  

 with multiplexers,  411 – 422  

 notation,  351 – 354  

 procedural assignments,  355  

 propagation delays,  353  

 race-free design,  422 – 425  

 sequential binary multiplier, 

 391 – 396  

 type of operations,  353  

 Verilog HDL for,  426   

   reg  keyword,  168 ,  175 ,  177 ,  179 , 

 220 – 221 ,  360   

   repeat  loop,  358   

   Ripple_carry_4_bit_adder,   169   

  Ripple counter: 

 BCD,  269 – 271  

 binary,  267 – 269  

 HDL for,  288 – 290    

  S 
  Schematic capture,  68   

  Schematic entry,  68   

  Semiconductors,  507   

  Sensitivity list,  175   

  Sequential binary multiplier: 

 ASMD chart,  394 – 396  

 interface between the controller and 

the datapath,  393  

 numerical example for binary 

multiplier,  396  

 register confi guration,  392 – 393  

 registers needed for the data 

processor subsystem,  395   

  Sequential circuits (experiment) 

 design of counter,  460 – 461  

 state diagram,  460  

 up–down counter with enable,  460   

  Sequential programmable devices, 

 329 – 346  

 AND–OR sum-of-products 

function,  330  

 complex programmable logic device 

(CPLD),  329 ,  331  

 confi guration,  331  

 fi eld-programmable gate array 

(FPGA),  329 – 330 ,  332  

 input–output (I/O) blocks,  330  

 registered,  330  

 sequential (or simple) programmable 

logic device (SPLD),  329   

  Serial addition (experiment) 

 serial adder,  466 – 467  

 serial adder–subtractor,  467  

 testing the adder,  467   

  Set of elements,  38   

  Set of natural numbers,  39   

  Set of operators,  38   

  Set of real numbers,  39   

  Shift-left control,  264   

  Shift operation,  351   

  Shift registers (experiment) 

 bidirectional shift register,  465  

 bidirectional shift register with 

parallel load (IC type 74157), 

 465 – 466  

 feedback shift register,  464 – 465  

 IC shift register,  463  

 ring counter,  463 – 464   

  Shift-right control,  264   

  Signals,  2  

 assignment of,  64   

  Signed binary numbers,  14 – 18  

 arithmetic addition,  16 – 17  

 arithmetic subtraction,  17 – 18  

 signed-complement system,  15  

 signed-magnitude convention,  15   

  Signed-complement system,  15 ,  21   

  Signed-magnitude convention,  15   

  Signed-10’s-complement system,  21   

  Silicon crystalline structure,  507   

   Simple_Circuit,   112 – 113   

   Simple_Circuit_ prop_delay,   114   

  Single-pass behavior,  217   

  Small-scale integration (SSI) circuits, 

 439   

  Small-scale integration (SSI) devices,  66   

  Software programs,  68   

  Source terminal,  508   

  Spartan ™ ,  333 ,  339 – 344   

   SR  latch,  193 – 195 ,  457   

  Standard cells,  126   

  Standard form of Boolean algebra, 

 56 – 58   

  Standard product,  51   

  Standard sums,  51   

  State table,  378 – 379   

  STX (start of text),  26   

  Sum of products,  56 ,  62 ,  88 ,  91   

  Sum terms,  57   

   supply1  and  supply0  keyword,  518   

  Switching algebra,  43   

  Switch-level modeling,  517 – 520   

  Symbols,  61 ,  171  

 !,  171  

 %,  178  

 &,  171  
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